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Abstract
Inmany real-world knowledge transfer and transfer learning scenarios, the known commonproblem is distribution discrepancy
(i.e., the difference in type, distribution and dimensionality of features) between source and target domains. In this paper,
we introduce joint distinct subspace learning and unsupervised transfer classification for visual domain adaptation (JDSC)
method, which is an iterative two-step framework. JDSC is based on hybrid of feature-based and classifier-based approaches
that uses the feature-based techniques to tackle the challenge of domain shift and classifier-based techniques to learn a
reliable model. In addition, for subspace alignment, weighted joint geometrical and statistical alignment is proposed to learn
two coupled projections for mapping the source and target data into respective subspaces by accounting the importance of
marginal and conditional distributions, differently. The proposed method has been evaluated on various real-world image
datasets. JDSC gets 86.2% average classification accuracy on four standard domain adaptation benchmarks. The experiments
demonstrate that our proposed method achieves a significant improvement compared to other state of the arts in average
classification accuracy. Our source code is available at https://github.com/jtahmores/JDSC.

Keywords Transfer learning · Domain adaptation · Subspace alignment · Classification · Distribution discrepancy

1 Introduction

Nowadays, communications across social media and con-
tent sharing applications increase the information volume
(i.e., image, text and video) exponentially where the clas-
sification is an essential requirement to take the advantages
of information explosion, efficiently [1]. However, the man-
ual classification of data may be prohibitive. Therefore, the
machine learning models are used to classify the informa-
tion with a basic assumption of machine learning models
on which the used data for training and test sets must be
drawn from the same or similar distributions. But, in real
world, this assumption is not guaranteed in many applica-
tions and consequently, the trained machine learning models
in source domain may not work well in target domain under
various conditions. Thus, domain adaptation (DA) [2] as one
of the transfer learning (TL) [3] solutions is used to solve such
cross-domain learning problems with different distributions.
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DA is a technique for knowledge transfer from the
labeled source domain to unlabeled target domain by exploit-
ing domain invariant structures that facilitate the transfer
between different domains with different distributions [4].
In this paper, we focus on unsupervised domain adaptation
where the target data labels are not accessible in transfer
learning phase.

Based on the type of transferred information, the TL
algorithms can be classified into three different learning
paradigms as follows [5]: (i) instance-based transfer learn-
ing, feature-representation transfer learning and classifier-
based transfer learning. In instance-based transfer learning
approaches, instead of using the entire source domain, some
parts of the source data that have similar distribution with
target data are reused in the learning phase. (ii) Feature-
representation transfer learning approaches aim to obtain
new representation of source and target domains to min-
imize the distribution discrepancy between domains. (iii)
Classifier-based transfer learning approaches assume that the
performance of target classifier can be improved using source
classifier. Ensemble learners can be called as an example of
classifier-based TL methods that combine multiple source
classifiers to create an improved target classifier. This paper
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follows combination of feature-based and classifier-based
approaches.

In this paper, we propose a novel joint distinct subspace
learning and unsupervised transfer classification for visual
domain adaptation (JDSC) method that improves the model
accuracy, significantly, in an unsupervised manner.

In this method, subspace alignment and label prediction
function are learned iteratively to find better representation
for data and consequently better prediction function for label-
ing. In subspace alignment, for reducing the distributional
and geometrical divergences between domains, two coupled
projections are obtained that map the source and target data
into respective subspaces, simultaneously. Also, a domain-
invariant classifier is learned in new representations of data
with structural riskminimization, while consistency between
the classifier and intrinsic manifold structure of data is maxi-
mized using marginal distributions. The contributions of this
work are summarized as follows.

(1) In this paper, a novel unsupervised domain adaptation
approach is introduced that is based on hybrid of feature-
based and classifier-based approaches, which uses the
feature-based techniques to address the challenge of
domain divergence and classifier-based techniques to
learn the reliable classifier.

(2) For subspace alignment, weighted joint geometrical and
statistical alignment (WJGSA) is proposed where it is
the modified version of joint geometrical and statistical
alignment (JGSA) [4] to learn two coupled projections
to map the source and target data into respective sub-
spaces by accounting the importance of marginal and
conditional distributions, separately and quantitatively.

(3) JDSC reduces the divergence of source and target sub-
spaces and increases the variance of target data while
maintaining the data structure.

(4) The proposed method has been evaluated on follow-
ing four real-world image datasets: object recognition
(Office-10 and Caltech-10) [6], handwritten digit recog-
nition (USPS andMNIST) [7,8], large image recognition
dataset (ImageNet, VOC 2007) [9] and face dataset [10]
to compare it against several novel state-of-the-art meth-
odswhere the experiments demonstrate that our proposed
method achieves a significant improvement in average
classification accuracy.

In the rest, the paper is organized as follows. The second
part of paper provides an overview on related work in this
field. In the third section, the proposed method is described
in detail. In the fourth section, the evaluated datasets are pre-
sented in detail. In the fifth section, the results of the proposed
algorithmagainst othermachine learning and domain adapta-
tion methods are reported. Finally, the paper concludes with
some suggestions for future works in the last section.

2 Related work

In general, TL aims to adapt trained models in an existing
domain (source) to solve the classification problem in a new
(target), yet related, domain. Based on what is transferred,
TL algorithms are categorized into three different paradigms
as follows.

The strategy behind instance-based approaches is to use
the reweighted instances in the source domain to label
the target domain. Asgarian et al. [11] proposed a hybrid
instance-based transfer learning method that uses a proba-
bilistic weighting strategy to transfer knowledge from the
source domain to learn a model for target domain.

Feature-representation transfer learning approaches can
be categorized into two different types, data-oriented and
subspace-oriented methods where data-oriented approaches
are divided into symmetric and asymmetric feature-based TL
[4,12]. The data-oriented category focuses on subspace learn-
ing by exploiting the underlying representative structures
between both domains to find common latent space (fea-
tures) to reduce themarginal distribution differences between
source and target domains (i.e., symmetric) [13] or focuses on
distribution alignment by transforming the features of source
domain to be closer to target domain to reduce the marginal
or conditional distribution divergences between domains
(i.e., asymmetric) [14]. For reducing the domain shift in
the subspace-oriented category, subspaces of both domains
without clearly considering the distribution shift between
projected data of domains are manipulated for final mapping
[15]. In this approach, the assumption of existing a unified
transformation to reduce the domain shifts does not exist.

In classifier-based transfer approaches, transferring of
prior knowledge of parameters from source to target domain
is considered. Rubin et al. [16] focused on creating an ensem-
ble model from two boosting-based classifiers, gradient tree
boosting and adaptive boosting, based on prediction aver-
age to predict the transferring of pediatric populations from
the hospital general ward to the pediatric intensive care
unit. Our work belongs to the feature-representation transfer
learning and classifier-based transfer categories. In feature-
representation transfer, the distribution shift across domains
is reduced by two coupled projections for source and tar-
get data to map into respective subspaces, while the data
properties are preserved. Moreover, the shift across subspace
geometries is reduced alongside reducing the distribution
shifts of both domains by quantitative importance evaluation
of both distributions (i.e., marginal and conditional distri-
butions) via considering their different effects. Hence, the
proposed feature-representation algorithm in this paper is a
hybrid of data-based symmetric and subspace-based cate-
gories.

Also, in classifier-based transfer, a domain-invariant clas-
sifier is learned on new obtained representation of data to
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overcome the feature distortions. In addition, for maximiz-
ing the consistency between the classifier and the intrinsic
manifold structure of data, manifold regularization is used.

3 Joint subspace andmodel learning

In this section, we first define the problem setting and the
purpose of domain transfer learning. Then, we present our
proposed approach, joint distinct subspace learning andunsu-
pervised transfer classification for visual domain adaptation,
in detail.

3.1 Notation

We first define the notations that are frequently used in this
paper. A domain D consists of the following two terms: a fea-
ture space X and a marginal probability distribution P(x),
i.e., D = {X , P(x)} where X is drawn from distribution
P(x) and x ∈ X . Subsequently, given domain D, a task T
is defined by a label space Y and a prediction function f (x),
i.e., T = {Y , f (x)}, where y ∈ Y , and f (x) = Q(y|x)
that can be interpreted as the conditional probability distribu-
tion. In unsupervised domain adaptation, the source domain
Ds = {(x1, y1), . . . , (xn, yn)} has sufficient labeled data,
while in target domain Dt = {xn+1, . . . , xn+m} no labeled
data exist. The goal of domain transfer learning is to learn
a target model f : xt → yt with labeled source domain
to minimize the prediction error in target domain, under
the following assumptions, Xs = Xt ,Ys = Yt , Ps (xs) �=
Pt (xt ) and Qs (ys |xs) �= Qt (yt |xt ). Moreover, tr (.) and
I are defined as the trace of matrix and identity matrix, in
turn. Also, ||.||2F and ||.||2K denote the squared of Frobenius
norm and squared norm in reproducing kernel Hilbert space,
respectively.

3.2 Proposedmethod

In this paper, we focus on following three main goals to
achieve: (1) obtaining two coupled projections for source and
target domains, to reduce the domain divergence, specifically,
by accounting the different importance among the marginal
and conditional distributions; (2) minimizing the classifica-
tion error on new representation of source domain labeled
data; (3) maximizing the manifold consistency underlying
the marginal distributions of source and target domains; and
(4) finding the optimal representation and classifier, itera-
tively.

3.2.1 Weighted joint geometrical and statistical alignment

In this section, we introduce weighted joint geometrical and
statistical alignment method which is the modified version

of joint geometrical and statistical alignment. Our proposed
method adapts the marginal and conditional distributions
with different importance to adapt across domains. In fact,
JGSA finds two coupled subspaces to obtain the new repre-
sentations of source and target domains by considering equal
importance for each distribution, whereas our idea considers
the relative importance of each distribution, quantitatively
and separately. According to domain shift scale, one of the
distributions (i.e., marginal or conditional) becomes more
important in domain adaptation. Therefore, we define Eq.
(1) which aims to find two coupled subspaces A and B for
source and target domains, respectively, by quantitative eval-
uation of marginal and conditional distributions significance,
as follows:

min
A, B

tr
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where 1s ∈ R
ns and 1t ∈ R

nt denote the column vector
with all ones related to the source and target domains, in
turn. In addition, γ is an adaptive parameter that induces the
importance of marginal and conditional distributions, quan-
titatively, which is computed through Eq. (6),

γ ≈ 1 − dM

dM + ∑C
c=1 dc

. (6)

where dM and dc are the marginal and conditional A dis-
tances [17], respectively.A -distance is defined as Eq. (7) in
which ε(h) is a linear classifier error in source Ds and target
Dt domains’ classification.

dM (Ds, Dt ) = 2(1 − 2ε(h)) (7)

In addition, for reducing shift across source and target sub-
spaces (i.e., A and B), Eq. (8) is utilized:

min
A, B

‖A − B‖2F . (8)

Moreover, Eq. (9) maximizes the variance of target domain
with the goal of preserving target data properties by project-
ing the features into the relevant dimensions,

max
B

tr
(
BT St B

)
, s.t., St = Xt Ht Xt

T (9)

where St is the scatter matrix of target domain and Ht is the
centeringmatrix. For a good domain adaptation, it is better to
maintain the discriminative information of source datawithin
finding a new subspace for source domain. Therefore, Eqs.
(10) and (11) are used to preserve the information of source
domain using labeled samples in source domain. The purpose
of this work is to find a subspace (A) for source domain that
converges the samples with same classes and diverges the
samples in different classes as follows:

max
A

tr
(
AT Sb A

)
, s.t.,

Sb =
C∑
c=1

n(c)
s (m(c)

s − ms)(m
(c)
s − ms)

T
(10)

min
A

tr(AT SwA) , s.t.,

Sw =
C∑
c=1

X (c)
s (H (c)

s )(X (c)
s )

T
(11)

where Sb is the between-class scatter matrix and Sw is the
within-class scatter matrix of source domain. Also, m(c)

s and
ms are the average of source samples that belong to class c
and the average of source samples, respectively. Considering
Eqs. (1), (8), (9), (10) and (11), the objective function is
achieved as follows:

max
A,B

tr

( [
AT BT

] [
βSb 0
0 μSt

] [
A
B

] )

tr

( [
AT BT

] [
Ms + λI + βSw Mst − λI

Mts − λI Mt + (λ + μ) I

] [
A
B

] ) .

(12)

ByoptimizingEq. (12), the following equation is achieved:

[
βSb 0
0 μSt

]
W =

[
Ms + λI + βSw Mst − λI
Mts − λI Mt + (λ + μ) I

]
Wφ

(13)

whereW consists of corresponding eigenvectors of k leading
eigenvalues of φ. Due to the lack of label in target domain,
the computation of the conditional distribution Qt (yt |xt ) is
not possible. Therefore, we use the idea in [18] to compute
the class conditional distribution Qt (xt |yt ) instead of con-
ditional distribution Qt (yt |xt ). For evaluation of Qt (xt |yt ),
soft target labels ŷt is used instead of true target labels yt .
Soft labels of target domain is predicted using a base classi-
fier trained on source domain in first iteration that is refined,
iteratively.

3.2.2 Prediction function

The original data are mapped via A and B to find the new rep-
resentations of source and target domains (i.e., Zs = AT Xs

and Zt = BT Xt ). Our main goal is to learn an adaptive
classifier f on labeled source domain Ds for target domain
classification. To learn f, the structural risk functional is min-
imized as follows:

f = arg min
f ∈HK

n∑
i=1

�( f
(
Zsi

)
, yi ) + η‖ f ‖2K (14)

where HK consists of classifiers in the reproducing kernel
Hilbert space, η is the regularization parameter and � is the
squared loss function � = (yi − f

(
Zsi

)
)
2 that measures the

performance of classifier f on prediction of training labels.
Therefore, the Representer theorem [19] is used to define the
classifier f as follows:

f (z) =
n+m∑
i=1

ai K (zi , z) (15)

where K (., .) is the kernel function and ai is the coefficient.
Considering the squared loss function, and Eq. (15), the Eq.
(14) is reformulated as follows:

f = arg min
f ∈HK

∥∥∥(
Y − ΛT K

)
E

∥∥∥2
F

+ ηtr
(
ΛT KΛ

)
(16)

where E is the diagonal domain indicator matrix with each
element Eii = 1 if zi ∈ Ds , and Eii = 0 otherwise. Also,
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Λ=(a1, . . . , an+m)T consists of the vector of coefficients
and Y = [y1, . . . , yn+m] is the label matrix of source and
target data.

3.2.3 Manifold regularization

In addition, themanifold regularization term (i.e., Eq. (17)) is
added into Eq. (16) to maximize the consistency between the
intrinsic manifold structure of data and predictive structure
of f using the marginal distributions of source and target
domains (i.e., Ps (Zs) and Pt (Zt )) as follows:

M f (Ps, Pt ) =
n+m∑
i, j=1

Vi j
(
f (zi ) − f

(
z j

))2
. (17)

By incorporating Eq. (15) into Eq. (17) and adding the
obtained equation into Eq. (16), we achieve

f = arg min
f ∈HK

∥∥∥(
Y − ΛT K

)
E

∥∥∥2
F

+ ηtr
(
ΛT KΛ

)
+ ρtr

(
ΛT K LKΛ

)
(18)

where L = D− V is the Laplacian matrix, which is normal-
ized with diagonal matrix Dii = ∑n+m

j=1 Vi j . Also, V is the
affinity matrix which is computed by Eq. (19) as follows:

Vi j =
{
cos

(
zi , z j

)
, i f zi ∈ NP

(
z j

) ∨ z j ∈ NP (zi )
0, otherwise

(19)

where NP
(
z j

)
is the set of P-nearest neighbors of point z j .

Setting derivative of objective function in Eq. (18) to 0 leads
to

Λ∗ = ((E + ρL) K + ηI )−1EY T . (20)

The cross-domain function f is learned through Eq. (15)
using Eq. (20), directly, without the need of explicit classifier
training.

4 Experimental setup

In this section, we consider data description to evaluate the
performance of our JDSC. Also, we compare the perfor-
mance of several state-of-the-art domain adaptation methods
with the performance of our proposed method. Finally, the
implementation details are described in the last subsection.

4.1 Data description

In this paper, the following four datasets: Office-Caltech-10
[6], Digits (USPS, MNIST) [7,8], ImageNet and VOC 2007
[9] and Pie (Face) [10], are used to evaluate the performance
of JDSC.

The Office-31 dataset consists of the following three
domains:Amazon (collected images fromonlinemerchants),
Webcam (images taken by web camera) and DLSR (images
taken by digital SLR camera), each of which contains a
set of images of different objects with different qualities in
each domain. The Office-31 dataset has 4652 images with
4096 features per image and 31 classes. The Caltech-256
(collected from Google images) dataset is another object
recognition dataset that has 30,607 images with 4096 fea-
tures per image and 256 classes. Ten common classes of four
domains are used in experiments (i.e., keyboard, bike, cal-
culator, headphones, mouse, mug, laptop, monitor, backpack
and projector). The Office-Caltech-10 dataset consists of 12
tasks; in each task, one domain (e.g., Amazon) is considered
as source domain and another domain (e.g., Caltech) as tar-
get domain. Differences in distribution of Office and Caltech
datasets have a beneficial effect on performance evaluation
of domain adaptation methods.

Digit dataset consists of two domains, USPS and MNIST,
which contains handwritten numbers from 0 to 9. The USPS
dataset has 7291 training images and 2007 test images of
size 16 × 16 pixels with 256 features for each image, while
the MNIST dataset has 60,000 training images and 10,000
test images of size 28× 28 pixels with 256 features for each
image. Ten common classes (i.e., digits 0–9) of both domains
are used in experiments. Two experiments are performed
using these two domains; in each experiment, one of them is
considered as source and another one as target domain. It is
worth noting that the distribution of each number is different
in USPS and MNIST domains.

The Pie dataset is used for face recognition. It consists of
the followingfive domainswith 41,368 images of 68 different
persons in different imaging modes for each domain: Pie1
(face image from left), Pie2 (face image from top), Pie3 (face
image from bottom), Pie4 (face image from front) and Pie5
(face image from right). Therefore, 20 tasks are achieved
from the above five domains to evaluate the performance
of the proposed method, in which two domains are selected
from five domains as source and target domains.

ImageNet and VOC 2007 are two large datasets of nat-
ural images with different distributions. ImageNet has over
14 million images with more than 20,000 categories, while
VOC2007 dataset consists of 9963 images containing 24,640
annotated objects. Five common classes of both datasets are
exploited in our experiments (i.e., dog, chair, cat, bird and
person). Therefore, two tasks I–V and V–I are considered in
experiments.
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Table 1 Optimal parameters for different datasets

Dataset P η λ ρ γ β K μ

ImageNet-Voc2007 2 0.1 10 1.0 1.5 0.001 100 0.1

Pie 2 0.01 0.8 0.9 0.1 0.01 200 0.1

Digit 2 0.01 0.4 0.9 0.3 0.01 100 1

Office-Caltech10 5 0.2 1 0.9 0.3 0.1 40 0.9

4.2 Implementation details

The number of images and type of features in different
datasets are described as follow. In office dataset, 1410
images are selected, randomly; each image is defined by
DeCaf6 features (which are the activations of sixth fully
connected layer of a convolutional network trained on Ima-
geNet). Moreover, in Caltech dataset, 1123 images with
DeCaf6 features are selected, randomly. In Digit dataset,
1800 images of USPS domain and 2000 images of MNIST
domain with 256 features are selected, randomly. In Pie
dataset, 3332, 1629, 1632, 3329 and 1632 images with 1024
features are selected for Pie1, Pie2, Pie3, Pie4 and Pie5
domains, respectively. In ImageNet and VOC 2007 datasets,
7341 and 3376 images with 4096 DeCaf6 features are sam-
pled, respectively. The optimal parameters for mentioned
datasets are summarized in Table 1. The iteration number,
T, and the used kernel are 10 and RBF (radial basis func-
tions), respectively. The accuracy of classifier is computed
through Eq. (21) where ŷ (x) and y(x) are the predicted and
true labels for target domain, respectively,

Accuracy =
∣∣x : x ∈ Dt

∧
ŷ (x) = y(x)

∣∣
|x : x ∈ Dt | . (21)

5 Experimental results and discussions

In this section, the classification accuracy results on Office-
Caltech-10, Digit, ImageNet-VOC 2007 and Pie datasets are
shown in Tables 2 and 3. We describe our observations and
analyze the parameter sensitivity of JDSC on different types
of datasets in the rest.

5.1 Result evaluation

JDSC outperforms other state-of-the-art domain adaptation
and transfer learning methods (LRSR [20], ARTL [19],
DICD [21], JGSA [4], VDA [22], D-CORAL [23], UTML
[24]) on most of experiments (24 out of 36 tasks). The aver-
age classification accuracy of JDSC on 36 tasks is 86.2%,
and the improvement in average performance is significant
against the best compared method. In the rest, we compare
our proposed method with other methods in detail.

Low-rank and sparse representation (LRSR) is a sub-
space learning method that obtains a common subspace
which represents target domain by sparse and low-rank
minimization problem to reduce the domain shift between
source and target domains. However, LRSR does not address
cross-domain distribution discrepancy completely. While
JDSC is able to adapt domains both geometrically and
statistically, JDSC performs (8.6%), (18.9%), (1.0%) and
(21.2%) better than LRSR in prediction accuracy in Office-
Caltech-10, Digit, ImageNet-VOC 2007 and Pie datasets,
respectively.

Adaptation regularization-based transfer learning (ARTL)
is a transfer learningmethod to learn domain-invariant classi-
fier in original space, whereas JDSC learns adaptive classifier
in a new space with better features, which prevents the
feature distortion in model building. Our results show that
JDSC gets (1.7%), (4.8%), (6.0%) and (12.7%) significant
classification accuracy improvement compared to ARTL
in Office-Caltech-10, Digit, ImageNet-VOC 2007 and Pie
datasets, respectively.

Domain-invariant and class discriminative feature learn-
ing (DICD) creates a common subspace by reducing the
difference in conditional and marginal distributions while
important data properties are preserved. In addition, DICD
reduces the distance of samples from same classes, while
it increases the distance of samples from different classes.
JDSC maximizes target variance to prevent feature distor-
tions. Also, our method preserves source label information
to get discriminative representation. JDSC inOffice-Caltech-
10 datasets obtains (2.5%) improvement and in Digit and Pie
datasets obtains (11.6%) and (10.3%) performance improve-
ment aga inst DICD, respectively.

Joint geometrical and statistical alignment (JGSA) is an
unsupervised domain adaptation framework, which obtains
two subspaces for source and target domains to mitigate
both geometrical and distribution shifts, jointly. However,
JDSC reduces distribution discrepancies across domains by
accounting the different importance of marginal and condi-
tional distributions. Compared to JGSA, the average perfor-
mance improvement of JDSC is (2.4%), (8.8%),(11.8%) and
(6.4%) in Office-Caltech-10, Digit, ImageNet-VOC 2007
and Pie datasets, respectively.

Visual domain adaptation (VDA) is a transfer learn-
ing and domain adaptation approach, which reduces joint
marginal and conditional distribution shifts, iteratively, by
domain-invariant clustering in an embedding representa-
tion to discriminate different classes alongside with domain
transfer. Despite VDA, JDSC preserves manifold consis-
tency and performs dynamic distribution alignment. JDSC
obtains (6%), (14.1%), (9.9%) and (12.4%) improvement
againstVDA in average accuracy inOffice-Caltech-10,Digit,
ImageNet-VOC 2007 and Pie datasets, respectively.
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Table 2 Accuracy (%) of JDSC
against compared methods in
Office-Caltech-10 dataset using
DeCaf6 features

Dataset ARTL LRSR DICD JGSA VDA D-CORAL JDSC

C-A 92.4 91.5 91 91.4 91 92.3 94.1

C-W 87.8 76.6 92.2 86.8 82.7 90.1 88.1

C-D 86.6 87.9 93.6 93.6 86 88.6 94.3

A-C 87.4 85.8 86 84.9 82 83.7 89.1

A-W 88.5 73.6 81.4 81 78 89.8 89.2

A-D 85.4 82.2 83.4 88.5 79.6 90.5 91.1

W-C 88.2 72.8 84 85 80.2 81.5 88.4

W-A 92.3 75.5 89.7 90.7 87.6 91.9 92.6

W-D 100 100 100 100 100 100 100

D-C 87.3 75.2 86.1 86.2 79.5 80.1 88

D-A 92.7 85 92.2 92 89.9 91 94

D-W 100 99.3 99 99.7 99.7 97.3 99.7

Avg. 90.7 83.8 89.9 90 86.4 89.7 92.4

The bold values indicate the best results

Table 3 Accuracy (%) of JDSC
against compared methods in
Digit, ImageNet-VOC 2007 and
Pie datasets

Dataset ARTL LRSR DICD JGSA VDA UTML JDSC

U-M 67.7 54.5 65.2 68.2 63 59.8 76.7

M-U 88.8 73.8 77.8 80.4 75 76.1 89.4

I-V 62.4 67 – 52.3 62 – 68.3

V-I 72.2 77.5 – 70.6 64.7 – 78.3

P1-P2 64.1 65.9 73 74.3 73 80.4 86.4

P1-P3 56.1 64.1 72 74.9 61.6 83.5 81.7

P1-P4 85.4 82 92.2 92.9 90.1 96.6 96.8

P1-P5 51.6 54.9 66.9 61 42.4 66.9 82.4

P2-P1 71.7 45.5 69.9 71.1 72.9 79.4 80.4

P2-P3 64.6 53.5 65.9 73.6 75.6 77.8 81.5

P2-P4 87.9 71.4 85.3 89 83.6 92.6 89.1

P2-P5 55.6 48 48.7 62.3 57.7 67.4 75.3

P3-P1 61.4 52.5 69.4 68.2 58.8 75.9 71.3

P3-P2 68.3 55.6 65.4 80.1 74.7 79.7 80.7

P3-P4 88.2 77.5 83.4 87.5 87.5 93 89.7

P3-P5 61.4 54.1 61.4 67.2 52.6 65 80.9

P4-P1 91.9 81.5 93.1 93.4 92.4 94.4 94.7

P4-P2 92.1 58.4 90 94 92.3 94.5 93.4

P4-P3 87.1 82.2 89 89.6 90.4 93.4 91.2

P4-P5 70.7 72.6 75.6 80.2 70 82.8 86

P5-P1 56.3 52.2 62.9 57.4 49.9 74 64.5

P5-P2 56.4 49.4 57 68.9 62.3 74 77.4

P5-P3 63.6 58.5 65.9 70 61.3 72.7 79.5

P5-P4 80.2 64.3 74.8 84.4 71.2 85.4 84.9

Avg.(Digit) 78.3 64.2 71.5 74.3 69 68 83.1

Avg.(ImVO) 67.3 72.3 – 61.5 63.4 – 73.3

Avg.(Pie) 70.7 62.2 73.1 77 71 81.5 83.4

Avg.(all) 72.1 66.2 72.3 70.9 67.8 74.8 79.9

The bold values indicate the best results

Unsupervised transfer metric learning (UTML) tackles
domain shift problem by minimizing the intraclass and max-

imizing the interclass distribution discrepancies between
source and target domains via maximum mean discrepancy.
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Table 4 Run time (s) of LRSR,
ARTL, JGSA, VDA and JDSC

Task #Sample×#Feature LRSR ARTL JGSA VDA JDSC

C-A 2081 × 4096 203.1 20.1 224.6 35.3 207.2

I-V 10717 × 4096 4345.2 656.7 1364.9 2276.7 2720.9

M-U 3800 × 256 269.9 29.4 17.7 82.9 43.2

Moreover, in UTML, the property of domains is preserved
by maintaining variance of samples. Unlike UTML, which
adapts only conditional distribution, JDSC adapts both
marginal and conditional distributions with different signifi-
cance. JDSChas (15.1%) and (1.9%) improvement compared
to the best baseline method UTML in the classification accu-
racy on Digit and Pie datasets, respectively.

Also, deep learning methods were widely considered in
recent years [25]. JDSC can be compared with deep learn-
ing methods under the following two circumstances: (1) use
of data with pretrained features by deep learning networks
as input data and (2) using deep learning networks instead
of label prediction function in classifier-based step. For this
purpose, we use circumstance 1 to compare JDSC with deep
methods, and the experiment results on Office-Caltech-10
with pretrained DeCaf6 features learned on convolutional
networks are given in Table 2. As can be seen from Table 2,
JDSC outperforms D-CORAL method [23] (which adapts
the second-order subspaces using deep neural networks) and
has 2.7% improvement.

5.2 Time complexity

Table 4 presents the run time of JDSC and other baseline and
state-of-the-art methods on different tasks. By considering
high time complexity of deepmethods for backpropagations,
they are not compared in this challenge. As is clear from
Table 4, JDSC has modest run time (i.e., 207.2 s) in task C-A
compared to the total run time (i.e., 224.6+20.1 = 244.7) of
the two baselinemethods JGSA andARTL. Therefore, JDSC
has an acceptable and comparable time complexity against
other compared methods, due to its performance in classi-
fication accuracy where the test environment is an Intel�

CoreTM i7-8550 CPU with 8 GB memory. Also, the MAT-
LAB is selected as the coding language.

5.3 Parameters impact

We evaluate the parameter sensitivity of JDSC on selected
tasks of four benchmark datasets (i.e., C-A from Office-
Caltech-10 dataset, P1-P2 from Pie dataset, V-I from Image
Net-VOC 2007 dataset and U-M from Digit dataset) to
validate its performance on a wide range of parameter val-
ues. Figure 1 illustrates the relationship between various
parameters and accuracy. Each of γ, λ, μ, β, η, ρ, K and P
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Fig. 1 Parameter evaluation with respect to classification accuracy (%)
for γ, λ, μ, β, η, ρ, K and P parameters on C-A, P1-P2, V-I and U-M
tasks

parameters has been validated on different types of datasets
by fixing other parameters. Figure 1a illustrates γ which is a
trade-off parameter for marginal and conditional distribution
alignments. Also, in Fig. 1b–d, λ , μ and β are the trade-off
parameters to balance the importance of each component in
Eq. (13). In addition, Fig. 1e and 1f show parameter sensi-
tivity of η and ρ parameters in Eq. (20). Figure 1g and 1h
illustrate the impact of K (the dimension of embedded sub-
spaces) and P (the number of neighbors in Laplacian graph)
parameters in prediction accuracy. All γ, λ, μ, β, η, and ρ

parameters are evaluated in range between 0.0 to 1.0. Also,
parameters K and P are evaluated in ranges of [40, 200] and
[2, 14], respectively. As is clear from Fig. 1a–c and 1e–f
the results of Pie and Digit datasets for γ , λ, μ, η and ρ

parameters illustrate stability of accuracy values after sev-
eral iterations. Classification accuracy on C-A, P1-P2 and
V-I tasks for β and K parameters is almost steady, while for
high values of β and K , the classification accuracy on U-M
task is low. Also, for C-A, U-M and V-I tasks, the accuracy
has no obvious change for parameter P, while in P1-P2 task,
the predicted accuracy is sensitive to values of P.
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6 Conclusion

In this paper, we proposed a new transfer learning method
referred as joint distinct subspace learning and unsupervised
transfer classification for visual domain adaptation (JDSC)
to address discrepancy problem between source and target
domains. JDSC finds two coupled projections for source
and target domains, respectively, to minimize the domain
shift, specifically, by accounting the different importance for
marginal and conditional distributions. In addition, JDSC
increases the manifold consistency underlying the marginal
distributions of source and target domains. As a result, the
optimal new representations and classifier are achieved to
adapt domains. We assess the improvement of JDSC in
transferring the knowledge by performing experiments on
standard visual datasets where the results show the promi-
nence of JDSC in comparison with other state-of-the-art
visual domain adaptation methods. JDSC can find its appli-
cations in a wide range of classification problems, e.g., land
cover classification through remote sensing [26] and recog-
nition of anomalies in thermal images [27]. As a future work,
we aim to extend JDSCusing extracted features through deep
neural networks. Also, the proposed method can be applied
to reinforcement learning approaches to improve challenges
in robotics.
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