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Abstract
To improve the decomposition quality, it is very important to describe the local structure of the image in the proposed model.
This fact motivates us to improve theMeyer’s decompositionmodel via coupling oneweightedmatrix with one rotationmatrix
into the total variation norm. In the proposed model, the weighted matrix can be used to enhance the diffusion along with the
tangent direction of the edge and the rotation matrix is used to make the difference operator couple with the coordinate system
of the normal direction and the tangent direction efficiently. With these operations, our proposed model owns the advantage
of the local adaption and also describes the image structure robustly. Since the proposed model has the splitting structure, we
can employ the alternating direction method of multipliers to solve it. Furthermore, the convergence of the numerical method
can be efficiently kept under the framework of this algorithm. Numerical results are presented to show that the proposed
model can decompose better cartoon and texture components than other testing methods.

Keywords Image decomposition · Cartoon and texture · Alternating direction method of multipliers (ADMM) · Adaptive
direction total variation regularization (ADTV) · G-norm

1 Introduction

Image decomposition plays an important role in the field of
the computer vision. Let Ω ⊂ R

2 to be the image domain,
the target of the decomposition is of decomposing the image
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f : Ω → R into two components as the cartoon u and
the texture v, where u is formed by homogeneous regions
with sharp boundaries and v is described to be the noise or
small scale repeated details. Due to the lacking of some prior
information, this problem is known to be an ill-posed prob-
lem. Therefore, some regularization techniques are usually
imposed to minimize the following optimization problem

⎧
⎨

⎩

min
u,v

R(u) + λG(v),

s.t. f = u + v,
(1)

where the data fidelity term G(·) depends on the degraded
model, the regularization term R(·) imposes the sparsity prior
on the filter responses, and λ > 0 is used to tune the contri-
bution between R(·) and G(·).

Model (1) is the classic decomposition model, and the
choices of the terms R(·) and G(·) depend on the assignment
of the image processing. For instance, in the image denoising,
f is the noisy observed version of the true unknown image
u, while v represents the additive noise. Often in this case,
we can choose the total variation R(u) := ∫

Ω
|∇u|dx [1] or

the filtered variation R(u) := ∫

Ω
|HDu|dx [2] as the regu-

larization term and G(v) := 1
2

∫

Ω
|v|2dx as the data fidelity
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term. Here, D and H represent the signal transform (e.g.,
DCT, DHT, DFT) and the discrete-time filter in the transform
domain, respectively. However, it has been pointed out in the
seminal book [3] that the L1-norm or L2-norm does not char-
acterize the oscillatory components. This means that these
components do not have small norms. To the end, Meyer in
[3] proposed to use theG-norm, which is close to the weakly
dual space of the bounded variation space BV(Ω). So the
model based on this normcan describe the oscillatory compo-
nent in the image efficiently. However, due to its nonlinearity
of the corresponding Euler–Lagrange equation, it is very dif-
ficult to get an exact numerical solution directly. Then, many
modified decomposition models were proposed to overcome
this difficulty. For example, Vese and Osher in [4] used a
negative differentiability order W1,p(Ω) 1 ≤ p < ∞ to
approximate the G-norm. Osher et al. in [5] proposed the
BV − H

−1 model, where the H−1-norm owns that its value
is low for any high-frequency patterns and a large part of
the noise. Aujol et al. in [6] made a modification to replace
the G-norm term by one constrained variable. In addition,
some works based on the high-order total variation were also
proposed for the decomposition problem [7–9]. However,
the edges of objects in the resulting structure image decom-
posed by these aforementioned models are often blurred due
to the fact that the model lacks the efficient description for
the direction of the texture in the local region.

In this paper, we propose one novel direction-basedmodel
for better discriminating the cartoon component and tex-
ture component via coupling one weighted matrix with one
rotation matrix into the TV norm. In the proposed model,
the weighted matrix can be used to enhance the diffusion
along with the tangent direction of the edge and the rotation
matrix is used to make the difference operator couple with
the coordinate system efficiently. With these operations, our
proposed model owns the advantage of the local adaption
and also describes the image structure robustly. Since the
proposed model has the splitting structure, we can employ
the alternating direction method of multipliers (ADMM) to
solve it and the convergence can be kept in this algorithmic
framework. Experimental results show that the proposed new
model outperforms the state-of-the-art variational methods
for the decomposition problem.

The remainder of this paper is organized as follows. Sec-
tion 2 recalls some variation-based models related to our
proposed model. Section 3 establishes our proposed model
and also gives the numerical method to solve it. Experi-
mental results and comparisons aiming at demonstrating the
effectiveness of the proposed model are displayed in Sect. 4.
Finally, concluding remarks are generalized in Sect. 5.

2 Related works

For the decomposition problem, many approaches were pro-
posed based on how to model cartoon regions and texture
patterns. Since this paper mainly considers to improve the
variation-based models, we here recall some remarkable
state-of-the-art models in order to establish foundations for
image decomposition methodologies under the framework
of the energy functional.

2.1 TheBVGmodel

Since the space BV(Ω) can describe the piecewise constant
region and also preserves image edge efficiently, many image
decomposition models are proposed based on this space.
However, this space is not suitable for describing the texture
pattern. To this end, Meyer in [3] introduced the weakly dual
form of the space BV(Ω) and then considered the following
decomposition form

⎧
⎨

⎩

min
u,v

J (u) + λ‖v‖G,

s.t. f = u + v,
(2)

where the BV(Ω) is defined the subspace of functions u ∈
L1(Ω) such that the following quantity is finite:

J (u) := sup

{∫

Ω

udivξdx
∣
∣
∣ξ ∈ C1

0

(
Ω,R2

)
, ‖ξ‖L∞ ≤ 1

}

and the G-norm is defined by

‖v‖G = inf
g

{∥
∥
∥
∥

√

g21 + g22

∥
∥
∥
∥
L∞

∣
∣
∣g

:= (g1, g2) ∈ L∞(Ω) × L∞(Ω)
}

for v = ∂1g1 + ∂2g2 = div(g) and ∂1 and ∂2 represent
the subderivatives of g1 and g2, respectively. In theory, this
model can extract oscillatory components from the observa-
tion. However, it cannot be directly solved in practice due
to the nonlinearity of the G-norm. So some significant ideas
were involved by using a duality argument [10] or the primal–
dual scheme [11] to solve it.

2.2 TheBVH−1 model

For theBVGmodel, due to the impossibility of expressing its
associated Euler–Lagrange equation, there exists a practical
difficulty in numerical computation of getting the minimizer.
One of the first attempts to overcome this difficulty has been
made by Osher et al in [5], where they considered to approxi-
mate theG-norm by its simplified version (called theBVH−1

model)
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⎧
⎨

⎩

min
u,v

J (u) + λ‖v‖2
H−1(Ω)

s.t. f = u + v.
(3)

Here, the function space H−1(Ω) is dual form of the space
H

1
0(Ω) and ‖v‖2

H−1(Ω)
:= ∫

Ω
|∇(Δ−1)v|2dx. In general,

H
−1-norm owns that its value is low for any high-frequency

patterns and a large part of the noise. In order to preserve
the edges and contours of the image efficiently, Tang et al. in
[12] extended model (3) to the nonconvex form by using the
L p-quasinorm (0 < p < 1) to replace the L1-norm for the
BV-semi-norm.

2.3 TheBV-Gabor model

Though the BVH
−1 model is efficient to decompose the

texture part and the cartoon part, it is not suitable for
intermediate-frequency texture images decomposition.
Accordingly,Aujol et al. in [13] introduce a convolutionoper-
ator K and its inverse K−1. In the proposed scheme, K only
penalizes frequencies that are not considered to be part of
the texture component, so they were converted to K

−1. The
motivation is based on the fact that K−1 can describe the
frequencies included in the texture part. Above content can
be implemented based on the Gabor functions. Specially, the
BV-Gabor (BVGA) model can be written as

min
u

J (u) + λ

2
‖√K( f − u)‖2L2 . (4)

The BVGA model is an appropriate approach to estimating
the direction or frequency of a given texture image. Recently,
Liu in [7] extended to replace the BV-norm by the total gen-
eralized variation (TGV) in model (4) for the decomposition
problem.

2.4 TheEHBVmodel

As we known, the BV-based models can lead to the staircase
effect in the structure image [14]. An effective approach is
to use the high-order bounded variation (HBV) to replace the
BV-norm in the proposed model. However, the HBV-based
models can blur object edges. Based on above facts, Duan
et al. in [15] considered to couple the HBV with the edge
detection function ξ(·) in order to preserve objects edge.
Specifically, they proposed the following edge-weighted
high-order bounded variation model (EHBV) as

min
u,g

1

2
‖ f − u − div(g)‖2L2 + α

∫

Ω

ξ(|∇ f |)
∣
∣
∣∇2u

∣
∣
∣ dx

+ β

∫

Ω

√

g21 + g22dx,

where
∣
∣∇2u

∣
∣ =

√
u2xx + u2xy + u2yx + u2yy , α controls the

smoothness of the structure image u,β determines howmany

oscillations need to be kept in the texture component div(g),
and g = (g1, g2) ∈ L∞(Ω,R2). The advantage of this
model is that the computation efficiency has been dramat-
ically improved and it also can preserve object edges due to
the edge diffusivity function.

3 Adaptive direction BV−G (ADBVG )
decompositionmodel

Recently, many models by using the direction information
were to overcome some drawbacks of the image restoration
problem [16–19]. In fact, for the image decomposition, we
also need the direction information to describe the texture
parts. However, the aforementioned models in Sect. 2 based
on the gradient information cannot describe these structures
efficiently. In particular, for the numerical implementations,
i.e., in the discrete space, the gradient operator only uses
the horizontal or perpendicular direction. As a comparison,
in the continuous space, the gradient operator depends on
the directional derivative and then can point to the different
direction. In order to offset these gaps between the discrete
form and the continuous form, we need to add some direction
information in the proposed model. To this end, we propose
the decomposition model as follows:

⎧
⎨

⎩

min
u,v

∫

Ω

|Γ βW−φ( f )∇u|dx + λ

2
‖ f − u − v‖2L2 ,

s.t. ‖v‖G ≤ μ,

(5)

where φ( f ) denotes that the angle φ depends on the original
image f , and the rotation operator and the weighted operator
are defined by

W−φ( f ) =
[

cosφ( f ) sin φ( f )
− sin φ( f ) cosφ( f )

]

and Γ β =
[

β 0
0 1

]

(6)

for the weighted parameter β > 1. In practice, model (5)
is difficult to be implemented due to the nature of the G-
norm. To this end, we employ the scheme used in [6,20] to
transform the G-norm to its dual form. We recall that the
Legendre–Fenchel transform of the convex function F [21]
is given by

F∗(v) = sup
u

{〈u, v〉 − F(u)}.

Here, 〈·, ·〉 denotes the inner product in the space L2(Ω). Set
J (u) := F(u), as did in [6,20], we can get

J ∗
(

v

μ

)

= χGμ(Ω) =
{
0 if v ∈ Gμ(Ω),

∞ otherwise,
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where

Gμ(Ω) := {v ∈ G(Ω) such that ‖v‖G ≤ μ} .

With the help of above facts, we rewrite problem (5) into the
following equivalent form

min
u,v

∫

Ω

|Γ βW−φ( f )∇u|dx + λ

2
‖ f − u − v‖2L2 + J ∗

(
v

μ

)

.

(7)

3.1 Numerical method

Here, we mainly consider the discrete case. The image is a
two-dimensional vector of size M × N . We denote by X the
Euclidean space R

M×N and Y = X × X. To the gradient
operator ∇u for u ∈ X and the divergence operator div̂g
for ĝ ∈ Y, we use the same notations as did in [22,23]. In
addition, we denote the responding norms as

‖u‖2 :=
√
√
√
√

M∑

i=1

N∑

j=1

u2i, j and ‖̂g‖2,1 =
M∑

i=1

N∑

j=1

√
√
√
√

2∑

s=1

ĝ2i, j,s .

Now we need to write problem (7) into the discrete form

min
u,v

∥
∥Γ βW−φ( f )∇u

∥
∥
2,1 + λ

2
‖ f − u − v‖22 + J ∗

(
v

μ

)

︸ ︷︷ ︸
:=F(u,v)

.

(8)

It is obvious that problem (8) is the multi-variational opti-
mization problem, sowe use the alternating directionmethod
tominimize itwith respect tou andv in an alternating fashion.
Tobe specific, given some initial guessu0 andv0, the simplest
ADM solves the following two subproblems sequentially in
each iteration:

⎧
⎨

⎩

un+1 = argminu F
(
u, vn

)
, (9)

vn+1 = argminv F
(
un+1, v

)
. (10)

3.1.1 Solving subproblem (9)

To minimize subproblem (9), one could directly solve its
Euler–Lagrange equation. However, it is often controlled by
the Courant–Friedrichs–Lewy (CFL) condition [24]. Based
on the numerical optimization method, many works focused
on the operator splitting method such as the primal–dual
method [25], the dual-based method [26–28], the Douglas–
Rachford method [29], and the alternating direction method
of multipliers [30,31]. Here, we mainly use the ADMM to

solve subproblem (9). TheADMMwasoriginally introduced
in early 1970s [32,33] and has been studied extensively in the
field of machine learning, computer vision, image and sig-
nal processing, and networking. The basic motivation of the
ADMM is to first split the original nonsmooth minimization
problem into several subproblems via introducing some aux-
iliary variables, and then solve each subproblem separately
by employing some efficient numerical methods.

In order to use theADMMto solve problem (9),we need to
first transform it into an equivalent constrained optimization
problem

⎧
⎪⎪⎨

⎪⎪⎩

min
q,p,u

λ

2
‖ f − u − vn‖22 + ‖q‖2,1

s.t. q := (q1, q2)T = Γ βW−φ( f )p

p := (p1, p2)T = ∇u

(11)

to decouple three linear operators Γβ , W−φ( f ) and ∇ away
from the ‖ · ‖2,1 norm. Based on the augmented Lagrangian
function,we then consider to solve the following saddle-point
problem

min
q,p,u

max
α,η

Lvn (q,p, u,α, η) = λ

2

∥
∥ f − u − vn

∥
∥2
2

+ ‖q‖2,1 + 〈α,p − ∇u〉 + γ1

2
‖p − ∇u‖22

+ 〈
η,q − Γ βW−φ( f )p

〉 + γ2

2

∥
∥q − Γ βW−φ( f )p

∥
∥2
2 ,

(12)

where γ1 and γ2 are the penalty parameters and α :=
(α1, α2)

T and η := (η1, η2)
T are the Lagrange multipliers.

Problem (12) includes five variables, so we need to solve one
of the variables and simultaneously fix the others under the
framework of the ADMM as shown in Algorithm 1.

Algorithm 1: ADMM to solve problem (11).

1. Input: original values of p0,α0 and η0;
2. Iterate (13)–(17) by⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk+1 := argmin
q

Lvn

(
q,pk, uk,αk, ηk

)
(13)

pk+1 := argmin
p

Lvn

(
qk+1,p, uk,αk, ηk

)
(14)

uk+1 := argmin
u

Lvn

(
qk+1,pk+1, u,αk, ηk

)
(15)

αk+1 = αk + γ1

(
pk+1 − ∇uk+1

)
(16)

ηk+1 = ηk + γ2

(
qk+1 − Γ βW−φ( f )pk+1

)
(17)

until stopping criterion is met.
3. Output: u := uk+1 as the cartoon image.

In the following, we consider to solve subproblems (13)–
(17).

123



Signal, Image and Video Processing (2021) 15:155–163 159

(1). Subproblem q (13). This subproblem can be rewritten
as

qk+1 = argminq ‖q‖2,1 + γ2

2

∥
∥
∥q − hk

∥
∥
∥
2

2
,

where hk :=
(
Γ βW−φ( f )pk − ηk

γ2

)
. It is the classic

�1 − �2 problem, so we can use the soft-thresholding
operator to obtain closed-form solution as

qk+1 = max

{

0,
∥
∥
∥hk

∥
∥
∥
2,1

− 1

γ2

}
hk

∥
∥hk

∥
∥
2,1

.

(2). Subproblem p (14). It is a smooth and convex opti-
mization problem, so its optimization condition can be
written by

(γ1I + γ2Wφ( f )Γ βΓ βW−φ( f ))pk+1 = bk,

where I denotes a unit operator and

bk =
(
γ1∇uk + Wφ( f )Γβηk + γ2Wφ( f )Γβqk+1 − αk

)
.

With the simple computation, above linear equation
system can be rearranged as

{
a11 p

k+1
1 + a12 p

k+1
2 = bk1,

a21 p
k+1
1 + a22 p

k+1
2 = bk2,

(18)

where

a11 :=γ1 + γ2(β
2 cos2 φ( f ) + sin2 φ( f )),

a12 =a12 := γ2(β
2 − 1) sin φ( f ) cosφ( f ),

a22 :=γ1 + γ2(β
2 sin2 φ( f ) + cos2 φ( f )),

bk1 :=ηk1β cosφ( f ) − ηk2 sin φ( f ) − αk
1 + γ1∇xu

k

+ γ2

(
qk+1
1 β cosφ( f ) − qk+1

2 sin φ( f )
)

,

bk2 :=ηk1β sin φ( f ) + ηk2 cosφ( f ) − αk
2 + γ1∇yu

k

+ γ2

(
qk+1
1 β sin φ( f ) + qk+1

2 cosφ( f )
)

.

Since the coefficient matrix of equations (18) is non-
singular, that is to say

det(γ1I + γ2Wφ( f )Γ βΓ βW−φ( f )) 
= 0,

the solution pk+1 =
(
pk+1
1 , pk+1

2

)T
can be obtained

by using the Cramer’s rule as

⎧
⎨

⎩

pk+1
1 = bk1a22−bk2a12

a11a22−a12a21
,

pk+1
2 = bk2a11−bk1a21

a11a22−a12a21
.

(19)

(3). Subproblem u (15). Its minimizer is also determined
by the corresponding Euler–Lagrange equation as fol-
lows:

(λI − γ1�)uk+1 = λ
(
f − vn

) − divαk − γ1divpk+1,

which is a linear elliptic equation with constant coef-
ficients. With the assumption of the periodic boundary
condition, we can use the fast Fourier transform (FFT)
and its inverse transform to solve it via the following
scheme

uk+1 = F−1

(
F (

λ ( f − vn) − divαk − γ1divvk+1
)

F(λI − γ1�)

)

.

3.2 Solve the subproblem v in problem (10)

In order to solve problem (10), we use the same idea as did
in [34], where the authors noticed that the solution can be
obtained based on its dual argument. To this end, using the
generalized Fermat rule, we can get

0 ∈ ∂F
(
un+1, v

)
, (20)

where ∂(·) denotes the Frechet differentiable. By using the
dual theory [21]

g(x) ∈ ∂h∗(x) ⇔ h(x) ∈ ∂g(x).

and setting

w = λ
(
f − un+1 − v

)
,

then solving problem (20) is equivalent to solve

0 ∈ div

( ∇w

‖∇w‖2,1
)

− λ
(
f − un+1

) − w

λμ
,

which is the Euler–Lagrangian equation of the optimization
problem

min
w

‖∇w‖2,1 + 1

2λμ

∥
∥
∥λ f − λun+1 − w

∥
∥
∥
2

2
. (21)

It is obvious that problem (21) is convex, nonsmooth and
separable, so we can use the operator splitting scheme to
transform it as the constrain optimization problem

⎧
⎨

⎩

min
y,w

1

2λμ

∥
∥
∥λ f − λun+1 − w

∥
∥
∥
2

2
+ ‖y‖2,1 ,

s.t. y := (y1, y2)T = ∇w.
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Furthermore, we obtain its corresponding saddle-point prob-
lem

min
y,w

max
θ

Lun+1(y, w, θ , u) = 1

2λμ

∥
∥
∥λ f − λun+1 − w

∥
∥
∥
2

2

+ ‖y‖2,1 + 〈θ , y − ∇w〉 + γ3

2
‖y − ∇w‖22. (22)

Then, similar to solve problem (9), we also use the ADMM
to solve problem (22) as the following algorithm.

Algorithm 2: ADMM to solve problem (10).

1. Input: original values of y0, θ0, λ and uk+1;
2. Iterate below until stopping criterion is met

(

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk+1 := max

{

0,

∥
∥
∥
∥∇wt+1 − θ t

γ3

∥
∥
∥
∥
2,1

− 1

γ3

} ∇wt+1 − θ t

γ3∥
∥
∥∇wt+1 − θ t

γ3

∥
∥
∥
2,1

,

wt+1 = F−1

⎛

⎝
F

(
1
μ
( f − un+1) − divθ t − γ3divyt+1

)

F( 1
λμ

I − γ3�)

⎞

⎠ ,

θ t+1 = θ t + γ3

(
yt+1 − ∇wt+1

)
,

vt+1 = f − un+1 − wt+1

λ
;

3. Output: v := vk+1 as the texture image.

4 Numerical experiments

To illustrate the validity of our proposed model compared
with othermentionedmodels as discussed in Sect. 2, this sec-
tion presents a series of numerical comparisons to decompose
the cartoon parts and texture parts from an image. However,
for the image decomposition problem, we do not know the
cartoon part u and texture part v, so how to describe the
decomposition quality is very important. One of the efficient
tools is to use the correlation to quantify it. This scheme was
used in [13], where the authors assumed that the cartoon part
and the texture part in an image are not correlated. Specially,
they defined the correlation as

Corr(u, v) := cov(u, v)√
var(u)var(v)

,

where var(·) and cov(·, ·) refer to the sample variance and
the covariance of the given image respectively. Obviously,
the small value of the Corr implies a better decomposition.
Therefore, we use the Corr as the judgment standard for the
decomposition result.

In model (5) or its equivalent form (8), the decomposition
ability depends on how to choose the rotation angle φ( f ).
Since the orientation field estimation (OFE) used in the fin-
gerprint recognition [35,36] can describe the direction of the

texture efficiently, we here employ it to estimate the angle
φ( f ) in our numerical implementations. Specially, we first
get one coarse orientation field by

o( f ) = 1

2
tan−1

⎛

⎝

∑
W 2∇x f · ∇y f

∑
W

(
(∇x f )2 − (∇y f

)2
)

⎞

⎠ + π

2
,

where W is a neighborhood window at the pixel point (i, j)
for i = 1, · · · M and j = 1, · · · N 2. Then, we use the Gaus-
sian smoothing functionGσ ( f ) to smootho( f )via following
scheme

φ( f ) = 1

2
tan−1

{
Gσ ( f ) ∗ sin(2 · o( f ))
Gσ ( f ) ∗ cos(2 · o( f ))

}

in order to weak the effect of the oscillation information in
the texture part.

Besides the rotation angle φ( f ), we also need to consider
to how to choose the parameters λ andμ in model (5), where
they control the decomposition efficacy. Using the large val-
ues of λ and μ will lead to remain more texture structures in
the part of the cartoon, whereas the small values of them will
make the part of the cartoon lost more structure. Therefore,
these parameters need to be chosen cautiously for the given
testing images. Here, we first fix the value of the parameter
μ and then tune the parameter λ by the trials and the errors.
Specifically, we set the original value of λ into a bigger range
as [a, b] and then find a suitable subset as [a1, b1] ⊂ [a, b]
by the bisection method. In the next, we find a more suit-
able parameter in [ai , bi ]. When the criteria values of the
Corr and the structural similarity index (SSIM) are appro-
priate for composographs or the value of Corr is suitable
for real images, we set this parameter as the chosen value
of the parameter λ. In addition, we also notice that setting
β ∈ [1.2, 3] can give a suitable decomposition result for the
weighted matrix Γβ . All experiments are performed using
MATLAB(R2017a) on a windows(10)(64bit) desktop com-
puter with an Intel core i7 2.40 GHz processor and 8.0GB of
RAM.

4.1 Composographs

This section mainly considers to decompose two composo-
graphs as shown in Fig. 1, which are coupled together by the
cartoon image u and the texture image v. Since the original
images u and v are known, we can use the SSIM (structural
similarity index) to quantify the efficiency of the decompo-
sition besides the Corr. From Table 1, it is easy to observe
that our proposed method performs the best in terms of both

2 Here we set the W with the size 16 × 16. tan−1 is the arctangent
function with output range of (− π

2 , π
2 )
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Fig. 1 a, b Cartoon image. c Texture image. d, e Composed image

Table 1 Corr(u, v) and SSIM based on different models

Image Decomposition results of Fig. 1d

Model BVH
−1

BVGA EHBV BVG ADBVG

SSIM 0.7640 0.7510 0.8055 0.8742 0.9159

Corr 0.0644 0.0811 0.0284 0.0615 0.0279

Images Decomposition results of Fig. 1e
Model BVH

−1
BVGA EHBV BVG ADBVG

SSIM 0.8924 0.9324 0.9441 0.9306 0.9521

Corr 0.0726 0.0713 0.0251 0.0364 0.0217

Best results are highlighted in bold font

Fig. 2 Decomposition results by different models. Regulariza-
tion parameters used in the models: [λ

BVH
−1 , λBVGA, λEHBV,

λBVG, (λADBVG, μ)] := [0.92,0.37,0.023,620,(400,0.2)]

the SSIM and the Corr. In order to a better understand our
proposed model, we show the decomposition results by dif-
ferent methods in Figs. 2 and 3. From Fig. 2, we can observe
that there involves less cartoon information of our proposed
model and the EHBV model than other models in the tex-
ture image. However, in the closeness of the cartoon part,
our proposed model can preserve the edge more robust than
other models, which can be observed from Figs. 2 and 3. In
order to better describe these facts, we choose a part of the
cartoon parts and then zoom them as shown in the left bottom
of each image in Fig. 3. The ability to maintain image edges
of our proposed can be obviously observed from the zoomed
image. In addition, these facts can be also observed from the
colorbars of the error images between the cartoon part in the
original image and the cartoon part generated by the decom-
positionmodel, where the error image based on our proposed
model is more dark than other models in Fig. 3. It actually
implies that using our proposed model includes less details
than other models in the cartoon components. In summary,
both the visual inspection and quantitative evaluation have
demonstrated the effectiveness of our proposed model.

Fig. 3 Decomposition results by different models. The first row
is the cartoon component. The second row is the visual compar-
ison of the colorbar to the difference between the original car-
toon component and the corresponding cartoon component of the
decomposition results. Regularization parameters used in the models:
[1.1,0.31,0.093,520,(360,0.26)]

Fig. 4 Original images with the different size. From left to right: a
Barbara (512×512), bDollar (512×512), c circuit board (256×256),
d band (256 × 256), e thighbone (256 × 256)

Table 2 Corr(u, v) based on the different model

Images BVH
−1

BVGA EHBV BVG ADBVG

Barbara 0.0106 0.1181 0.0060 0.0169 0.0037

Dollar 0.0154 0.2083 0.0371 0.0630 0.0115

Board 0.0145 0.2246 0.0475 0.0650 0.0036

Band 0.0289 0.2194 0.0095 0.0459 0.0016

Thighbone 0.0202 0.0892 0.0045 0.0176 0.0027

Best results are highlighted in bold font

4.2 Real images

To more carefully compare our method with other meth-
ods, we consider to decompose five natural images and a
CT image as shown in Fig. 4. In these images, (a)–(c) as
the benchmark image are often used in the decomposition
problem. Since the SSIM are not computable due to the
unavailability of ground truths, we compare the results by
the Corr as shown in Table 2. It is obvious that our model
outperforms other models according to the Corr for all of the
testing images. For the comparisons from the vision in Figs.
5, 6, and 7, we can see that our method is good at preserving
the contour edges in cartoon component while rejecting them
in the texture component. In order to compare these facts in
detail, we also present the zoomed versions of the cartoon
part and the texture part as shown in the bottom of Figs. 5,
6, and 7. It is easy to observe that the outputting of our pro-
posed model tends to better separate them, with the sharp
edges in the cartoon part and the clean texture information
in the cartoon part.

123



162 Signal, Image and Video Processing (2021) 15:155–163

Fig. 5 Decomposition results by different models. The bottom is the
zoomed part of the cartoon and the texture. a, a1 BVH

−1 , b, b1
BVGA , c, c1 EHBV , d, d1 BVG , e, e1 ADBVG. Regularization
parameters used in the models: [2,0.37,0.133,520,(440, 0.260)](left);
[0.9,0.4,0.123, 100,(160,0.2)] (right)

Fig. 6 Decomposition results by different models. The bottom is the
zoomed part of the cartoon and the texture. a, a1 BVH−1 , b, b1 BVGA

, c, c1 EHBV , d, d1 BVG , e, e1 ADBVG. Regularization parame-
ters used in the models: [0.5,0.3,0.023,90,(100,0.4)](left); [1.3,0.5,0.2,
150,(160,0.5)] (right)

Fig. 7 Decomposition results by different models. The bottom is the
zoomed part of the cartoon and the texture. a, a1 BVH−1 , b, b1 BVGA

, c, c1 EHBV , d, d1 BVG , e, e1 ADBVG. The bottom is the zoomed
part of the cartoon and the texture. Regularization parameters used in
the models: [3.2,0.24,0.3,100,(80,0.5)]

5 Conclusions

This paper proposed a new image decomposition model via
combining the rotation matrix and the weighted matrix into
the T V norm. In the proposed model, the weighted matrix
can be used to enhance the diffusion along with the tan-
gent direction of the edge and the rotation matrix is used
to make the difference operator couple with the coordinate
system of the normal direction and the tangent direction effi-
ciently. With these operations, our proposed model owns the
advantage of the local adaption and also describes the image
structure robustly. Since the proposedmodel has the splitting
structure, we can employ the alternating direction method of
multipliers (ADMM) to solve it. Then, the convergence of

the numerical method can be efficiently kept. Experimental
results reported the effectiveness of our proposed model.
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