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Abstract
The sound event recognition (SER) task is gaining lot of importance in emerging applications such as machine audition,
audio surveillance, and environmental audio scene recognition. The recognition of sound events with noisy conditions in
real-time surveillance applications is a difficult task. In this paper, we focus on learning patterns using multiple forms (views)
of the given sound events. We propose two variants of the Multi-View Representation (MVR)-based approach for the SER
task. The first variant combines the auditory image-based features and the cepstral features from sound signal. The second
variant combines the statistical features extracted from the auditory images and the cepstral features of sound signal. In
addition to these variants, Constant Q-transform and Variable Q-transform image-based features are also explored to study
the other effective forms of multi-view representations. A discriminative model-based classifier is then used to recognize
these representations as environmental sound events. The performance of the proposed MVR approaches is evaluated on
three benchmark sound event datasets namely ESC-50, DCASE2016 Task 2, and DCASE2018 Task 2 for the SER task. The
recognition accuracy of the proposed MVR approach is significantly better than the other approaches proposed in the recent
literature.

Keywords Sound event recognition (SER) · Spectrograms · Mel-frequency cepstral coefficients (MFCCs) · Histogram of
oriented gradients (HOG) · Moment-based features · Constant Q-transform (CQT) · Variable Q-transform (VQT) · Support
vector machine (SVM)

1 Introduction

Over the past few years,many researchers have beenworking
on developing sound-based surveillance tools to automati-
cally detect environmental sounds [1–4]. Developing sound
surveillance system is a popular research field due to its
potential benefits in both public and private environments.
Recently, some efforts have been directed toward systems
capable of detecting and classifying these sounds [5]. Envi-
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ronmental sounds exist in domestic, business, and out door
environments. Most of the investigations concentrate on a
restricted domain. For example, a system capable of rec-
ognizing sounds in a specific indoor environment may be
of great importance for monitoring and security applications
[4,6]. These functionalities can also be used in portable assis-
tive devices to alert disabled and elderly personswith hearing
impairment about specific sounds such as doorbells, alarm
signals, etc.

Recently, sound event recognition (SER) has gained sig-
nificant interest due to its wide applications in the field of
multimedia context analysis and automated audio surveil-
lance [2,3]. In the case of automated surveillance, audio
sensors play a vital role during night-timeswhen compared to
video cameras [7,8]. SER is important to detect the environ-
mental sounds as abnormal or normal events. For instance,
door slam, knock, laughter, and coughing sounds are grouped
into normal sounds and suspicious events such as glass break-
ing and screaming are considered as abnormal sounds. SER
task also helps in recognizing the context or environment for
robots and smart cars [9,10].
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Some of the challenges related to SER include the
following: the existence ofmultiple sound sources or overlap-
ping or polyphonic events; recognition of confusable sound
events; and lack of compact representation techniques for
sound events. These challenges increase the complexity of
learning acoustic events and complicates the real-time auto-
mated surveillance systems. Recently, SER systems focus on
learning representations that can accurately capture the char-
acteristics of a given sound event.Various audio features have
been proposed for sound event recognition tasks in different
applications.

The most widely used handcrafted sound features are
Mel-frequency Cepstral coefficients (MFCCs). On the other
hand, the spectrogram-based visual features are extracted by
transforming sound signal into its two-dimensional Time-
Frequency representation. Some of the visual features used
for the recognition task are Scale Invariant FeatureTransform
(SIFT), Speeded Up Robust Features (SURF), Histogram of
oriented Gradients (HOG), and Local Binary Pattern (LBP).
Previous studies have analyzed the performance of audio and
visual features in automatic speech recognition (ASR) [11]
and Music Information Retrieval (MIR) [12] tasks.

In this paper, we focus on forming a multi-view rep-
resentation by combining visual features extracted from
spectrograms with the well-known MFCC features. Indeed,
MFCCs essentially capture nonlinear information from the
power spectrumof the signal. HOG-based features are invari-
ant to small time and frequency translations. They include
local direction of variation of power spectrum, which is not
provided by MFCC [13,14]. Hence, we propose multi-view
representation that combines the advantages of both MFCC
and HOG features. In this work, we propose two variants
of the Multi-View Representation. The first variant com-
binesHOGfeatures extracted fromspectrogramwith cepstral
features such as MFCCs. Another variant combines statis-
tical features computed from spectrogram and the MFCCs
extracted from sound signal. Multi-view representations are
then fed as input to discriminative classifier such as Support
VectorMachines (SVM) to recognize the given sound signal.

The rest of this paper is organized as follows.Relatedwork
on sound event representations is briefly presented in Sect.
2. In Sect. 3, we describe the proposed Multi-view Repre-
sentation approaches for the SER task. In Sect. 4, we present
experimental studies and discussion.

2 Related work

In the recent studies, there have been a lot of work done in
feature learning and recognition of sound events [15–21].
Cakir et al. [15] studied three types of features namely Mel-
frequency Cepstral coefficients(MFCCs), Mel-band ener-
gies, and log Mel-band energies. Kim and Kim et al. [22]

proposed a segmental 2-D MFCCs which rely on transfor-
mation of cosines. Lim et al. [23] proposed a bag-of-audio
words approach in order to recognize the universal char-
acteristics of an environmental sound event. Eronen et al.
[24] used a method which proposes the combination of
frequency-domain features and time-domain features such
as Zero Crossing Rate (ZCR), spectral centroid, spectral
roll-off, short-time average energy, MFCCs, and linear pre-
diction coefficients to classify 24 contexts with the use of
hidden Markov models (HMMs). Chu et al. [25] proposed
an idea of Matching Pursuit (MP) to obtain effective time
and frequency-based features. Then, MP-based feature was
combined with MFCC-based features for the acoustic event
recognition. Ye et al. [26] has incorporated the local statis-
tics such as mean and standard deviation on local pixels
to establish a robust Local Binary Pattern (LBP). Besides,
the L2-Hellinger normalization method was applied to the
proposed features to further increase the robustness and the
discriminative power.

The choice of compact representation influences the out-
come of any learning tasks. Most of the recent methods
convert the segments of acoustic signals into spectrograms.
Spectrogram is a visual time-frequency representation of a
sound signal. Some of the visual features extracted from
spectrograms are Scale-Invariant Feature Transform (SIFT),
Speeded Up Robust Features (SURF), and Histogram of ori-
ented gradients (HOG) [14,27]. Few other methods involve
the extraction of sound features such as Mel Frequency
Cepstral Coefficients, Constant-Q chromagram, and Spectral
flatness directly from raw sound signals. Then, the extracted
feature vectors are used as sound event descriptors to train
the model.

Feroze et al. [28] proposed a method using features such
as loudness, MFCC’s, and perceptual linear predictive (PLP)
features. It was concluded from the experimental studies that
PLP-based features outperformed theMFCC-based features,
for sound event recognition tasks.However,MFCC’s are gen-
erally preferred over other audio features. Jayalakshmi et al.
[6] proposed an approach based on statistical moments com-
puted from MFCC features with Support Vector Machine
(SVM) classifier. This approach outperformed the generative
model-based classifiers such as the Hidden Markov Model
(HMM) and Gaussian Mixture Model (GMM) for sound
event recognition. A system submitted for DCASE2016
Challenge for Sound Event recognition in Synthetic Audio
Task 2 involved building a sound event recognition system
based on semi-supervised non-negative matrix factorization
(NMF), combined with local dictionaries (MLD).

A system proposed by Li et al. [29] consists of two
main steps: deep audio feature (DAF) extraction and bidirec-
tional long-short-term memory classification. MFCC’s were
extracted from each frame of audio, and DAF features were
learnt using deep neural networks. Finally, a combination of
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Fig. 1 Block diagram of proposed multi-view representation (MVR) approach for sound event recognition (SER) task

LSTM and Bi-Directional Recurrent Neural Networks was
used for classification. This showed moderate performance
improvement over existing systems. Another deep network
was built using a combination of Convolutional Neural Net-
work (CNN) and a Recurrent Neural Network (RNN) [30].
CNN’s have shown to be robust to local and temporal spec-
tral variations and capable of extracting high-level features.
RNN’s can learn longer-term temporal context, are combined
to form a C-RNN network for the task of Polyphonic sound
event recognition. Recently, Yu et al. [31] proposed a system
to classify the audio events through EEG signals by mon-
itoring the brain activity of participants. In this work, we
focus on sound event recognition by using complementary
data present in two different modalities of sound signals.

3 Multi-view representation for sound event
recognition

The performance of machine learning approaches is pre-
dominately dependent on the compact data representation.
Effective recognition of sound events depends significantly
on the representations derived from sound samples. But these
techniques lack in capturing the significant discriminative
patterns of sound classes in unconstrained environments
because contents of sound signals highly depend on the
context of an environmental scene. Therefore, we focus on
combining capabilities frommultiple modes (views) of input
that will complement each other and can be generalized
for effective representation. Generally, the multi-view rep-
resentation aims to combine the multiple views into a single
and compact representation to exploit the complementary
knowledge contained in multiple views to comprehensively
represent the data.

This paper aims to utilize the multiple views of sound data
from sound events and to propose a newMVR-based system
that yields better results when given as an input to tradi-
tional shallow models instead of data-hungry deep models.

We propose two variants of the Multi-View Representation
(MVR)-based approach for the SER task. The first approach
uses the auditory image-based visual features extracted from
spectrograms as one form of input and cepstral features
extracted from sound signals as other form of input. Second
approach uses the auditory image-based statistical features
and the cepstral features of sound signal. In addition to these
two variants, we have also explored Constant Q-transform
(CQT) andVariable-QTransform (VQT)-image-basedvisual
features for multi view representations. The block diagram
of the proposed approach is given in Fig. 1.

3.1 Visual features from auditory images

Spectrogram contains the spectrum of frequencies of a signal
varying with time. These spectrograms are used extensively
in the field of music and speech processing. Spectrogram is
depicted as an image which consists of intensity shown by
varying color and brightness.

Figures 2, 3 and 4 illustrate the spectrograms of ‘Key-
board’,‘Cough’, and ‘Laugh’ sound event classes, respec-
tively, from the DCASE2016 Task 2 dataset. It can be
observed from Fig. 2 that, the spectrograms generated for
sound signals of same sound class do not vary much and
looks similar. Whereas for ‘Cough’, and ‘Laugh’ sounds
which are acoustically similar but different sound classes,
the corresponding spectrograms are dissimilar as shown in
Figs. 3 and 4. Though these two sound classes sound similar
(overlapping) the corresponding spectrograms show the dis-
crimination. This helps to reduce the overlap between two
different but overlapping sound classes leading to improved
performance.

We explore two types of features namely Histogram of
Oriented Gradient (HOG) and statistical features. Generally,
several key points can be extracted from the spectrogram
images. They provide the temporal analysis of the sound
event thus giving an auditory image that is easier to inter-
pret. One of the visual feature descriptor popularly used in
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Fig. 2 Spectrograms of two samples of ‘Keyboard’ sound Class from
DCASE2016 Task 2 dataset

Fig. 3 Spectrogram of ‘Cough’ sound

Fig. 4 Spectrogram of ‘Laugh’ sound

computer vision and object recognition is the histogram of
oriented gradients (HOG). This method counts occurrences
of gradient orientation in localized portions of an image. It
describes the local characteristics of a given spectrogram
image in the gradient directions. HOG can be used to cap-
ture the modulation of the scene along the temporal axis. The
steps involved in computing HOG are listed as follows: (1)
The gradient of either spectrogram or constant Q-transform
representation is calculated; (2) The angles of all pixel gradi-
ents are calculated; (3) Non-overlapping cells of the images
are formed; (4) Each cell histogram obtained is normalized
based on the histogram of its neighbors. Finally, filtering and
pooling are performed to optimize the HOG descriptor.

Apart fromspectrograms, other auditory images generated
using Constant Q Transform (CQT) and Variable Q Trans-

form (VQT) have also been analyzed. The CQT is given by
the formula mentioned below[32] :

x[k] = 1

L[k]
L[k]−1∑

n=0

S[k, n]s[n]e− j2π Qn
L[k] (1)

where 2π Qn/l[k] gives the frequency of the kth component
and s[n] is the sample of the digitized time-frequency. The
S[k,n] represents the window function that depends on k as
well as n. Similarly, Variable Q Transform (VQT) has been
implemented that is similar to CQT but allows for different
filterbanks to be used in each downsampled octave.

3.2 Cepstral features from sound signals

Handcrafted feature extraction methods have proved to be
effective for tasks such as object recognition and audio
tagging. Visual features have proved to work better in uncon-
strained and generalized environments. From this, it can be
inferred that some generic audio and visual feature extraction
techniques complement each other based on their character-
istics. In the cepstral feature extraction, the N-dimensional
Mel-frequency Cepstral Coefficient (MFCC) features are
extracted from a short-term power spectrum of sound with
a Mel-frequency scale[33]. MFCC features are proved to be
effective in many of the sound-related surveillance applica-
tions [3,12].

In this work, we propose an efficient multi-view represen-
tation (MVR) for sound events as shown in Fig. 1. Proposed
Multi-View Representations combine both handcrafted cep-
stral features and auditory image-based visual features. The
multi-view representations involve the combination of fea-
tures that are complementary to each other. Here we propose
two such combinations based on auditory images of sound.
The first approach combines the statistical moment-based
features with MFCC features. This approach involves the
computation of moments from pixel values along either of
the axes and using those moments as a feature vector. Statis-
tical features are computed from pixel values along either of
the axis. We have experimented using both the axes (X -axis
as well as Y -axis) to find which axis gives a better result.
It was evident that along the y-axis the results were better
compared to the x-axis. In this approach, parameters such
as skewness, mean, median, variance, minimum, maximum,
and kurtosis are calculated for each column along X axis or
each row along Y axis. Different sound events often have
different sound properties, which lead to the change of the
texture pattern of the auditory images and alters the image
intensity. The multi-view representation is then formed by
combining the statisticalmoment-based features withMFCC
features.
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Another variant of theMVR-based approach combines the
HOG feature with MFCC. The Multi view representations
of sound signals are given as input to the Support Vector
Machine (SVM) to recognize the sound events. In addi-
tion to the spectrogram images, we have also experimented
with other images formed using Constant Q transform and
variable-Q transform (VQT) coefficients for further analysis.

4 Experimental studies and discussions

4.1 Datasets used for studies

Wehave used sound events from the following three different
datasets, namely the Environment Sound Classification-
10 (ESC-50) dataset [12], DCASE2016 Task 2 [34] ,
and DCASE2018 Task 2 dataset [35]. These sounds are
recorded in different environments with different subjects
and noise levels. Each dataset contains various types of
sounds recorded in different scenarios with different noise
levels.

ESC-50 Dataset This dataset consists of 2000 labeled
environmental sound event examples. It contains 50 classes
with 40 instances per class [12]. The data are grouped into
5 major categories with 10 classes for every category: Ani-
mal sounds, natural soundscapes, and water sounds, human
(non-speech) sounds, interior/domestic sounds, and exterior/
urban noises. It consists of animal sounds such as dog bark-
ing, the sound made by cows, frogs, etc., outdoor sound
events such as rain, sea waves, fire crackling, etc., human
sounds such as snoring, clapping, snoring, etc., indoor sounds
such as vacuum cleaner, washing machine, alarm clock, etc.,
other sounds such as vehicles, church bell, hand saw, etc. 5-
fold cross validation is carried out to evaluate the proposed
approach.

DCASE2016 Task 2 Dataset This dataset is provided for
sound event recognition in synthetic audio [34]. The audio
dataset consists of isolated sound events for 11 different
sound event classes with 20 samples per class related to
office environment: clearing throat, coughing, door knock,
door slam, drawer, human laughter, keyboard, keys (placed
on a table), page-turning, the phone ringing, and speech. We
used all the data in DCASE2016 Task 2 and carried out five-
fold cross-validation.

DCASE2018Task 2dataset This dataset contains 41 sound
classes [35]. We used training data of 41 classes of sound
events for our experimental studies. Some of the sound events
in the dataset are shattering, fireworks, keyboard sound,
keys jingling, etc. The sound events for this training dataset
are composed of 9473 examples. Fivefold cross-validation
is carried out to evaluate the performance of the proposed
approach.

4.2 Feature extraction

To capture the characteristics of sound events, we have used
26-dimensional MFCC features as sound features. For each
sound event, we computed the statistical features across the
26-dimensional MFCC features. Mean, median, minimum,
maximum, variance, skewness, and kurtosis were computed
as statistical features. These statistical features, computed
across 26-dimensional features, were then concatenated to
form the fixed dimensional representation (26*7). Similarly,
for all the examples, the spectrogram-based visual feature
HOG is extracted. Besides, from each spectrogram, we also
extract sevenmoment-based statistical features such asmean,
median, minimum, maximum, standard deviation, skewness,
and kurtosis. These features were combined to form a fixed
dimensional vector for each spectral image. CQT and VQT
image-based feature extraction are also performed on the
given input sound signal. After the feature extraction step, the
extracted visual features were combined with sound features
to form a multi-view representation for effective learning.

4.3 Performance analysis

In all experiments, MFCC features are used as the basic
sound features. The performance of proposed approach
and other conventional approaches are shown in Tables
1, 2 and 3 for the datasets ESC-50, DCASE2016 Task 2,
and DCASE2018 Task 2, respectively. The first method is
spectrogram with HOG-based approach as single-view rep-
resentation. In HOG computation, cell size is fixed as 16*16,
number of orientations as 8 and pooling operator as average
operator(pooling over frequency) as given in [39]. The sec-
ond method uses statistical features in two ways: i) statistical
features computed along pixel values of every row (Spectro-
gram+moments (X axis) + MFCC + SVM) and ii) statistical
features computed along pixel values of every column (Spec-
trogram + moments (Y axis) + MFCC + SVM).

The performance of the proposed Spectrogram + HOG
+ MFCC-based multi-view representation approach gives
better results compared to spectrogram with HOG-based
approach. The proposed approach gives an accuracy of 72.7
%, 91.3%,and 80.17% for the datasets ESC-50,DCASE2016
Task 2, and DCASE2018 Task 2, respectively. Even though
the size of the dataset increases, the method is consistent
in its performance compared to single-view representations.
The second approach is based on statistical moments that
achieved an accuracy of 68.9 %, 83%, and 80.17% for the
datasets ESC-50, DCASE2016 Task 2, and DCASE2018
Task 2, respectively. Here we can observe that the proposed
approacheswork betterwhen compared to other conventional
approaches such as CQT- and VQT-based representations.

In the case of the ESC-50 dataset, Table 1 shows the base-
line performance reported in [12]. Piczak [36] evaluated the

123



1216 Signal, Image and Video Processing (2021) 15:1211–1219

Table 1 Comparison of
recognition accuracy (%) for
ESC-50 dataset

Method Accuracy (%)

ZCR + MFCC + SVM [12] 39.6

ZCR + MFCC + Random forest ensembler[12] 44.3

Log Mel scaled spectrogram +CNN [36] 64.45

MFCC + SVM 61.2

CQT + HOG + SVM 65.1

VQT + HOG + SVM 65.9

Spectrogram + moments (X axis)+ SVM 65.4

Spectrogram + moments (Y axis) + SVM 67.4

Spectrogram + Hog + SVM 71.9

CQT + HOG + MFCC + SVM 67.4

VQT + HOG + MFCC + SVM 67.7

Spectrogram+moments (X axis) + MFCC + SVM 66.1

Spectrogram+moments (Y axis) + MFCC + SVM 68.9

Spectrogram + HOG + MFCC + SVM 72.7

Table 2 Comparison of
recognition accuracy (%) for
DCASE2016 Task 2 dataset

Method Accuracy (%)

Spectral template + NMF [37] 41.6

CQT + Recurrent neural networks (RNN) [34] 52.8

Gammatone cepstrum + Random forests [34] 64.8

Mel-filter bank + BLSTM [34] 78.1

Mel energy + Deep Neural Networks (DNN) [34] 78.7

NMF + MLD [38] 80.2

CQT + HOG + SVM 76.3

VQT + HOG + SVM 77.1

Spectrogram + moments (X axis) + SVM 73.9

Spectrogram + moments (Y axis) + SVM 79.0

Spectrogram + HOG + SVM 90.0

CQT + HOG + MFCC + SVM 78.1

VQT + HOG + MFCC + SVM 79.9

Spectrogram + moments (X axis) + MFCC + SVM 76.3

Spectrogram + moments (Y axis) + MFCC + SVM 83.0

Spectrogram + HOG + MFCC + SVM 91.3

Table 3 Comparison of
recognition accuracy (%) for
DCASE2018 Task 2 dataset

Method Accuracy (%)

CQT + HOG + SVM 61.1

VQT + HOG + SVM 61.1

Spectrogram + moments (X axis) + SVM 63.2

Spectrogram + moments (Y axis) + SVM 66.0

Spectrogram + HOG + SVM 66.9

CQT + HOG + MFCC + SVM 62.9

VQT + HOG + MFCC + SVM 63.3

Spectrogram+moments (X axis) + MFCC + SVM 63.3

Spectrogram+moments (Y axis) + MFCC + SVM 68.1

Spectrogram + HOG+ MFCC + SVM 80.17
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potential of convolutional neural networks with log-scaled
Mel-spectrograms for recognizing the short duration envi-
ronmental sounds. The proposed MVR approach produced a
much better performance with an accuracy of 33 % improve-
ment when compared to the baseline system reported in [12].

Similarly, Table 2 shows the recognition accuracy of the
proposed approach and some of the state-of-the-art meth-
ods reported in the literature for the DCASE2016 Task 2
sound event dataset. The proposed approach outperforms the
baseline system by giving a 50% increase in classification
accuracy. Table 2 adds some of the systems submitted in
the DCASE2016 Task 2 challenge for sound event recogni-
tion [34]. The baseline system [37] of DCASE2016 Task 2
uses a dictionary of spectral template with supervised NMF
approach. The proposed MVR approach outperformed the
following systems in the DCASE2016 Task 2 challenge: rep-
resentations of constant-Q transform (CQT) with RNN clas-
sifier, Gammatone cepstrum with Random forests classifier,
the Bi-Directional Long-Short TermMemory (BSLTM)with
Mel-Filter Bank features, and Non-Negative Matrix Factor-
ization with a Mixture of Local Dictionaries (NMF-MLD).
From the above observations, it is clear that significant
improvement can be achieved even with simpler handcrafted
features with shallow models trained on meaningful multi-
view representations rather than using data-hungry deep
feature learning techniques.

The results of single view and multi-view representations
studied for three datasets are analyzed with the help of con-
fusionmatrices. As an example, in case of DCASE2016 Task
2 dataset, the proposed HOG+MFCC-based MVR approach
reduces the overlap between classes such as {Human laugh-
ter, Page turning}, and {Phone ringing, Page turning} which
can be seen in Tables 4 and 5. This leads to slightly improved
performance compared to single viewHOG-based approach.

Table 3 shows the recognition accuracy of the proposed
MVR-based approaches and single-view approaches. There
are 11 sound event classes in DCASE2016 Task 2 dataset
and 41 sound event classes in DCASE2018 Task 2 dataset.
As the number of sound classes increases the MVR using
HOG+MFCC approach outperforms single-view with HOG
only approach as given in Table 3.

5 Conclusion

In this paper, a Multi-View Representation (MVR)-based
approach for Sound Event Recognition has been proposed.
The proposed approach combines auditory image-based
visual features with cepstral features to form compact and
effective representation. The proposed handcrafted feature-
based MVR representation with simple shallow model such
as SVM as classifier leads to improved performance over
other state-of-the-art methods for ESC-50, DCASE2016

Task 2, and DCASE2018 Task 2 datasets. The proposed
approach is more suitable for recognizing acoustically simi-
lar but different sound classes.
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