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Abstract
Nonlinear processing of high-dimensional data is quite common in image filtering algorithms. Bilateral, joint bilateral, and
non-local means filters are the examples of the same. Real-time implementation of high-dimensional filters has always been
a research challenge due to its computational complexity. In this paper, we have proposed a solution utilizing both color
sparseness and color dominance in an image which ensures a faster algorithm for generic high-dimensional filtering. The
solution speeds up the filtering algorithm further by psycho-visual saliency-based deep encoded dominant color gamut,
learned for different subject classes of images. The proposed bilateral filter has been proved to be efficient both in terms of
psycho-visual quality and performance for edge-preserving smoothing and denoising of color images. The results demonstrate
competitiveness of our proposed solution with the existing fast bilateral algorithms in terms of the CTQ (critical to quality)
parameters.
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1 Introduction

In low-level image information processing as well as larger
domain of computer vision and analytics, image smoothing
has been a major and fundamental aspect of research which
took a major turn during last couple of decades. The serious
impact on edge information on images has been observed for
classical image enhancement filters. Range-domain or bilat-
eral filter [1,2] on the contrary ensures edge preserved noise
cleaning and smoothing by addressing range and domain of
the image in single-stage honoring the photometric dom-
inance/ prominence of color and gray intensity values in
one hand and spatial neighborhood in other. Additionally,
bilateral filter ensures no phantom color as the side-effect
of filtering which is quite common in classical 2D filtering
performed in color separations separately [3]. Bilateral fil-
ters are used even in enhancing hyper-spectral imaging [4,5].
Various applications of bilateral filter include tone mapping,
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denoising, detail manipulation, upsampling, alpha matting,
recoloring, stylization, etc. Since the bilateral filter concept
was proposed by Tomasi et al. [1], it has been a major area
of contribution in low-level image processing community
due to its accurate, high-quality denoising and slow perfor-
mance. Consider a high-dimensional image f : Zd → R

n

and a guide image p : Zd → R
ρ . Here d is dimension of

domain, n and ρ are dimensions of ranges of the input image
f and guide p, respectively. The output of the bilateral filter
h : Zd → R

n is given as:

hi = 1

ki

∑

j∈W
ω( j) φ

(
pi− j − pi

)
f i− j , (1)

where

ki =
∑

j∈W
ω( j) φ

(
pi− j − pi

)
. (2)

The aggregation in Eqs. 1 and 2 are typically performed over
a hypercube around the pixel of interest, i.e.,W = [−S, S]d ,
where the integer S is the window size. The terms ω and
φ are the domain and range kernels, respectively. The com-
plexity of the aforementioned filtering operations is O(nSd)
per pixel. Hence, for large d and n, it is really challenging to
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Fig. 1 Distribution of color of the natural image (left side) in the color
cube (right side). It is sparse, non-uniform and covers a minimal subset
of the entire dynamic range [5]

design real-time high-dimensional filtering. Beingmotivated
by Durand et al. and Yang et al. [6–8], where range space is
quantized to approximate the filter using series of fast spa-
tial convolutions, Nair et al. [5] have proposed an algorithm
based on clustering of sparse color space. The aforemen-
tioned work has observed color sparseness (Fig. 1) in range
space and proposed a clustering in high dimensions. The
work has approximated pi− j instead of pi [9] resulting in a
completely new algorithm.

Our current work has proposed an algorithm which works
in parallel with the existing filtering operations to further
improve the performance of high-dimensional bilateral fil-
tering by deriving salient color gamut in an image class
of interest by our proposal of CDDA (color-dominant deep
autoencoder). This encoded dominant color map (DCM)
fromCDDA has been designed to be used offline by the prin-
cipal flow of the filtering operations as prescribed by Nair et
al. [5]. Recently proposed convolutional pyramid model [10]
and deep bilateral filter [11] for image enhancement have also
been shown promising results in range-domain filtering. The
algorithm of building DCM from proposed CDDA has been
described in Sect. 2 in terms of detailed methodology and
pseudo-code.Next, Sect. 3 has described themethod of inclu-
sion of DCM evolved out of our algorithm to the principal
flow of fast bilateral filtering ensuring further improvement
in performance. Section 4 has demonstrated the competitive
evaluation of the proposed filterwithCDDA in terms of accu-
racy and performance for different classes of images. Finally,
in Sect. 5 we have concluded our findings with a direction to
the future research.

2 Color-dominant deep autoencoder (CDDA)
leveraging color spareness and salience

In the currentwork,we have leveraged the property of dimen-
sion reduction of autoencoder [13] to extract dominant color
from the larger color gamut present in any image. The idea
of sparse color occupancy for any group of images depicting
same object or action has been utilized further to create DCM
(dominant color map) offline as a table to be referenced in

Fig. 2 CDDA maintains face color gamut and compromising on the
other colors like background as required: a, c original input face image
[12], b, d recreating face image from the encoded reduced color gamut
having 75% compressed DCM

real-time. The offline DCM table has been next used as LUT
for real-time processing, ensuring much faster bilateral fil-
tering with respect to the state of art (Fig. 2).

With the advancement of deep learning, classification
inaccuracy has been drastically reduced. Hence, there have
been attempts of designing deep bilateral filters [11] in order
to improve accuracy of restoration from corrupted images.
We know neural network ensures optimum weight for opti-
mum error (i.e., cost function) surface.

2.1 Evolution of DCM through CDDA

The principal idea here is to determine dominant/ salient col-
ors from group of images of homogeneous kind (e.g., faces
[12]). The dominant colors might be even interpolated col-
ors of the quantized available color in the group of images.
The autoencoder architecture as depicted in Fig. 3 has been
employed to determine the salient/ dominant color for differ-
ent groups of images of homogeneous kind (e.g., faces [12])
at a time with an objective to derive dominant color map in
a coded and reduced dimension format, offline. This DCM
further would be processed during image filtering. The pro-
posed method of DCM derivation has five following stages:
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Fig. 3 CDDA: color-dominant deep autoencoder architecture to create
the DCM

1. Imagification of weighted histogram as input to the
autoencoder (CDDA).

2. Unsupervised learning of dominant color map from large
number of images of similar designation for 1000 epochs.

3. Validating the converged DCM for unseen query image
of decided arbitrary designation.

4. Hyper-parameter tuning and retraining the CDDA if the
result of the previous stage is unsatisfactory.

5. Freezing the CDDA as offline look-up table (LUT) to be
referred for primary path of near real-time bilateral image
filtering.

In order to make the bilateral image filtering, it is impor-
tant to identify dominant color for defined number of color
clusters from the sparse color occupancy in the entire color
gamut. The process of histogram imagification and extracting
DCM are the activities to achieve the aforementioned target.
First, the histogram of Red, Green, and Blue color separa-
tions are calculated and normalized between 0 and 255 to be
represented as image as shown in Fig. 4. The representation
has been depicted in Eq. 3.

red = countO f (I (:, :, 1)) (3a)
green = countO f (I (:, :, 2)) (3b)
blue = countO f (I (:, :, 3)) (3c)
Imghist (:, 1 : 4) = red

×256
red(:, :) − min(red)

max(red) − min(red)
ones(4, 256) (3d)

Imghist (:, 5 : 8) = green

×256
green(:, :) − min(green)

max(green) − min(green)
ones(4, 256)

(3e)
Imghist (:, 9 : 12) = blue

×256
blue(:, :) − min(blue)

max(blue) − min(blue)
ones(4, 256) (3f)

As described in Eq. 3, the color histogram has been imag-
ified and repeated 4 times as 4 columns of Imghist (:, :) to
enable the imagified weighted histogram to be consumed by
the autoencoder (Fig. 3). The autoencoder just expects the
group of homogeneous kind of images as input and attempts
to reconstruct the same. The input image shouldn’t havemix-
ture of different kinds of images. In Fig. 4, we have shown
it for face images/ videos and the same is applicable to even
medical images (e.g., pathology, laparoscopy, etc.). We have
used the same DCM for cleaning endoscopic images and the
results are shown in Fig. 5. Only one example face image and
its imagified histogram is shown in Fig. 4. For training the
autoencoder to extract dominant color map (DCM) for faces,
10,000 face images have been used for training samples. As
depicted in the autoencoder architecture, the encoded form
(DCM) has dimension 64 × 3 which is the reduced dimen-
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Fig. 4 Validating the converged DCM for unseen query image of
decided “face” designation: a query face image [12], b imagified
weighted histogram of query face, c reconstructed imagified histogram
of the query face, d reconstructed face through CDF linearization of
imagified histogram to validate DCM (not though bilateral filtering)

sion from original dimension of 256×3. This dimensionality
reduction is exactly 75%and the same could be reconstructed
from theDCMas depicted in Fig. 4cwhich could even recon-
struct the face image by CDF linearization idea described by
Das et al. [3]. In this case, the number 64 could be treated
as number of clusters having dominant encoded color of the
selected class (e.g., face) images. The same can be interpo-
lated to any other number of clusters. Figure 4 also shows
that the compromise of color is at the background of the
scene, not at the face region. The reconstructed histogram
(Fig. 4c) has similar relative pattern as input imagified his-
togram (Fig. 4b). This is only in the verification stage through
CDF linearization method. The objective here is to show
how the offline look-up table is formed based on dominant
color or salient color. Figure 4 is not showing the bilateral
filtered output. This shows, even from large number of image
groups, it could extract the salient sparse color and face color
is still intact. Decoding the converged histogram in turn has
been validated through CDF linearization where it is clearly
shown that the salient color (face color) is not deteriorated
although maintaining same background color is non-salient
with respect to the objective of creating dominant color map.
In bilateral filters, even the background would not affect the
same.

Fig. 5 Dynamic bilateral filtering on endoscopic video [14]: left col-
umn: 2 sample frames as inputs; right columns: Corresponding outputs

3 Inclusion of DCM into principal flow of
bilateral filtering

Based on clustering of sparse color space, Durand et al. [6]
and Yang et al. [7,8] have proposed to quantize the range
space to approximate the filter using series of fast spatial con-
volutions. Motivated by the aforementioned work, Nair et al.
[5] has proposed an algorithm based on clustering of sparse
color space. There, the idea is to perform high-dimensional
filtering on a cluster-by-cluster basis. For K number of clus-
ters, where 1 ≤ k ≤ K ,

hk(i) =
∑

j∈W
ω( j)φ

(
pi− j − μk

)
fi− j (4)

αk(i) =
∑

j∈W
ω( j)φ

(
pi− j − μk

)
(5)

Here, Eqs. 4 and 5 are representing numerator and denomi-
nator of Eqs. 1 and 2 replacing pi by the cluster centroidsμk .
The scheme of hybridizing online and offline processing is
depicted in Fig. 6. As the algorithm to construct color LUT is
working offline and the principal flow of filtering is operated
real-time, the performance has been improved significantly
as presented in Sect. 4.

4 Experimental results

In the current section, we would demonstrate the effective-
ness of our novel approach of faster bilateral filtering of color
images. For the bilateral filter, f and p are identical, and the
spatial and range kernels are Gaussian (Eqs. 6, 7):

ω(x) = exp

(
−||x ||2

2σ 2
s

)
(6)
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Fig. 6 Scheme of hybridization between offline and online processing
in proposed fast bilateral filtering: the LUT has been derived fromDCM
through decoding the same in the reverse path of the autoencoder

and

φ(z) = exp

(
−||z||2

2σ 2
r

)
(7)

where x ∈ R
2 and z ∈ R

ρ . Thewindowsize is set as S = 3σs .
For color images, ρ = 3. The approximation error has been
qualified through root mean square error (RMSE) as follows:

RMSE2 = 1

|�|
∑

i∈�

||ĝ(i) − g(i)||2 (8)

where g is the exact bilateral filter in Eq. 1 and ĝ is the
approximation from the respective algorithms. It is evident
that that the RMSE for our proposed algorithm consistently
decreases with increase in K (number of clusters), whereas
that of the adaptive manifolds oscillates with increase in K
(number of manifolds) [2].

The experiments have been performed in an Intel Core i7-
7500U CPU@ 2.70 GHz PC having NVIDIA 940 Mx GPU
with 8GB RAM. Table 1 depicts the comparison between
fast high-dimensional filter [5] and our proposed filtering
approach based on CDDA in terms of RMSE and perfor-
mance (ms). The DCM has been derived over a large number
of homogeneous kind of images through CDDA. We have
used CelebA dataset for extracting dominant colors for face
images [15]. Next, noise of 12 dB has been introduced to the
image (Fig. 7) to be treated as unknown input for filtering.
The RMSE has been calculated based on the clean version
of the aforementioned image and is shown in Fig. 8 .

The relationship depicted in Table 1 is illustrated in Fig. 8
where the following observations are made:

1. With increasing cluster number, RMSE has been reduced
and performance has been degraded for both the methods
as expected.

2. Impact of increasing cluster number in LUT is higher.
3. With higher number of clustering, both the RMSEs are

converging.

Fig. 7 Edge preserved denoising for natural RGB image (Size: 640 ×
427): comparisons of CDDA with adaptive manifold [4] and fast high-
dimensional filtering [5]

Fig. 8 High-performance CDDA: performance and RMSE

4. As expected, performance of our approach is much higher
than its equivalent algorithm [5].

5. If we observe both RMSE and performance graph, it is
clear that fast high-dimensional [5] has taken equal time
for 25 clusters of that of 75 clusters of our proposed
approach. This signifies that our approach can achieve
same psycho-visual quality of reconstruction much faster
than fast high-dimensional [5].
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Table 1 Comparison between fast range-domain filtering [5] and proposed CDDA in terms of performance, RMSE and PSNR

No. of cluster, K 15 20 25 30 40 50 75 100

Performance of [5] (ms) 1257 1440 1628 1906 2017 2257 2939 3482

Performance of CDDA (ms) 331 426 518 761 877 1003 1585 1974

RMSE of [5] 10.05 9.9 9.96 9.84 9.74 9.7 9.69 9.66

RMSE of CDDA 16.8 15.6 10.8 10.2 10.1 9.9 9.8 9.72

PSNR of [5] (dB) 28.07 28.14 28.16 28.26 28.35 28.38 28.4 28.42

PSNR of CDDA (dB) 22.6 23.21 25.91 26.38 26.71 26.06 27.06 27.952

Fig. 9 Bilateral filtering of natural heterogeneous RGB image (Size:
876 × 584): comparisons of RMSE and time between CDDA and fast
high-dimensional filtering [5]

Figure 7 is evident that the color LUT outperformed all
state-of-art fast filters of color sparseness category [2]. Next,
just to test heterogeneity in kind of images to be filtered, we
have tested completely different genres of image as depicted
in Fig. 9. Here, the problem statement is to restore image
of a historical monument. The bilateral filtering is again the
answer to the problemas it enhances images by ensuring edge
preservation. As the said figure depicts, the CDDA-based
bilateral filtering has shown similarly promising result even
in image restoration. The proposed bilateral filtering based
on CDDA has shown improved time performance (more than
one thrice) keeping similar RMSE with respect to fast bilat-
eral filter [5].

5 Conclusion

This current work has targeted to make bilateral filtering
significantly efficient in terms of performance, not com-
promising the psycho-visual quality. The work has utilized
color sparseness in images and proposed a dominant color
map (DCM)-based approach for accelerating filtering opera-

tion. The proposal ensured high accuracy and performance of
reconstruction aswell. The principal idea behind the proposal
is twofold. The DCM construction algorithm determines
the salient colors in homogeneous image kind exploiting
the color sparseness property of images. The experimental
results have shown promise to the new areas of research
of hybrid filtering approach combining classical low-level
image processing. The outcome of our research has not only
shown the effectiveness of the proposed solution, but also
has shown another direction of applying unchanged DCM to
heterogeneous image restoration. The possible future work
definitely would open a new door of generic image bilateral
filtering in real-time through the CDDA (Color-Dominant
Deep Autoencoder) framework proposed in this work [16–
18].
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