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Abstract
Eminently, the countries of developing state have their economy based on agricultural crop yieldings. To retain the economic
growth of these countries, the agricultural plants’ disease detection and proper treatment are a leading factor. The work
available in the literature basically features pull out to classify the leaf images due to which the classification performance
suffers. In the proposed work, we tried to resolve this rough image dataset problem. The proposed technique initially localizes
the leaf region by utilizing the color features of the leaf image followed by mixture model-based county expansion for leaf
localization. The classification of the leaf images depends on the features of discriminatory properties. The characteristics
features of the diseased images show various types of patterns into the leaf region. Here, we utilized the features discriminable
property using the Fisher vector in terms of different orders of differentiation of Gaussian distributions. The performance of
the proposed system is analyzed using the PlantVillage databases of common pepper, root vegetable as potato, and tomato leaf
images using amulti-layer perceptron, and support vectormachine. The implementation results confirm the better performance
measure of the proposed classification technique than the state of arts and provide an accuracy of 94.35% with an area under
the curve 94.7%.

Keywords Leaf image analysis · Crop disease classification · Pattern-based study · Computer-assist diagnosis

1 Introduction

The farming landmass is sufficient as required for feeding
crop sourcing in today’s world. The economizing phase of
developing countries is extremely dependent on agricultural
productiveness. The plant leaves-based disease detection in
the field of agriculture, at the initial stage, [1] performs a
paramount impact to sustain their economy.

Soares et al. [2] presented a study on leaf images seg-
mentation in semi-controlled conditions (LSSC) [3]. Singh
et al. worked on localization-based classification using soft-
computing technique (LCSCT) [4]. Biswas et al. minimized
the redundancy for reclining to enhance the image color
differences and performed segmentation through the fuzzy
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logic-based C-mean congregation (SFCC) [5]. Aparajita et
al. [6] worked on an automatic system for late blight dis-
ease detection in potato leaf images. It used a segmentation
using statistical features-based adaptive thresholding (SFAT)
in leaf image. Yanikoglu et al. [7] worked on a self-operating
plant identification system to identify the plant variety in
a considered imaginarium. An imaginarium pattern rec-
ognizing system for plant disease prediction (IRPD) has
designed in [8]. Sabrol et al. [9] conducted classification
using the color, shape as well as texture features to sep-
arate the healthy and diseased tomato leaf images. Islam
et al. presented a plane disease diagnosis approach using
machine learning (PDML)-based [10] image processing. It
classifies the healthy and unhealthy types of potato plants.
The disease classification using a support vectormachinewas
performed through these segmented images. Patil et al. [11]
introduced an automated disease management techniques in
potato (ADMT) [12].

The leaf color-based image analysis was performed in
[13], for the identification and disease classification. Lowe
et al. [14] analyzed the hyperspectral images for plant
health monitoring and prediction. Devi et al. [15] analyzed
the leaf disease of rice plants using a wavelet transform,
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scale-invariant feature transform (SIFT), and grayscale co-
occurrence matrix technique. It employed the multiclass
SVM and the Naive Bayes classifiers to classify the leaves
images. Khamparia et al. [16] worked on a hybrid technique
for the crop disease detection through combined features of
an autoencoder and the convolutional neural network (CNN)
model. Rangarajan et al. [17] used the transfer learning using
thePre-trainedVisualGeometryGroup16 (VGG16) network
for eggplants disease classification. The evaluation of the
datasetwas performed through augmentation using grayscale
image along with other color spaces like hue saturation value
(HSV), and YCbCr [18].

Wang et al. [19] have been accomplished a deep CNN-
based flora disease intensity evaluation system. Kaur et al.
[20] presented a composition of the k-means congregation for
semi-automatic technique (KCM) to classify the plant dis-
eases. Khan et al. [21] improvised a genetic algorithm-based
feature selection [22] for apple disease identification and
recognition (GFSD). Sladojevic et al.[23] presented a deep
learning technique to classify and identify the plant diseases
using the leaf images. Brahimi et al. [24] worked on a CNN-
based algorithm for symptom detection and classification in
tomato (SDCT) leaves.Agreat advantage ofCNN is the auto-
matic feature extraction directly from raw images. Ferentinos
et al. [25] alsoworked on deepCNNmodels to carry out plant
disease detection and diagnosis (PDDD) through the leaves
images of plants. Bharali et al. [26] worked on deep learning-
based leaf image analysis (DLLA) to identify and classify
the plant diseases. Hang et al. [27] presented deep learning
for disease identification and classification (DLDIC) in plant
leaves.

The existing work faces the shortcoming of different
varieties to classify the multi-class problem of the contam-
inated data along with high time complexity. The system
accomplishment quiet shortfalls the accurateness of segmen-
tation results. In this work, a novel leaf properties-based
localization technique is presented for the region of inter-
est segmentation and classification. The proposed algorithm
gives a direction over the conventional techniques of object
localization in terms of precision and computational time. In
order to segment the disease affected areas, we have fused the
pit-based region growing technique [28]. The region grow-
ing has performed using the mixture model for the leaf area
refinement. The SIFT feature-based Gaussian distribution
of localized images is utilized for the discriminant feature
extraction. The compact representation of these features as
Fisher vectors provides optimal solutions for the healthy and
diseased leaves classification [29].

Further, the structure of the paper goes as follows. In Sec-
tion 2, we have explicated the dataset and proposed an object
segmentation technique and the essential conceptual back-
ground. Section 3 bestows the frame of the proposed image
sectionalization technique. The distinguished image object

Fig. 1 Bell pepper leaves in upper row shows the healthy images and
lower row depicts the bacterial spots

Table 1 The PlantVillage Bell
Pepper Dataset

Category Total images

Bacterial spot 997

Healthy 1478

properties-based feature extraction and classification models
are discussed in Sect. 4. In Section 5, we have explored the
result acquired from assorted systems and juxtaposed to the
projected approach. Finally, Section 6 concludes the work
and provides future research guidelines.

2 Dataset

2.1 PlantVillage bell pepper dataset

The plant image dataset repository for the image-based dis-
ease analysis is available as a PlantVillage dataset. It contains
14 different crops dataset that has 54,309 labeled images. The
bell pepper database has two distinct categories for healthy
and disease. Sample images from the database are shown in
Fig. 1. The number of images of each class is mentioned in
Table 1. It contains 997 images of bacterial spot and 1478
images of healthy class.

2.2 PlantVillage potato dataset

The big database named as PlantVillage for containing
dataset of plant provides multiple crop dataset. There are
three different classes for potato images including healthy
ones. The image sets of early and blight containing 1000
images each while a healthy image set contains 152 images.
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Table 2 The PlantVillage potato
dataset

Category Total images

Early blight 1000

Healthy 152

Late blight 1000

Table 3 PlantVillage tomato dataset

Category Total images

Bacterial spot 2127

Early blight 1000

Healthy 1591

Mosaic virus 373

Late blight 1909

Leaf mold 952

Septoria leaf spot 1771

Spider mites 1676

Target spot 1404

Yellow leaf curl virus 3209

2.3 PlantVillage tomato dataset

The PlantVillage database has different kinds of disease
affected tomato leaf images. There are ten different classes
for tomato plant leaf images encompassing a healthy class.
The target spot contaminated imaginarium (or images) is
1404, mosaic virus affected category has 373. The yellow
leaf curl virus infected images are 3209, tomato plant leaves
imaginarium with bacterial spot are 2127. The early blight
and healthy categories have 1000 and 1591 images, respec-
tively. The late blight and leaf mold categories have 1909 and
952 images. The Septoria leaf spot and spider mites imag-
inarium varieties have 1771 and 1676 images as shown in
Table 3.

3 Proposed image segmentationmethod

The complete model for plant image-based disease clas-
sification is shown in Fig. 2. It consists of two steps: 1)
imaginarium localization through sectionalization and 2)
attribute extraction for categorization.

The preferred preprocessing techniqueology explicates a
three-stage system. The foremost stage environs the tech-
niques for forefront separation, i.e., extraction of the leaflet
from background. The penultimate step circumscribes initial
pit detection passed through region growing process. Fig. 2
delineates the workflow of the proposed algorithm. Let us
explore each one of them in-depth in the following section.

Fig. 2 The flow process chart of proposed localization-based classifi-
cation algorithm

3.1 Preprocessing

The images contaminated with some types of noise into the
leaves region. The primary cause of the noise is the speckle
noise that basically introduced because of the environmental
effects on the sensors at the time of image acquisition. To
overcome it we apply the pre-processing on these images.
This has performed by investigating every pixel and frame a
histogram chart for the voxels that lie within the leaf region.
The histogram of the pixel’s intensity undertakes the auto-
thresholding process [30]. The voxel of intensity value lower
than the localized threshold has been taken as the background
voxel.

3.2 Primary Pit Selection

The pit point initialization primarily requires prior infor-
mation of the considered leaf object. The plant leaf imag-
inarium for the leaf county segregation simply provides a
color-deployed pit point indication. The color imaginarium
analysis shows that the green color component is with higher
intensity values in the leaf area of the image as shown in Fig.
3. The red color component is moderate values while the blue
color component is less intense. The ratio of green to blue
(G/B) color shows pit point initialization very efficiently as
compared to the green to red (G/R) color ratio.
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(a) (b) (c) (d) (e)

Fig. 3 The color component (Comp.) analysis of leaf images (from top
to bottom) Original image, red, green, blue color components, fifth row
shows the green to red (G/R) ratio with binary G/R map in sixth row,
the green to red ratio in seventh row with binary G/B map in last row
(the maps are created using Otsu’s threshold)

Global thresholding techniques can be applied for the
separation of the intensity level of the foreground i.e. the
imaginarium pixels encompassing the leaf area from back-
ground [31]. Nevertheless, the leaf image inspection shows
that the mean intensity values are disparately laid out across
the complete background owing to that the leaf borders may
be misleading. Therefore, it is not possible to attain accept-
able outcomes through global thresholding techniques. As
a remedial measure to the aforesaid problem, our approach
circumscribes both the local and global thresholding tech-
niques. In the local regions, the regional thresholding tech-
nique employs an customizable valley prong value. Thereby,
it can possibly mitigate the variations of intensity levels
throughout the background [32]. Further, the regional thresh-
olding approach encompasses the foreground imaginarium
by employing the global threshold. The window expanses
as well as the sliding window dimensions have a remark-
able impact on the reliability of the approach chosen to opt
threshold as shown in Fig. 4.

Fig. 4 The effect of window size variation for foreground extraction
from background aOriginal image, b foreground for window size 3×3,
c 5×5, d 7×7, and b 9×9

The precise leaf county marking in imaginarium has been
performed with a square window of size 9x9 or greater oth-
erwise there is an issue of under segmentation as depicted in
Fig. 4. This theory is true for the counter case too. Therefore,
the choice of apt window expanse is of utmost pertinence
to this process. The results obtained using various window
sizes are illustrated in Fig. 4.

3.3 County expansion

The equivalent neighboring pixels in terms of properties
are chosen from given initial pits and are appended for
region growing. The operational activity is nonlinear in
nature prevail to the morphology features or shape of an
image is labeled as the morphological operations. A repet-
itive morphologic erosion [33] has employed to contract
the leaf borderline and secure the solid initialization mark-
ing of the leaf. Primarily, the region growing framework is
employed to acquire the circumference of the homogeneous
county. Therefore, the procured outcome was not the exact
imitation of the leaf area. Tomitigate this, themixturemodel-
based county expansion technique [28] has been applied.
It has developed from the county expansion method and is
employed to intensify the outcome. Global Gaussian dissem-
inations have been amalgamated with the prior knowledge
acquired from the county expansion technique.

Let an imageY containing patternX ofK-classes inwhich
a point l having intensity yl is categorized as a member of
class xl ∈ {1, . . . K }. The mathematical model description
of kth class is the conditional probability P(yl |xl = k) [34].
The kth class of the model is given in terms of linear MM:

ξk(y) = (1 − αk)ξSk(y − K0) + αkξB(y − K0) (1)

The parameters y, K0, and αk representing the intensity of
pixel offered system offset, and MM lifeline parameters,
respectively. The parameter ξB denotes the background pix-
els distribution that obeys the normal distribution having
mean and variance K0 and vB , respectively, with intensity
statistics of kth category pixels being ξSk given in terms of
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Fig. 5 The original image with pit region and intermediate results for
iterations (Ite) = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100

the negative-binomial distribution (NBD) having parameters
μSk and vSk as mean and variance, respectively [34].

The region growing is basically determined through a
homogeneity property to establish a regional threshold using
the intensity values of the commonly focused datasets. In
general, it utilizes the background statistics and the signal
distributions of the confocal data collection along with a lin-
ear mixture model for probability determination where the
considered pixel values are discriminated as the background
or foreground. These probabilities give the direction to define
the rules of region growing approach.

The initial pit is taken as the center of the considered
spherical region (or spheres). Then, the locality-based homo-
geneity property is developed focusing on the pit in the
image. The dimension of considered volume be the trade-off
between the local region of the segmentation and Gaussian
mixturemodel (GMM)model fittingness and by default is set
to N/8×M/8×3, whereM and N represent the image stack
dimensions. And the patch sizes are taken of not smaller than
32× 32× 3 to fulfill the requirement of data points to fit the
GMM.

TheOtsu [35] thresholding-based segmentation is an opti-
mum option to multi-modal distributions [36], while the
background considered as having the normal distribution
with the negative binomial of signal, is fitted through an EM
approach [28] on the distribution of crop pixel intensity. The
iterative region growing process for different iterations (Ite
= 10, 20, …, 100) is shown in Fig. 5.

4 Attributes extortion and classification

The feature extortion for the simplification of the complex
image features has been employed for the classification sys-
tem.

Fig. 6 The step-by-step process flow of the Fisher vector (FV) extrac-
tion of leaf images showing black arrows indicating training phase and
the sky-blue arrows show the testing phase

4.1 Fisher vectors (FV)

The FV [37,38] is computed using the Fisher Kernel (FK)
that describes a feature by probability density function-
based gradient vector using scale-invariant feature transform
(SIFT) [29]. The murky depiction is given in terms of the
GMMfeature fitting and encoding the log-likelihoodmodel’s
derivatives with respect to specified parameters as shown in
Fig. 6. A set of attributes computed using a specified prob-
ability distribution. The evaluated attributes are associated
with their gradient that directs the data fitting to the Gaus-
sian models appropriately.

The FK having well-defined statistical features as a local
descriptor and Gaussian fitting centers are defined as FV. A
set of complete features such asmean and covariance describ-
ing every individual Gaussian model has utilized to represent
every object of interest.

In our experiments, we have taken the patch size of
24x24 for scale-invariant feature transform (SIFT) feature
extraction followed by PCA to compact the size of the
descriptors of SIFT from 128 to 64. The FV size for K
Gaussian distributions is defined as 2Kd, where d is the fea-
ture vector dimension. The FV dimensionality is for K=256
and d=64 is 16384. The performance measure of the FV is
optimized using the signed square-root followed by the L2-
normalization [29].

4.2 Classifiers

The simple neural network-based classifier as a multilayer
perceptron model (MLP) [39] has been used for the two-
class classification model having some nonlinearity. The
nonlinearity is introduced by a rectified linear unit (ReLU)
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activation obligation in the entire constituent of the vectors,
albeit for the last classification layer a softmax obligation
has been used as an incitement for the conceptualized MLP
system having four layers conception.

A two-category classification using a support vector
machine (SVM) [40] offers greater flexibility of class sepa-
ration. It is the most protruding model among all available
classifiers the classification [41]. The fundamental mathe-
matical formulation of SVM is explained as

Minimize
1

2

n∑

j=1

W 2
1 + C

N∑

j=1

ζ j (2)

subject to constraint y j (w̄.x̄ + b) ≥ 1 − ζ j for j =
1, 2, 3, . . . , N .

A soft-max tunning measure C is adjusted for providing
an adjustable edge to SVM. Additionally, the nonlinearity
has been instigated by the radial basis function kernel which
can be explained in terms of the Hilbert space transformation
of the image. The experiments using tenfold cross-validation
are performed with softmax parameter γ = 1 and C = 1 for
training as well as testing of the classification model.

4.3 Performancemeasures

The performance specifications used for the segmentation
work evaluations are F1-score, Dice coefficient (DC) [41]
and modified Hausdorff distance (MHD) [42]. The accu-
racymetric (Ac) [43,44] and receiver operating characteristic
curve (ROC) [45], alongwith the area under the curve (AUC)
[45], are measured to evaluate the performance of classifi-
cation technique. For the high AUC measure, classification
outcomes perform better. Generally, the evaluation metrics
are utilized to measure the classifier performance and are
given as;

T PR = (Sensi tivi t y) = T P

T P + FN
, T N R = T N

T N + FP
(3)

FPR = FP

FP + T N
(4)

where TP represents the number of appropriately categorized
positive samples, TN denotes the number of appropriately
categorized negative samples, while FP denotes the number
of incorrectly (or falsely) categorized negative samples and
FN is the number of falsely categorized positive samples.
TNR is the true negative (that is the majority) rate, and FPR
defines the false positive (that is the minority) rate.

Precision = T P

T P + FP
and Recall = T P

T P + FN
(5)

G − mean = (�m
k=1Recallk)

1
m (6)

Table 4 Comparison of average F1-score, Dice coefficient, and MHD
for segmentation techniques

Method F1-score Dice coefficient MHD complexity

LSSC [2] 0.877 0.721 10.72 O(N 2)

SFCC [5] 0.788 0.778 11.86 O(N 3)

SFAT [6] 0.875 0.763 10.25 O(N 3)

Proposed 0.916 0.824 7.29 O(N 2)

The bold face values show the high-performance measures

where m is the number of classes. The G-mean measure is
the accuracy ratio of minority grade to majority grade. This
measure tries to balance by enhancing each class’s accuracy
in unbalancing databases too because the overall accuracy
does not provide enough information for class imbalance
problems [46]. G-mean computes the effectiveness of the
technique by considering the skewed class distributions [46].
The ROC curve [47] computes the accuracy of the system
by varying the cut-off value to analyze the model score and
obtain the various values of TPR on Y-axis and FPR on X-
axis. The AUC [45,48] can be used to measure the classifier
with an idealistic point at (0, 1) that specifies the correctly
classified allminority samples andnonof themajority sample
is wrongly classified to minority class sample. For higher
values, the AUC performance of the classifier is better. The
accuracy is defined as follows:

Ac = (T P + T N )/(T P + FP + FN + T N ) (7)

5 Results and discussion

The result analysis of the preferred localization deployed
classification method is performed through the PlantVillage
datasets of three crops, which cover the leaves of pepper
plant, potato plants, and tomato leafage. The proposedmodel
was implemented using the packages of Python, Keras [49],
Scikit-learn [50], and TensorFlow [51] on the personal sys-
tem (Core-i5 CPU, Clock 2.30 GHz, and Random Access
Memory: 4 GB).

5.1 Evaluation of segmentation work

The segmentation performance of the LSSC [2] technique
shows 0.877 F1-score with 0.721 DC and 10.72 MHD. The
SFAT [6] technique offered 0.875 F1-score and 0.763 DC
along with 10.25 MHD. The proposed segmentation tech-
nique provides average F1-score, DC and MHD of 0.916,
0.824, and 7.29, respectively, which is 5% and 7% better
than SFAT [6] technique.
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Table 5 The comparison of MLP and SVM classifier for bell pepper,
potato and tomato datasets

Datasets Performance measures MLP model SVM classifier

Bell pepper Ac 0.928 0.955

AUC 0.912 0.951

Potato Ac 0.929 0.944

AUC 0.925 0.957

Tomato Ac 0.892 0.918

AUC 0.865 0.933

Average Ac 0.916 0.943

AUC 0.901 0.947

The bold face values show the high-performance measures

The computational complexity of the SFCC [5] and SFAT
[6] techniques is of the order of O(N 3) while for the LSSC
[2] and the proposed technique has in the order of O(N 2).

5.2 Classification work evaluation

The classification performance usingMLP and SVM for bell
pepper, potato, and tomato datasets is given in Table 5.

The accuracy and AUC for the tomato dataset are 0.892
and 0.865 using the MLP model while for SVM classifier is
0.918 and 0.933, respectively. For the potato dataset, the Ac
and AUC values are showing moderate performance using
both the classifiers. Accuracy and AUC for the bell pep-
per dataset are 0.928 and 0.912 using the MLP model; on
the other hand, the SVM classifier shows 0.955 and 0.951,
respectively. The average value of accuracy and AUC for the
MLP model are 0.916 and 0.901, respectively. THE SVM
Classifier shows the average accuracy of 0.944 with 0.947
AUC.

The detailed comparison of the preferred classification
technique with the state-of-the-art techniques is given in
Table 6.

The various state-of-the-art techniques show the average
classification accuracy performances as the LCSCT [4] tech-
nique shows 0.894Ac., and 0.922AUC for the tomato dataset
while for the bell pepper images classification it offers the
accuracyof 0.921with 0.891AUC.TheGFSD[21] technique
gave Ac of 0.918 and 0.859, for the pepper leaves and potato
leaf images, respectively, while it is 0.856 for tomato plants
imaginarium. The proposed technique without segmentation
offers 0.916 Ac. and 0.897 AUC for the bell pepper dataset
and for potato and tomato accuracies are 0.893 and 0.866
with AUV of 0.917 and 0.881, respectively. The proposed
technique using the SVM classifier for tomato dataset classi-
fication provides 0.928 and 0.933 accuracy and AUC values,
respectively. The bell pepper dataset classification accuracy
is 0.955 with 0.951 AUC. The average performance measure
of the proposed technique is 0.943 accuracywith 0.947AUC.

Table 6 Accuracy (Ac) and AUC for images of leaves for bell pepper
plants, potato plant and tomato plants datasets of proposed technique
without and with segmentation (Segment.)

Dataset → Bell pepper Potato Tomato
Technique ↓ Ac AUC Ac AUC Ac AUC

LCSCT [4] 0.921 0.892 0.892 0.876 0.894 0.922

IRPD [8] 0.827 0.922 0.82 0.757 0.929 0.905

PDML [10] 0.871 0.906 0.794 0.866 0.864 0.849

ADMT [12] 0.807 0.89 0.865 0.91 0.828 0.865

KCM [20] 0.848 0.696 0.885 0.928 0.904 0.676

GFSD [21] 0.918 0.912 0.859 0.895 0.856 0.784

SDCT [24] 0.925 0.979 0.933 0.959 0.921 0.892

PDDD [25] 0.911 0.812 0.955 0.933 0.915 0.899

DLLA [26] 0.938 0.951 0.938 0.926 0.923 0.936

DLDIC [27] 0.951 0.954 0.978 0.936 0.925 0.946

Without segment. 0.916 0.897 0.893 0.917 0.866 0.881

Proposed method 0.955 0.957 0.944 0.961 0.918 0.933

The bold face values show the high-performance measures

Fig. 7 The ROC curve shows a comparative analysis of the preferred
technique with different state-of-the-art techniques

The average AUC comparison of the proposed technique
directly to the state-of-the-art techniques is depicted in Fig.
7.

The mean value of AUC is depicted in figure with their
respective techniques. The KCM [20] gives the least mea-
sure with 0.767 AUC on the other hand the DLDIC [27]
provides 0.944. The preferred classification technique offers
0.945 AUC that performs better than all the mentioned state-
of-the-art techniques.

The G-mean comparison of different approaches is shown
in Fig. 8.

The value of G-mean given by PDML [10] technique is
0.843. The DLLA [26] technique gives the G-mean measure
of 0.943 while the DLDIC [27] technique offers the G-mean
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Fig. 8 TheG-mean analysis of the preferred systemwith different state-
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Fig. 9 The training time (in seconds) analysis of the preferred technique
with the state-of-the-art approaches

value of 0.948. The proposed technique without segmenta-
tion provides the G-mean value of 0.927, on the other hand,
the proposed technique offers a G-mean measure of 0.952.

The training time analysis (in seconds) for the different
techniques is shown by the bar graph in Fig. 9. The DLLA
[26] technique shows the average time of 9574 sec. for the
training of the datasets. The LCSCT [4] technique takes 7200
seconds to train the datasets while the DLDIC [27] technique
is trained in 8596 seconds.

The time taken by the proposed technique without seg-
mentation is 1837 seconds, while the training time of the
proposed localization-based classification technique takes
2100 seconds. The DLDIC [27] classification accuracy per-
formance is at par with the proposed technique, but the time
complexity is 4 times higher than the proposed technique.

6 Conclusion

Digital image analysis techniques have been utilized for
numerous applications in agriculture like vigor diagno-

sis, vegetation measurement, phenotyping, etc. The Pro-
posed localization-based classification technique classifies
the three crops leaf images for a different kind of disease
detection. The leaf localization was performed using nat-
ural color properties of the leaf images and the mixture
model-based region growing. The diseased image properties
like spots and damage of leaf region in the localized image
provide the keys of characteristics discrimination from the
healthy images that can be easily grabbed using Fisher vec-
tor extraction. The classification performance is measured in
terms of accuracy and AUC. To measure the performance
for the data imbalance cases the G-mean parameter is ana-
lyzed for all the three crops datasets. The average accuracy
and AUC using SVM are 0.943 and 0.947, respectively,
with 0.953 G-men scores and training time of 2100 seconds.
Overall the proposed classification technique offers better
performance as compared to the state-of-the-art techniques.
One can extend this work with other crops disease detection
and classification with improved accuracy.
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