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Abstract
Fully convolutional network is a powerful end-to-end model for semantic segmentation. However, it performs prediction pixel
by pixel to pose weak consistency on intra-category. This paper proposes fully convolutional network with attention modules
for semantic segmentation. Based on the framework of fully convolutional network, the post-processing attention module
and skip-layer attention module are introduced to enhance the relevancy among pixels. Post-processing attention module is
to calculate the similarity among pixels to obtain global information. Skip-layer attention module is designed to combine
semantic information from a deep, coarse layer with contour information from a shallow, fine layer to produce the feature with
high resolution and strong semantic information. Loss function, obtained by cross-entropy between estimated probability and
label, is to optimize the network. Extensive experiments demonstrate that the proposed approach is superior to DeepLab and
other models in performance of mean IoU with moderate computational complexity

Keywords Semantic segmentation · Fully convolutional network · Attention module

1 Introduction

Semantic segmentation is to assign consistent labels to pixels
with similarly semantic attribute. It has essential applications
in the field of unmanned driving, medical image recognition
and intelligent safeguard systems, etc.

In the early stage, conventional methods [1,2], such as
threshold optimization and watershed algorithm, were used
to segment the image into regions, and the regions were
classified and annotated with geometric shapes and textures.
Then, probability models [3] and machine learning meth-
ods [4] were developed in semantic segmentation in vehicle
license plate recognition and medical image segmentation.

Recently, deep Learning [5] has been leading the visual
task. Fully convolutional network (FCN) [6] adopted clas-
sification networks into the fully convolutional network and
transferred the learned representative to pixel-wise classi-
fication, followed by many robust networks such as U-Net
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[7], DeepLabv3 [8] and so on. Thanks to the effects of trans-
pose convolution and skip-layer, the prediction result of FCN
not only has the same size as the input but also ensures the
robustness and accuracy of FCN.

FCN serves as the foundation and baseline of mod-
ern semantic segmentation methods. However, it performs
prediction pixel by pixel to pose weak consistency on intra-
category. It is helpful to enhance the connection among
pixels to improve the performance of FCN. Therefore, it
is necessary to increase the discriminative ability of feature
representations for pixel-wise recognition. The practical and
direct approach is to use the information of adjacent pixels
or spatial correlation in the convolution process.

In OCNet [9] and PSPNet [10], the pyramid pooling mod-
ule partitions the feature maps into multiple regions, and the
pixels in each region are regarded as the context of the pixel
belonging to the region. The Atrous Spatial Pyramid Pooling
module in DeepLabv3 considers spatially sampled pixels at
different atrous rates as the context of the centre pixel. In
DANet [11], self-attention mechanism [12] is used to cap-
ture feature dependence in spatial dimension and channel
dimension, respectively.

Inspired by PSPNet, this paper proposes FCN with post-
processing attentionmodule (PPAM)and skip-layer attention
module (SAM) for semantic segmentation to deal with the
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problem of poor consistency on intra-category and similar-
ities on intra-category among pixels. PPAM is to capture
the spatial dependence of any two pixels in the feature map.
SAMis togenerate the featurewith high resolution and strong
semantic information through fusing high-level feature with
the low-level feature. The two modules work together to
enhance the connection among pixels.

FCN with PPAM and SAM shows an excellent per-
formance of 72.01% mIoU with moderate computational
complexity and hardware on PASCAL VOC 2012 .

The main contributions are summarized below.

(1) We propose the FCN with attention modules, which is
used to improve the consistency of semantic prediction.

(2) We design the PPAM and SAM to improve the per-
formance of segmentation. PPAM is used to compute
similarity among pixels, and extract precise pixel-wise
contextual information from high-level feature map in
FCN. SAM is to fuse semantic information from a high
level with contour information from a low level.

(3) We formulate the loss function by the sum of Branch-
1 loss function and Branch-2 loss function. Compared
with the conventional method with only one branch
cross-entropy loss function, Branch-2 loss we designed
provides fault tolerance for network, add extra gradient
flow during back-propagation, thereby helping to reduce
gradient vanishing problem.

2 Related work

There are a variety of networks proposed to carry out seman-
tic segmentation tasks. Firstly, the network represented by
DeepLab system [13] introduces atrous convolution and spa-
tial pyramid pooling with different void rates in different
branches to obtain multi-scale image representation. Sec-
ondly, changing the encoder–decoder structure to produce
better quality results is also a hot topic. Besides, more and
more networks are beginning to add attention mechanisms
to capture context information. These methods make use of
the context information as much as possible by changing the
structure of the network.

Spatial Pyramid Pooling: The pyramid pooling can
extract and aggregate feature maps from different sizes to
improve the robustness of neural networks. Spatial pyramid
pooling has beenwidely employed to provide a good descrip-
tor for overall scene interpretation, especially for various
objects in multiple scales. Besides, spatial pyramid pooling
can well solve the problem of large computing time of R-
CNN [14].

Encoder–decoder: The purpose of this method is to solve
the problem of image size reduction and contour information
loss caused by continuous convolution and pooling. Most

of the best semantic segmentation frameworks are based on
the encoder–decoder network [15], which have also been
successfully applied to many computer vision tasks, includ-
ing object detection [16,17], panoptic segmentation [18].
However, most methods ignore context information when
combining high-level features with low-level features.

Self-attention module: The attention mechanism from
natural language processing can effectively capture the use-
ful areas in the image, and the overall network performance
can be improved. The work [19] is the first to propose the
self-attention mechanism and apply it to action recognition
task in the video. The self-attention operation can effectively
capture the long-range dependency between different posi-
tions. Therefore, each position can attain the global field of
vision without causing degradation of the feature map. The
work [11] extends the self-attentionmechanism in the task of
scene segmentation and carefully designs two types of atten-
tion modules to capture rich context information for better
feature representations with intra-class compactness.

The remainder of this paper is organized as follows. Sec-
tion 3 discusses the proposed PPAM, SAM and loss function
for segmentation. In Sect. 4, experiments and discussion are
given. The final section presents concluding remarks as well
as future work.

3 The proposedmethod

In this section, we propose FCN with PPAM and SAM and
first introduce our model and detail the proposed modules
and loss function.

3.1 Overall architecture

The proposed model is composed of base dilated FCN and
attention modules of PPAM, SAM. The overall model archi-
tecture is shown in Fig. 1, and the algorithm process is that:

Based on baseline dilated FCN, first perform feature
extraction of four levels on input image. Then capture the
context from the last level Res-4 with PPAM (detailed in
Fig. 3), fuse features with the guidance of SAM (shown in
Fig. 4). Finally output the prediction of segments.

Base dilated FCN [20]: We take ResNet-50 [21] as back-
bone network for feature extraction in the FCN architecture,
which gets 4 level features from Res-1 to Res-4 with the
atrous rates {1,1,2,2} and the strides {1,2,1,1}. In addition,
the Res-4 output size of the feature map from ResNet-50 is
1/8 of the input image.

PPAM: PPAM is integrated into FCN and placed after the
backbone of feature extraction. It is designed to collect the
context information of the last layer of the feature map, to
secure an accurate prediction of each pixel.
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Fig. 1 Overall architecture of the proposed model. ‘Conv+Pool’ rep-
resents convolution layer and pooling layer, ‘Res-1,2,3,4’ represents
residual modules in dilated ResNet-50, ‘PPAM’ represents post-
processing attention module, which is shown in Fig. 3, and ‘SAM’

represents skip-layer attention module, which is shown in Fig. 4. The
red and blue lines represent the down-sample and up-sample operators,
respectively

Fig. 2 The calculating of the proposed loss function. The red and blue
lines represent the down-sample and up-sample operators, respectively

SAM: The introduction of SAM into the skip-layer
ensures that the high-level feature map containing seman-
tic information is well integrated with low-level feature map
showing contour information.

3.2 PPAM

It is the key for scene understanding to collect the discrimina-
tive feature representation. Inspired byOCNet [9], we design
the PPAM, as shown in Fig. 3, which uses up-sample posi-
tion attention module (UPAM) in multiple parallel branches
to obtain pixel-dependent feature map. The UPAMencodes a
wide range of semantic information into the receptive field to
enhance the semantic consistency among pixels, which use
position attention module [11].

As illustrated in Fig. 3, given a feature map X which is
64× 64× 2048, we first feed it into a convolution layer and
take four down-sample operations by bilinear interpolation
to generate four new feature maps a, b, c and d, where {a,
b, c and d} have the same channels. Then, we use UPAM to
extract context information from{a, b, c, d}, and get {A,B,C,
D}.After that,we concatenateX,A,B,C andD on channels to
obtain the final output Y. As is widely regarded, each channel
of high-level feature can be viewed as a category-specific
response and correlated with different semantic responses.

Fig. 3 The details of post-processing attention module. ‘64× 64, 48×
48, 32×32’ represents the resolution of feature maps. The red and blue
lines represent the down-sample and up-sample operations with bilinear
interpolation, respectively

The concatenation operation on four branches is used to
get more context information through collecting informa-
tion of different receptive fields, which aims to enhance the
dependency between pixels and the differentiation between
classes by integrating the refine features (local information)
and global features (context information).

3.3 SAM

The architecture of SAM is shown in Fig. 4. It is to fuse
semantic information from high-level features with contour
information from low-level features.

Low-level feature information and high-level feature
information are concatenated on channels to restore contour
information gradually. Inspired byU-Net, good results can be
obtained by fusing decoder with encoder. The encoding pro-
cess, namely the down-sample process, is to extract abstract
features from the input image through the pooling layer or
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Fig. 4 The details of skip-layer attention module. ‘Conv’ represents
convolution layers. ‘GP’ represents global pooling. ‘1 × 1’ represents
1 × 1 convolution. ‘BN+Sigmod’ represents batch normalization and
nonlinear activation function sigmoid. ‘×’ represents the Hadamard
product of low-level feature and weight coefficient. ‘+’ represents the
sum of the corresponding pixels of low-level feature and high-level
feature

the atrous convolution layer. The decoding is the up-sample
process to recover the position information gradually.

As illustrated in Fig. 4, the ‘Conv’ is to reduce the num-
ber of channels of low-level feature map and to increase
receptive fields through three sets of convolution layers
{1×1, 3×3, 3×3}.The ‘Upsample’ is to resize the high-level
feature map to the size of the low-level feature map. Global
pooling (GP) provides maximum receptive fields with global
context information. After that, 1× 1 convolution is used to
conduct feature map channel compression, so that the con-
catenation feature map can be used as a weight coefficient.
The operation ‘×’ means weight coefficients are applied to
low-level feature maps along the channel. Finally, the high-
level feature and low-level feature are fused by the sum of
corresponding pixels. The fusion result serves as the high-
level information of the next skip-layer, which use high-level
information to guide for low-level information.

3.4 Loss function

We define the loss function as shown in Fig. 2, which as a
sum of cross-entropy of Branch-1 and that of Branch-2, and
formulate it by

L = L1 + λ × L2 (1)

L1 = −
C−1∑

j=0

n−1∑

i=0

p[i, 1] log(Y [i, j]) (2)

L2 = −
C−1∑

j=0

n−1∑

i=0

p[i, 1] log(y[i, j]) (3)

where n is equal to B × h × w, B is batch size, C is the
number of categories, h and w are the height and width of the
image, p is ground truth label with the manner of one-hot. Y
in Eq. (2) is the estimated probability of overall segmentation
(Branch-1), and y in Eq. (3) is the estimated probability of
Res-3 (Branch-2), respectively.

Table 1 The comparison of computational complexity

Method BaseNet FLOPs Params

Dilated FCN ResNet-50 4.110G 25.557M

DeepLabv3 ResNet-50 10.004G 39.115M

DeepLabv3+ ResNet-50 34.947G 40.295M

PSPNet ResNet-50 75.534G 65.585M

OCNet ResNet-50 39.075G 43.594M

Our ResNet-50 38.772G 42.454M

In order to calculate the loss, the prediction image and
ground truth label are arranged in the form of matrix. We tra-
verse all pixels in two-loop structure to calculate the loss of
each pixel and finally accumulate the loss of the whole. The
Branch-2 Loss function (B2L) is paralleled with Branch-1
Loss function (B1L) to reduce the vanishing gradient prob-
lem for earlier layers stabilize the training. The weight factor
λ balances the terms L1 and L2 .

3.5 Computational complexity

In this section, we compare computational complexity with
dilated FCN, DeepLabv3/v3+, PSPNet and OCNet. As
shown in Table 1, all results are achieved with backbone
ResNet-50 and output stride 8. The floating-point operations
(FLOPs) and parameters (Params) are computed with the
input size 224 × 224. From Table 1, our network is lighter
than PSPNet and OCNet in computation.

4 Experiments

In this section, the proposed model is evaluated on dataset
Cityscapes [22] and PASCALVOC 2012 [23] and compared
with the state-of-the-art semantic segmentation networks.
The state-of-the-art networks are DeepLabv3 [8], which
designs serial and parallel convolution modules with atrous
and uses various atrous rates to get hold of multi-scale infor-
mation; DeepLabv3+, which proposes the Atrous Spatial
Pyramid Pooling module to exploit the convolution features
of different scales and encodes the features of global infor-
mation to improve the segmentation effect; OCNet [9], which
proposes a pixel-by-pixel object contextmodule that contains
the information of objects of the same category as the pixel;
PSPNet [10], which offers global-scene-level featuremaps to
obtain sufficient context information and global information
of different sensory fields.
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Table 2 Employing B2L and PPAM for dilated FCN on PASCALVOC
2012 val set. ‘B2L’ represents the loss function of Branch-2

BaseNet B2L PPAM mIoU (%)

ResNet50 63.56

ResNet50 � � 69.11

ResNet101 � � 70.49

Fig. 5 Visualization results of PPAM on PASCAL VOC 2012 val set

Table 3 The segmentation performance with PPAM and SAM on PAS-
CAL VOC 2012 val set

BaseNet B2L PPAM Res-1 Res-2 mIoU (%)

ResNet50 � � 69.11

ResNet50 � � � 70.40

ResNet50 � � � 69.13

ResNet50 � � � � 70.89

‘Res-1,2’ represents the first and the second residual modules in back-
bone network

Table 4 Comparison between different strategies on PASCAL VOC
2012 val set

MG DA MS mIoU (%)

70.89

� 71.06

� � 71.85

� � � 72.01

4.1 Parameters setup

All the experiments are implemented with Pytorch 1.1.0 and
performed on the PC with 2 NVIDIA GPUs GTX-1080Ti
and 22GB memory, running Ubuntu 18.04 system.

According to Mask R-CNN [24], a learning strategy
named Poly in training adopts the stochastic gradient descent
(SGD) [25] with batch size 8, momentum 0.9 and weight
decay 0.0001. The learning rate is reduced by the ini-

tial learning rate of LR be multiplied by
(
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The ‘cur_iter’ is the current number of iterations, and the
‘max_iter’ is the maximum number of iterations in the train-
ing process. Theweight factor λ of the loss function in Eq. (1)
is 0.4. It should be noted that due to the limitation of the
experiment equipment, batch size 16 and ResNet-101 are
not available for our experiments. Therefore, the replicated
experimental results cannot reach the results given in the
paper.

For dataset PASCALVOC 2012, the cropped size is set as
513×513 pixels, and the initial learning rate LR is 0.007, and
for dataset Cityscapes, the cropped size of image is 768×768
pixels, and the initial learning rate LR is 0.01. It is worth
mentioning that the two initial learning rate LR are consistent
with those set in DeepLab, PSPNet and OCNet.

At the same time, we conduct data augmentation with a
horizontal flip and random scale in training, and randomly
scale the image with a scale rate of 0.5–1.5 for inference.

4.2 Ablation experiments

We evaluate how each of these factors, along with loss func-
tion of B2L, PPAM and SAM, affects val set performance.
Ablation segmentation is performed on dataset PASCAL
VOC 2012 val set.

B2L and PPAM are employed based on base dilated FCN
(short for B_FCN); the segmentation performance is illus-
trated in Table 2. We can see from Table 2 that the proposed
network achieves 69.11% mean IoU on ResNet-50, and
70.49% mean IoU on ResNet-101. Compared with B_FCN,
B_FCN with B2L improves by 1.57% mIoU and with B2L
and PPAM improves by 5.55% mean IoU.

It can be seen from Fig. 5 that under the same net-
work structure and parameters, adding PPAM can effectively
improve the performance of semantic segmentation and
enhance the relevancy among pixels.

SAM is utilized based on B_FCN with B2L and PPAM
(short for B_FCN_BP); the segmentation performance is
shown in Table 3, and it achieves 70.89% mIoU, increased
by 1.78% compared with B_ FCN_BP. We find that SAM
proposed in our work is feasible and effective. Besides, due
to the limitation GPU memory, there is no further study of
the experiment of backbone ResNet-101 which needs more
hardware resources.

We adopt strategies to improve performance further.
Multi-grid (MG) [8]: We employ a hierarchy of grids of dif-
ferent sizes {4, 8, 16} in the Res-4. Data augmentation (DA):
we use a horizontal flip and random scale. Multi-scale (MS):
We average the segmentation probability maps from 5 image
scales {0.5, 0.75, 1, 1.25, 1.5} for inference.

MG, DA and MS are exerted based on B_FCN_BP with
SAM (short for B_FCN_BPS); the performance is illustrated
in Table 4. We adopt MG to obtain better feature representa-
tions of pre-trained network, which further achieves 0.17%
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Fig. 6 Visualization results on the PASCAL VOC 2012 val set. The first column is the original image, the second column is the ground truth label,
and the third to fifth columns are the results of ‘Our’, OCNet and PSPNet

improvements compared with B_FCN_BPS. DA with ran-
dom scaling improves the performance by 0.79%, which
shows that network benefits from enriching scale diversity
of training data. Finally, segmentation map fusion further
improves the performance to 72.01%.

4.3 Cityscapes

Cityscapes [22] is a large-scale dataset that focuses on the
understanding of urban street scene from 50 different Euro-
pean cities, which contains 30 classes and only 19 classes of
them are used for scene parsing evaluation. The dataset con-
tains about 5000 fine annotated images and 20,000 coarsely
annotated images. The provided set has 2975 training images,
500 validation images and 1525 test images.

We further compare our proposed network with those
methods on the dataset Cityscapes, and the results are shown
in Table 5. Here, we use the fine annotation dataset. It can be
seen fromTable 5 that ‘Our’ performs better than the state-of-
the-art models dilated FCN, DeepLabv3, DeepLabv3+ and
PSPNet with 66.53% mean IoU on fine annotation dataset.

4.4 PASCALVOC 2012

PASCALVOC2012 [23] is a famous dataset on visual object
classes challengewhich includes 20object categories andone
background, concerns three main tasks: classification, detec-
tion and segmentation.We focus on the task of segmentation.
The dataset is split into a training set 1464 images, a valida-
tion set 1449 images with annotation and a test set without
annotation.

We evaluate the proposed model on PASCAL VOC 2012
and compare it with DeepLabv3 [8], OCNet [9], PSPNet
[10]. The model of FCN with PPAM and SAM is trained
with augmented data that are described in Sect. 4.1.

We conduct dilated FCN,DeepLabv3, DeepLabv3+, PSP-
Net,OCNetwith the sameparameters setup, and comparative
experiment results are shown in Table 6. It can be seen from
Table 6 that ‘Our’ is nearly 3%mIoU more than PSPNet and
2% mIoU more than OCNet.

It can be seen from the comprehensive analysis from
Tables 1, 5 and 6 that our proposed network has lower com-
putational complexity than that of PSPNet and OCNet and
has better prediction than those of two networks on the same
experimental platform and datasets. The proposed network
achieves moderate computational complexity and an excel-
lent prediction accuracy (72.01%).
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4.5 Visualization results

In this section, we visualize the prediction image of each
model to compare and analyze the performance of each
model, and the visualization results are shown in Fig. 6, in
which the first column is the original image, the second col-
umn is the ground truth label, and the third to fifth columns
are the prediction image of ‘Our’, OCNet and PSPNet.

Comparing the data fromTable 6, the segmentation perfor-
mance of ‘Our’ is better than PSPNet and OCNet as a whole.
In detail, ‘Our’ is better at predicting the edges of objects and
it can be able to predict the pixels of within class.

5 Conclusions

In this paper, we propose a modified FCN semantic seg-
mentation method based on the attention module to enhance
the semantic consistency. Evaluation and empirical results
demonstrate that the FCN with PPAM and SAM achieves
the superior performance over dilated FCN, DeepLabv3,
DeepLabv3+, PSPNet and OCNet. The attention modules
are sufficient to enhance the relevancy among pixels and to
produce the semantic consistency prediction.

In the future, we need to consider working out the problem
of procuring different sizes through adaptive pooling and
replace ResNet with MobileNet.
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