
Signal, Image and Video Processing (2021) 15:1003–1010
https://doi.org/10.1007/s11760-020-01825-x

ORIG INAL PAPER

Simplifying a shapemanifold as linear manifold for shape analysis

Peng Chen1 · Xutao Li2 · Jianxing Liu1 · Ligang Wu1

Received: 12 October 2019 / Revised: 11 October 2020 / Accepted: 16 November 2020 / Published online: 27 November 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
In this paper, a bijection, which projects the shape manifold as a linear manifold, is proposed to simplify the nonlinear
problems of shape analysis. Shapes are represented by the direction function of discrete curves. These shapes are elements of
a finite-dimensional shape manifold. We discuss the shape manifold from three perspectives: extrinsic, intrinsic and global
using the reference coordinate system. Then, we construct another manifold, in which the reference frame is the Fourier
basis and the associated related coordinate is the Fourier coefficients obtained by Fourier transformation. This transformation
ensures a bijection between the local spaces of twomanifolds. In the constructed manifold, the nonlinear structure is described
by the reference frames. Consequently, we obtain a linear manifold only using the related coordinate. The performance of
our method is illustrated by the applications of shape interpolation, transportation of shape deformation and shape retrieval.

Keywords Shape analysis · Shape manifold · Shape retrieval · Shape interpolation

1 Introduction

Shape analysis studies the objects in a scene that is a pivotal
way to understand objects. The shapes are the boundaries of
objects that express the external form or appearance of the
objects that are invariant by the transformation of translation,
rotation and scaling [15]. The goal of shape analysis is to find
a metric distance, which is used to measure the dissimilarity
between shapes. The relatedmethods arewidely used in com-
puter vision and biomedical engineering [9,12,14,16,24].

A common framework for shape analysis, firstly proposed
in [17], is to construct a shape manifold, where each element
corresponds to one shape. Usually, shape manifold is a kind
of Riemannian manifold, where a metric distance between
shapes is computed by a particular Riemannian metric along
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geodesic. Themetric distance is a dissimilarity score in shape
comparison. Furthermore, it is a minimization process to find
a geodesic on shapemanifold. This technique is used in shape
deformation and shape synthesis restricted by the deforma-
tion energy minimization.

In [17], the shapes are considered as planar and closed
curves and represented as their direction functions or curva-
ture functions, which leads an infinite-dimensional Hilbert
manifold for the shape space. A set of Fourier basis repre-
sent the tangent of shape manifold, and a shooting method
finds geodesic on an infinite-dimensionalmanifold. Themain
drawback of this work is that it fails to find the geodesic
for a kind of planar closed curves, i.e., the self-crossed
curves. The work [22] mentioned this drawback and solved
it using an elastic curves representation. Therefore, many
works use elastic curve model to find a convenient shape
representation that enables complete physical interpretations
of shape deformations, i.e., a complete geodesics estimation
on shape manifold. Work [25] uses a square-root velocity
function (SRVF) to simplify the elastic metric that allows
efficient computation on the shape manifold. Furthermore,
the work [5] discusses the mathematical properties of the
SRVF. As an extensions, the work [26] proposes a joint
landmark-constrained elastic shape analysis for SRVF,which
is often used in biological applications. Recently, efforts have
focused on a discretization for the elastic metric about SRVF
representation [2,3]. Furthermore, work [11] uses Lie group
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Fig. 1 Our framework for shape
analysis

to represent the elastic curve model instead of SRVF, which
reduces the shape manifold as a finite-dimensional manifold.
In general, these elastic curve models focus on the process
of registration to solve the issue of complete geodesics esti-
mation [8].

One work [6] finds a stretching channel in shape mani-
fold for direction function representation, which illustrates
a complete method to find geodesics. This work points out
that some potential techniques about manifold can fix the
drawback in [17].

In this paper, we simplify the shape manifold into a lin-
ear manifold where we find the geodesic as a linear problem,
rather than directly solve the nonlinear problems on the shape
manifold. Firstly, we formulate shapes as discrete, planar
and closed curves and represent them by direction functions
with discrete form. Secondly, the shape space is constructed
as a finite dimensional manifold. Then, we equip the shape
manifold with a frame bundle, whose frame in local space
is a set of Fourier basis. Based on the property of action
on frame bundle, the structure group for manifold acts on
frames instead of coordinate so that we can construct a linear
manifold only using the coordinates without structure group.
There is a one-to-one correspondence between the elements
on shape manifold and the linear manifold so that the pro-
jection between shape manifold and the linear manifold is
named bijection. Finally, we find geodesic and measure its
length in the linear manifold. Our framework for shape anal-
ysis is illustrated in Fig. 1 The main contributions of this
paper are summarized as follows:

1. we use the frame bundle property to analyze the shape
manifold.

2. we propose a complete geodesics estimation method for
the shape manifold.

3. we simplify the nonlinear problems, the geodesic estima-
tion and the geodesic measurement, as linear problems.

2 Methodology

2.1 Shape representation

The shape of an object’s boundary is expressed by a continu-
ous and closed planar curve α(s), s ∈ [0, 2π ]. In practice, the
continuous curveα(s) is formulated as a discrete curve-based
representation with N sampled points after the observing by

a digital camera [1]. The shapes are formulated as the discrete
curves with parameter m = 0, 1, 2, . . . , N :

α

(
2πm

N

)
=

(
αx

(
2πm

N

)
, αy

(
2πm

N

))
, (1)

where αx and αy record the pixel coordinates. The discrete
curves are simply denoted as α[m] = (αx [m], αy[m]). The
shapes are a set of curves, which are invariant to translation,
scaling and rigid rotation. The translation and scaling are
removed as:

α[m] = 1

h
(α[m] − α), (2)

where α = 1
N

∑N
i=1 α[i], h =

√∑N
i=1 ||α[i] − α|| and || · ||

denotes the L2-norm. A rotation R for planar curves is an
element of SO(2). The rotation of curve α[m] is denoted as
(R, α[m]) = Rα[m]. For two given curves α1[m] and α2[m],
the optimal rotation Ro is directly written as:

Ro = argmin
R∈SO(2)

||α1[m] − Rα2[m]|| = UV T , (3)

where UΣV T = svd(B), and B = α1[m]α2[m]T . If the
det(B) < 0, then the last column of V T changes sign before
multiplication. The Roα2[m] is removed rotation transfor-
mation referred as α1[m].

We represent the curves α[m] using their direction func-
tions θ [n]:

θ [i] = arctan
αy[i] − αy[i − 1]
αx [i] − αx [i − 1] , i = 1, . . . , N . (4)

Furthermore, the curve can be recovered from the direction
function θ [n] by

β[m] =
m∑
i=1

e jθ[i], (5)

where j = √−1, the point β[0] is fixed at (0, 0). The closure
condition

∫ 2π
0 exp( jθ(s))ds = 0 is rewritten as:

1

N

N∑
i=1

e jθ[i] = 0, (6)
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which means the closure condition is restricted by the mean
value of e jθ[n].

2.2 Manifold projection

2.2.1 Constructing shapemanifold on frame bundle

Shape manifold is a kind of set S, whose elements are repre-
sented as θ [n] ∈ RN and satisfied by the closure condition in
Eq. (6). From the extrinsic perspective, the shape manifold is
a subset of theRN , i.e., S ⊂ RN . This relationship is shown
in Fig. 2. As shown in Fig. 2, the shapes reside on a nonlinear
surface in theRN . The space ofRN is spanned by Cartesian
coordinate system with a set of orthonormal basis {Ei }. In
this space, the elements x are located by x = xi Ei , which
is the Einstein summation convention [20]. The xi is a real
number, which is equal to the value θ [i].

From intrinsic perspective, we formulate the shape set S
as a shape manifold S, which can be split into a set of lin-
ear spaces for local. Any two distinct points x , y on S are
separated by their respective neighborhoods U and V . Each
neighborhood is homeomorphic to an open set of a Euclidean
space, which is denoted as ϕU : U → ϕU (U ). The (U ;ϕU )

is the coordinate chart of manifold.
On manifold, the element x in the neighborhood U is

located by local coordinate defined as xi = ϕU (x)i , i =
1, . . . , N , where N is the dimension of the shape manifold.
The pair of (U ; θ i ) is named local coordinate systemof shape
manifold.

The tangent space at the element x is denoted as TxS.
Canonically, the tangent space is expressed by a set of partial
differential operators (tangent vectors) { ∂

∂xi
} depending on

the local coordinate system. It is an N -dimensional space,
which is equal to the dimension of shape manifold.

From globally perspective, the shape manifold is one sec-
tion of frame bundle P , where the element x is identified as
(xi ; e1, . . . , eN ) with its coordinate xi and associated frame
(e1, . . . , eN ). These frames are related with the tangent vec-

Fig. 2 Illustration of the examples of the shape set inRN

tors, i.e.,

ei = An
i

∂

∂xn
, n = 1, . . . , N , (7)

where (An
i ) is a non-degeneratematrix. The element on frame

bundle (xi ; An
i

∂
∂xn ) is simply denoted as (xi ; Ai ). For exam-

ple, the tangent bundle is a section of the frame bundle. The
elements on tangent bundle are denoted as (xi ; Ii ), where I
is a identity matrix.

From extrinsic perspective, the elements of shape space
belong to RN , which are located by (θ i ; Ei ). Accordingly,
the elements on tangent bundle are denoted as (θ i ; Ii ). In
general, (θ i ; Ei ) is equal to (θ i ; Ii ).

2.2.2 Designing bijection between shapemanifold and
linear manifold

Let element x ∈ U1
⋂

U2, the coordinate are xA and xB for
the chart U1 and U2, respectively. We have

g · xA = xB, (8)

where g ∈ GL(N ) is a structure group of manifold. On
the frame bundle, we consider the coordinate and frames
together, and Eq. (8) is rewritten as:

g · (xiA; Ei ) = (xiB; Ei ). (9)

In [7], the author gives a description for left translation in
frame bundle that left translation describes the structure of
manifold. The left translation LA = (An

i ) ∈ GL(N ) in P is
defined as:

L A(xiA; Ei ) = (xiA; E ′
i ), (10)

where E ′
i = Li

AEi . Equation (10) indicates that the nonlinear
structure L A can act for the coordinate xi or acts for the
reference frames. It provides a way to simplify the nonlinear
structure of shape manifold, when we focus on the structures
between relative coordinates.

Based on the property of left translation in frame bundle,
we rewrite Eq. (9) as

(xiA; gi Ei ) = (xiB; Ei ). (11)

As we can see, the structure group g acts on the frame Ei

instead of the relative coordinate xA.

2.2.3 Linear manifold construction

Finally, we build a linear manifold only using the relative
coordinate θ̂ [k]. Table 1 lists the coordinate systems of each
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Table 1 The associated coordinate systems during the designed bijec-
tion

Spaces Extrinsic Intrinsic Global

Shape manifold S (θ i ; Ei ) (U ; θ i ) (θ i ; Ii )
Constructed space – – (θ̂ i ; Ai )

Linear manifold Ŝ (θ̂ i ; Ei ) (W ; θ̂ i ) –

spaces with differential perspectives. Consequently, we have
defined a bijection between the (θ i ; Ei ) and (θ̂ i ; Ei ).

2.3 Finding andmeasuring the geodesics

2.3.1 Finding the geodesic

On shapemanifold, the shootingmethod is a classicalmethod
to find geodesic. We use the geodesic flow Φ(θ, τ, f ) to
formulate a shooting result, where the flow makes the curves
satisfy the closure condition, the θ is initial point, τ ∈ [0, 1]
means the beginning point to the end point, and the f is the
direction function for the geodesic. Finding geodesic is equal
to minimize this cost function H(a, b)

H( f ) = inf ||Φ(θ1, 1, f ) − θ2||2. (12)

where f = ∑∞
i=0(ai cos(is) + bi sin(is)) is the optimal

direction function, s ∈ [0, 2π ] means the unit circle, the
∞ is approximated by a enough large positive integer m.
A gradient-based optimization algorithm solves this optimal
problem.

We rewrite Eq. (12) using the related coordinate and ref-
erence frame as:

H(a, b) = inf ||Φ(θ i1Ei , 1,C
i Fi ) − θ i2Ei ||2, (13)

where Ci Fi denotes the
∑∞

n=0(an cos(ns) + bn sin(ns)), C
is the related coordinate and F is the reference frames, i.e., a
set of Fourier basis. Based on the discrete curve-based rep-
resentation, the reference frames are denoted as:

F = (Fn
i ) = e j2π(i−1) n−1

N , (14)

where F is a N dimensional matrix. The relative coordinate
is computed by FFT algorithm:

θ̂ [k] =
N∑
i=1

θ [i] · e− j2π(k−1) i−1
N , k = 1, . . . , N . (15)

In addition, IFFT algorithm transforms θ̂ [k] to θ [n]:

θ [i] = 1

N

N∑
k=1

θ̂[k] · e j2π(k−1) i−1
N , i = 1, . . . , N . (16)

In Eq. (13), the optimization algorithm works in differ-
ent frames that inhibits the algorithm performance. We use
Eq. (9) to unify the frames in Eq. (13) so that the optimal
issue Eq. (13) interprets as

Ĥ(Ci ) = inf ||Φ ′
(θ̂1, 1,C

i ) − θ̂2||2. (17)

whereCi is a vector [a0, b0, . . . , am, bm]. The nonlinear pro-
jection acts on the reference frame so that the Φ

′
is a linear

projection. Obviously, an is the real part of (θ̂2 − θ̂1) and
bn is the image part of (θ̂2 − θ̂1). Furthermore, the proposed
method gives an accurate number for Fourier basis during the
optimal process, i.e., m = N/2, N is the number of sample
data.

Finally, we recover the geodesic by

Φ(θ1, τ,C
i Fi ) = Φ(IFFT(Φ

′
(θ̂1, τ,C

i ))), (18)

where IFFT(·) is the IFFT algorithm in Eq. (16). In addition,
Algorithm 1 summarizes the process of finding geodesic.

Algorithm 1 Computing the geodesic
Require: a pair of curves θ1[n] and θ2[n], and assume k steps from θ1

to θ2
1: Let ε = 1/k and i = 0, 1, . . . , k
2: FFT algorithm transforms θ[n] into θ̂ [n]
3: Φ

′
(θ̂1, iε,Ci ) = θ̂1 + iε(θ̂2 − θ̂1), where Ci = θ̂2 − θ̂1.

4: IFFT algorithm transforms Φ
′
(θ̂1, iε,Ci ) as Φ(θ1, iε,Ci ) and Φ

makes the θ satisfy the closure condition.
5: return Φ(θ1, iε,Ci ).

2.3.2 The geodesic measurement

Based on the bijection, we not only reduce the problem of
finding the geodesic on shape manifold, but also simplify the
computing of the length of geodesic. We denote the length
of geodesic on shape manifold as d(θ1, θ2), and the length
of geodesic on linear manifold as d(θ̂1, θ̂2). The d(θ1, θ2)

is equivalent to the d(θ̂1, θ̂2) under the bijection, which is
denoted as d(θ, θ) ↔ d(θ̂ , θ̂ ).

For any closed curve, the direction function θ [n] takes
reference to unit circle θ0[n],

θ [n] = f [n] + θ0[n]. (19)
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Fig. 3 The illustration of shape interpolations between simple closed
curves

As a result, we remove the unit circle before computing the
distance:

F(θ [i]) ↔ F(θ̂[i]) =
∣∣∣θ̂ [i] − θ̂0[i]

∣∣∣ , (20)

where the F(·) is theFFTalgorithm, and the F(θ [i]) is named
the feature of curve. Based on the feature, two curves θ1[n]
and θ2[n] are distinguished by the distance:

d(θ1[n], θ2[n]) ↔ d(θ̂1[n], θ̂2[n])

=
√√√√ N∑

i=1

(
F(θ̂1[i]) − F(θ̂2[i])

)2
.

(21)

3 Experiments

3.1 Geodesics illustration

The application of shape interpolation is a useful technique to
show the found geodesic on shapemanifold.We compare our
workwith the [17] to illustrate that ourmethod finds the same
geodesics between simple curves and our method can stably
find the geodesics between simple curve and self-crossed
curve. We evaluate these two works on Kimia database [17].

3.1.1 The geodesic for simple curves

The simple shapes are the closed curves that do not cross
themselves. The goal is to illustrate the found geodesic on
shape manifold using the shape interpolation. We compare
our work with the work of [17], because these two works all
use differential geometric representations for curves.

To compare these two works, we illustrate the two kinds
result of shape interpolation at the same position. The pairs
of shapes are randomly chosen from Kimia database. Fig-

Fig. 4 The illustration of shape interpolations from simple closed
shapes to self-crossed shapes

Fig. 5 Illustration of the H(a, b) for different kind of geodesics

ure 3 illustrates some geodesics on shape manifold between
several pairs of shapes, in which the shapes with solid lines
come from our method and the results from Klassen et al.
[17] are shown in the dotted lines. We observe that the two
results mainly express the same process of shape interpola-
tion. Consequently, our method is able to find the geodesic
on shape manifold.

3.1.2 The geodesic for self-crossed curves

The self-crossed curves are another kind of curves on shape
manifold. Our goal is to illustrate the geodesic between sim-
ple curves and self-crossed curves. We select a shape as the
first element θ1[n], and the second element θ2[n] is the ele-
phant and the plant.

Figure 4 shows twogeodesics generated byKlassen et al.’s
work and our method, in which the first element θ1[n] is the
leftmost shape, and the rightmost shape is the second element
θ2[n] found by the methods. As we can see, the shooting
method utilized in [17] is not applicable for optimization in
the case of self-crossed curves. And, our method is able to
find the geodesic between the first and the second elements.

Figure 5 illustrates the cost function for the proposed
method (blue line) and the method [17] (red line) changes
with the m increasing. As we can see, the optimal algorithm
used in the proposed method is more higher accuracy, lower
complexity and better robustness (not east to fall into local
optimum), especially for the geodesic between the simple
curve and self-crossed curve.
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Fig. 6 Illustration of the transportation of shape deformation with
parameter k = 1

3.1.3 Geodesic transportation

Transporting deformation is one kind of shape predictions,
which is framed as follows: When we have known one shape
deformation under external force,we aim to apply the “same”
deformation for the other shapes and predict the deforma-
tion process. The relatedworks [10,25] restricted the external
force as the different viewing angle during their researches.
In our work, we allow the external force caused by different
viewing angle or other physical factors.

The mathematical statement of the transporting deforma-
tion is as follows: Let the known deformation be the geodesic
between the unit circle θ0[n] and a required shape θ1[n] on
shape manifold. The transporting deformation is that trans-
porting the known geodesic to the other required shape θ2[n].
The fundamental technical issue is to transport a known
geodesic from one point to another required point on the
shape manifold. It cannot simply apply the transporting on
the shapemanifold because the shapemanifold is a nonlinear
space, while this issue can be simplified using the designed
bijection.

Depending on the designed bijection, the issue of trans-
porting deformation on shape manifold is simplified as the
vector transporting on the linear manifold. We formulate the
transporting deformation on linear manifold as:

Φ
′
(θ̂2, iε,C

i ) = θ̂2[n] + iε(θ̂1[n] − θ̂0[n]), (22)

where i = 0, 1, . . . , k, the part of iε(θ1[n] − θ0[n]) means
the known deformation and the parameter k describes the
degree of deformation. The result of transporting deforma-
tion is computed as Φ(θ2, iε,Ci ).

Figures 6 and 7 show two kinds of transporting deforma-
tion, in which the first panel is the known deformation under
some unknown external force and the second panel illustrates
three results of transporting deformation. As we can see, the
predict results in Figs. 6 and 7 are expected.

Fig. 7 Illustration of the transportation of shape deformation with
parameter k = 6

Fig. 8 Examples of each types from Flavia database

3.1.4 Complexity analysis

Our method uses a linear interpolation to find geodesic in
the linear manifold; thus, the computational complexity of
obtaining geodesic with K steps on the linear manifold is
O(k). Then, we use fast Fourier transform (FFT) algorithm
to project the data onto the linear manifold. The computa-
tional complexity of projection is O(N ∗ log(N )), where N
is the number of samples on the curve. Thus, the total compu-
tational complexity for geodesic finding is O(kN ∗ log(N )).

3.2 Shapes retrieval

Shape retrieval aims to rank shapes in a database according
to their similarity, which is a widely used test for the per-
formance of shape metric. In these experiments, every shape
is represented by N = 50 points for the direction function
θ [n]. The step k is set as 4.

3.2.1 Flavia database

The Flavia database [27] includes 32 types of leaf species
with 1907 leaves in total. Figure 8 shows the examples of the
leaf shapes from the Flavia database. In [18], a leave-one-out
test is proposed for the shape retrieval evaluation, in which
every sample is removed from the database and used as a
query against the rest of the database.

To evaluate the performance, we use the precision vs.
recall curves (PR curves) and the mean average precision
(MAP) as a performance measure. They are illustrated in
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Table 2 The mean average
precision (MAP) on the Flavia
database

Methods MAP

FT 76.78

SC [4] 47.08

MSDM [13] 47.00

DF [17] 45.87

IDSC [21] 42.41

ASC [23] 42.41

Fig. 9 and listed in Table 2, respectively. The result of our
Fourier transformation method is named as FT. In Table 2,
we highlight our results and summarize the other results. The
comparison results suggest that our method works the best
among the mentioned methods in the Flavia database.

3.2.2 MPEG-7 database

MPEG-7 [19] contains 70 shape classes each containing 20
elements. It is a generic shapes dataset, where there are shape
categories with variations of different view point and/or large
deformations. The retrieval performance on the MPEG-7
dataset is measured by a “Bull’s eye score” method, which
takes the overall percentage of retrieval results, among the
first 40, that belong to the same class as the query. We com-
pare with some classical feature-based method (IDSC [21],
and SC [4]) and the manifold-based method (LeoGroup [11],
and DF [17]) in the Table 3. Consequently, the feature-based
methods get a higher score than the manifold-based meth-
ods. The proposedmethod has a best performance among the
manifold-based methods. Furthermore, the Bull’s eye score
of proposed method is close to the SCmethod that means the
proposed method is a potential approach of manifold-based
method.

Fig. 9 The PR curves on the Flavia database

Table 3 The Bull’s eye score on
the MPEG-7 database

Methods MAP

IDSC [21] 85.43

SC [4] 76.51

FT 75.31

LeoGroup [11] 68.02

DF [17] 47.46

3.2.3 Robustness

We evaluate the robustness of the proposed method to local
perturbations on Flavia database that generally degrades the
retrieval system performance. We add white Gaussian noise
for the direction function θ [n] with different signal-to-noise
ratio (SNR), 50 db, 40 db, 30 db and 20 db, respectively. We
also do a leave-one-out test scenario to test the retrieval sys-
tem performance. Table 4 summarizes the MAP values, and
Fig. 10 illustrates the respective PR curves. Consequently,
the proposed method is robustness to local perturbations.

4 Conclusions

In this paper, we present a new geometry framework to solve
the limitations on the shape manifold mentioned in [17]. The
designed bijection reduces the nonlinear problems to the lin-
ear problems on a linear manifold. Based on the bijection, we
project the geodesic on the shape manifold as a straight line
on the linear manifold. In the shape interpolation, the com-

Table 4 MAP with a Gaussian noise of different SNR

SNR (db) 50 40 30 20

MAP 76.78 76.71 70.88 52.30

Fig. 10 PR curves under different noise magnitudes
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parison experiments illustrate that the proposed method is
more robust. In addition, we illustrate our performance in the
transportation of shape deformation and the shape retrieval.
Consequently, the designed bijection projects the shapeman-
ifold as a linear manifold that simplifies the nonlinear issues
on shape manifold.
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