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Abstract
The development of digital image processing techniques requires reliable image quality assessment (IQA) methods. Since
images acquired by a camera often contain various distortions and their non-distorted versions are not available, a no-reference
IQA (NR-IQA) technique should be used.Many popularmethods are developed to assess artificially distorted images, available
in benchmark databases. In this paper, a new large benchmark database, containing naturally distorted images captured with
a digital camera, is introduced along with a new NR-IQA metric. The method uses a wide spectrum of local and global
image features and their statistics to address a diversity of distortions. Among 80 employed features, 56 are introduced to the
IQA for the first time, while the remaining statistics are used to further improve the quality prediction performance of the
method. The obtained perceptual feature vector is used to provide a quality model with support vector regression technique.
The experimental comparison of the method with the state-of-the-art IQA measures on the database reveals its superiority in
terms of correlation with human scores.

Keywords Image quality assessment · No reference · Image quality database · Support vector regression · Quality-aware
features · Image statistics

1 Introduction

The recent growth of digital image processing techniques
results in the need for the development of automatic image
quality assessment (IQA) methods, aiming to replace tests
with human subjects [3]. Since image processing often alters
the visual content, IQAmethods often support parameter tun-
ing and comparison of various techniques designed for image
restoration, enhancement, acquisition, storage, or transmis-
sion. Depending on the availability of a distortion-free refer-
ence image, IQAmetrics are divided into no-reference (NR),
full reference (FR), and reduced reference (RR) techniques
[3]. Full reference metrics are commonly used. However,
they can be employed in cases in which a reference image
is available, reducing their applicability. Reduced reference
methods, in turn, use some properties of a reference image.
In practice, the NR techniques are desired, despite their chal-
lenging development.
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In order to predict the objective quality of an image,
NR-IQA methods often mimic properties of the human
visual system (HVS) or use features sensitive to image
distortions. Here, to model natural scene statistics (NSS),
different domains are taken into account, e.g., spatial [14],
DCT [21], or wavelet [15]. Also, perceptual features are
identified [9,16,27,31] or multiple cues are found [28,30].
Another direction is to find interesting parts of an image for
a description [1,16] or to describe its all pixels [7,8]. Such
approaches require bridging the image features with the per-
ceptual quality. Hence, the support vector regression (SVR)
[14–16,21,31] or neural networks [10] are often used for this
purpose. A different approach can be found in techniques
that are based on deep learning, in which feature extrac-
tion and learning steps are fused. Since they require large
databases for training or suffer from an architecture devoted
to image recognition tasks, in these methods, image patches
[2,6], objective scores of FR-IQAmethods [6,12], fine-tuning
[29], or handcrafted features [12] are typically employed.

Most of the IQA measures are designed to evaluate artifi-
cially distorted images, present in popular benchmarks. Such
a benchmark contains images distorted by several distor-
tion types with different severity of degradation. Since an
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image in those databases is contaminated by only one dis-
tortion type [20,25], there are also databases with multiply
contaminated images [23], but natural distortions are still sel-
dom addressed [4]. Therefore, in this paper, a novel database
with real distortions is introduced. Since the state-of-the-art
IQA methods may exhibit inferior performance on images
with multiple and authentic distortions, it is important to
introduce new methods for the quality prediction of such
images. Therefore, in this paper, along with the database, a
newNR-IQAmethod is proposed. In themethod,many novel
quality-aware features that deliver a global and local descrip-
tion of an image are introduced. Furthermore, to improve the
quality prediction, some of well established in IQA litera-
ture quality indicators and their modifications are employed.
Local features detect and describe interesting regions of an
image from the HVS point of view, while global features are
sensitive to overall noise or image degradation. Finally, the
SVR is used to map the obtained feature vector to subjective
scores and provide a quality model used to obtain objective
scores for assessed images. The contributions of this work
can be summarized as follows:

1. Anovel IQAdatabasewith authentically distorted images
and subjective scores is introduced.

2. A set of novel quality-aware features is proposed.
3. Modifications of popular features to better address natu-

ral distortions are considered.
4. A novel NR-IQA method that incorporates a reasonably

small number of features and provides superior image
quality prediction performance in comparison with the
state-of-the-art methods is developed and described.

5. Experiments regarding the comparative evaluation of the
method with related techniques on the new database are
conducted and reported.

The rest of this paper is arranged as follows: In Sect. 2, a
novel IQA database is introduced and compared with widely
recognized benchmarks. Then, in Sect. 3, the proposed NR
technique is described. In Sect. 4, a comparative evaluation of
the technique with the state-of-the-art NR-IQA measures is
presented. Section 5 concludes the paper and indicates future
directions.

2 New database with authentically distorted
images

In practice, most digital images captured by a mobile cam-
era contain multiple distortions of various types. To reliably
assess them, IQA measures should be developed taking into
account their characteristics or be trained on images cap-
tured in similar conditions. The scarcity of such databases
in the literature resulted in only one measure devoted to

such images, published together with a benchmark [4]. It
is worth noticing that the most databases in this field cover
many distortion types or their mixture obtained by artifi-
cial contamination of reference images [19,23]. For pictures
captured by a camera, reference images are not available,
hence the inability of using best performing FR-IQA tech-
niques. In this paper, a new relatively large authentically
distorted database of images assessed by human subjects
is introduced. The database is created using images avail-
able in the Beautiful Rzeszow (BR) dataset, which contains
3000 images of 50 tourist attractions in Rzeszow, Poland
[18]. Since the BR dataset is designed for image recognition
problems, each attraction is associated with one good quality
image serving as its base representation and 60 photographs
captured at a different time of a day (day and night) and
seasons (Spring, Autumn, and Winter). For this work, 1500
images were selected and assessed by human subjects using
a paired comparison (PC) or pair-wise sorting methodology
[19]. In the subjective test according to the methodology,
three images are displayed, and then, an observer selects a
better image between two distorted ones, considering the
third (base) image. Consequently, the observers were not
assigning scores, but a better, worse, and equal image in the
pair obtained 1, 0, and 0.5 points, respectively. Finally, the
points for images were averaged, considering the number of
comparisons in which an image took part, and used to obtain
the MOS. As reported by authors of TID2008 and TID2013
[19], the used methodology is easier to be applied in tests
and more convenient for observers. In tests, each image was
evaluated 2–13 times by 22 participants, while a participant
assessed 100 randomly selected pairs of images. One full
test lasted less than 15 min, which gives around 9 seconds
per image pair. All tests were in line with the VQEG recom-
mendations [24].

The comparison of the introduced database with other
benchmarks is shown in Table 1, while best- and low-quality
images are shown in Fig. 1. Among compared databases,
CID2013 and LIVE In theWild [4] databases contain authen-
tic distortions. However, the human scores in the second
dataset come from crowdsourcing, making it less reliable
due to an uncontrolled manner of data collection. The main
differences between the existing databases and the proposed
BR database are: (i) large number of authentically distorted
images, (ii) subjective scores obtained in a laboratory setting,
and (iii) availability of imageswhichwere used as supporting
information on observed objects for human observers. The
base images could be helpful for the development of future
FR-IQA measures which, similarly to human observers,
would not compare pixels between images to indicate the
objective quality but take into account a relationship between
image content (i.e., an object and background) and its quality.
Nowadays, there exist full reference methods which assess
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Fig. 1 Exemplary images of the same object (a, b, c) and their magni-
fications to highlight differences in quality (d, e, f)

images, disregarding rotation or scale differences between a
reference and its distorted equivalent [11].

3 Proposed NR approach

In the literature, for the IQA of artificially distorted images,
a variety of approaches have been used [3]. However, as
reported by Ghadiyaram and Bovik [4], to reliably assess
images captured in real conditions, a set of diverse features
is required. Hence, in the measure devoted to the evalua-
tion of such images, FRIQUEE, a bag of various features in
several color spaces are employed [4]. In FRIQUEE, after
transformation of an image into RGB, LMS, and CIE LAB
color spaces, a set of feature maps is obtained by applying
diverse operations, among which steerable pyramid decom-
position (applied from legacyNR-IQAmethodC-DIIVINE),
the difference of Gaussians, or the Laplacian decomposition
is used [4]. Then, statistics or perceptual models are created
using specified color channels or filtered images.

In the method introduced in this paper, a set of novel fea-
tures that describe an image taking into local and global
characteristics is proposed. It is assumed that to address
various natural distortions diverse quality-aware features
would be more suitable than homogeneous quality indi-
cators employed by methods designed for the IQA of
images with controlled distortion levels. The new method,
namelyQUality Evaluator of Authentically Distorted Images
(QUEADI), uses novel 56 features, including sharpness,
brightness, image invariants and moments, or statistics of
FREAK descriptors. Also, the feature vector of QUEADI
contains statistics of SURF features [16], a small set of
well-established quality indicators that are often used in
the literature, and statistics of proposed modifications of
SURF features. The usage of 24 popular features or statis-
tics is justified by the need for the development of the best
possible image quality model, additionally improving the

IQA performance of QUEADI. It is worth noticing that the
method without these features outperforms the state-of-the-
art NR techniques (Sect. 4). As local features calculated
for descriptors of interesting, from the HVS point of view,
image regions, as well as some new perceptual statistics
can successfully model distortions, they should be con-
sidered. Also, their usage can be motivated by the local
presence of distortions in real images, contrary to artificially
distorted images in which distortions are often uniformly
distributed. The QUEADI calculates the following statistics
for an image, filtered image, or (SURF/FREAK) descrip-
tors: skewness, kurtosis, entropy, histogram variance, sample
mean, and standard deviation. The skewness s(v) is cal-
culated as s(v) = (v − v̄)3/sd(v)3, where v̄ denotes the
sample mean (m(v) = v̄) and sd the standard devia-

tion. Here, sd(v) =
√

((v − v̄)2). The v denotes processed
image or descriptors. The kurtosis, in turn, is obtained
as k(v) = (v − v̄)4/sd(v)4 − 3. The entropy e(v) =
−∑

i pi (v) log2 pi (v), where pi is the histogram counts
for v. The histogram variance is defined as hvar(v) =∑

v((h(v) − h̄)2, where h(v) denotes the histogram of v

normalized to unit sum [10]. The following moments for an
image are considered: 0thmoment and eight centralmoments
((0, 2), (0, 3), (1, 1), (2, 1), (1, 2), (2, 0), (2, 1), (3, 0)),
while ten moment invariants are determined using relation-
ships between individual moments. Furthermore, the ratio
between bright and dark pixels, sharpness, or mean and
median of kurtosis are used. In QUEADI, also popular per-
ceptual features are incorporated to provide a performance
gain of the obtained quality model. Therefore, features such
as a variance of Asymmetric Generalized Gaussian Distri-
bution (AGGD) [14], the histogram variance of gradient
magnitude (GM) and relative gradient magnitude (RM) [10],
independency distribution of LOGconditioned on image gra-
dient [27], statistics of an image or an image filtered with
Prewitt operators, and their 64-dimensional SURF descrip-
tors obtained for local features detected using the determinant
of the Hessian [16]. These features are extended by using
other color spaces than proposed by their authors or intro-
ducing completely new features. For example, QUEADI
employs the 128-dimensional version of the SURF or statis-
tics of the binary descriptor (FREAK) on keypoints detected
by the FAST technique [17]. The calculation of statistics of
feature vectors obtained with the second descriptor together
with other introduced features, such as moments and invari-
ants of an image, can be considered as novel contributions
of this work. The features used by QUEADI to produce the
quality model are summarized in Table 2.

The obtained 80-dimensional feature vector is further
reduced to the length of 13 using the principal component
analysis technique (PCA) since some information can be
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Fig. 2 Exemplary images and their corresponding MOS: a 1.0, b
0.7500, c 0.6667, d 0.4167, e 0.1667, f 0.0

redundant. Interestingly, it is significantly shorter than the
vector extracted by FRIQUEE (828 values).

The introduced NR-IQA technique is based on a set of
perceptual features whose usability for the assessment of
authentically distorted images may require investigation.
Therefore, several features and their values for images that
were differently assessed by human subjects are shown in
Figs. 2 and 3. Here, the severity of distortions, expressed
by the values of subjective scores, is reflected by the visi-
ble difference between values of the presented features (Fig.
3). As shown in Fig. 4, SVR maps the feature vector into
mean subjective scores and produces a quality model used
for the prediction. Here, the SVR technique with the radial
basis function (RBF) is employed using the popular LIBSVM
library.

To show that all used features are important, a result of
an experiment in which a given feature is removed from the
feature vector is also presented. In the experiment, a typical
protocol for the evaluation of NR-IQAmeasures is employed
in which the database is randomly divided 100 times into the
learning and training subsets (split 80/20%) and the median
of the Spearman Rank Correlation Coefficient (SRCC) is
reported [16,26,27,30]. As presented in Fig. 5, all features are

Fig. 3 Values of exemplary features for images of a different distortion
severity shown in Fig. 2; (Fig. 2a is denoted as ‘1,’ Fig. 2b as ‘2,’ …,
Fig. 2f as ‘6’

Fig. 4 Block diagram of the introduced method

important. However, the features 53 and 54 (the introduced
group of moments and invariants) are the most contributing
to the performance of QUEADI, followed by the 2nd and
74th feature (the histogram variance of the relative gradient
magnitude and the mean saturation). The 14 out of 20 most
influential features are introduced in this paper. Their sepa-
rate IQA performance is shown in Fig. 6, in which features
are sorted from the most to the least influential, taking into
account the results shown in Fig. 5. Interestingly, features
that have the largest impact on the QUEADI do not offer out-
standing separate performance. This indicates that many of
them are complimentary and provide quality-aware informa-
tion that is effectively used by the quality model. Therefore,
suchweaker features should not be avoided as they contribute
to the overall quality prediction.

Since the method uses two modifications of features
obtained from SURF descriptors, their separate IQA per-
formance is reported in Fig. 7. It can be seen that the
description of more detailed image regions in filtered images
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Fig. 5 Performance of the method in a case in which a given feature is
removed from the feature vector. The result for the entire feature vector
is denoted by ‘x’

Fig. 6 Separate SRCC performance of 20 most influential features
ranked in order of importance (from the left to the right). The bars
with the dark pattern denote features introduced in this paper

(features f19–f24) better reflects the quality of images than
its original 64-dimensional version (features f13–f18). How-
ever, the lack of filtering considered in features f25–f36 is
more important than it can be seen for images with artifi-
cial distortions [16]. Therefore, the 128-dimensional SURF
versions (f31–f36), proposed in this paper, obtained worse
results than shorter descriptors (f25–f30), but they are still
better than 64-dimensional descriptors on filtered images.
The figure also contains the SRCC performance of QUEADI
with features introduced in this paper (f19–f24, f31–f80) to
show that the quality model with only introduced features
offers a promising performance in comparison with related
approaches reported in Sect. 4 (Table 3).

The SRCC performance of the method in relation to the
number of the PCA components is reported in Fig. 8. Here,
the 13 components seem to be a good choice (SRCC equal
to 0.5337); however, in many observed cases, the application
of the PCA for dimensionality reduction seems reasonable.
Without the PCA, the SRCC of the method is 0.5205.

4 Comparative evaluation

The performance of QUEADI and other NR-IQA meth-
ods is evaluated using a typical methodology [16,26,27,30]

Fig. 7 SRCC performance of features based on SURF descriptors of
different dimensionality obtained for original and filtered images. The
result for all novel features is shown in the last bar. The bars with the
dark pattern denote features introduced in this paper

Table 3 Performance evaluation on the BR image dataset

NR measure SRCC KRCC PCC RMSE Runtime (s)

HOSA 0.4860 0.3516 0.5017 0.2939 0.27

BRISQUE 0.4946 0.3595 0.5201 0.2916 0.10

FRIQUEE 0.4899 0.3558 0.5034 0.2930 44.9

GM-LOG 0.4974 0.3598 0.5139 0.2917 0.09

IL-NIQE 0.3869 0.2779 0.3991 0.3126 4.39

NIQMC 0.3000 0.2161 0.2955 0.3254 1.72

NOREQI 0.4988 0.3611 0.5169 0.2932 0.88

OG-IQA 0.4922 0.3586 0.4957 0.2952 0.07

dipIQ 0.0286 0.0210 0.1960 0.3344 1.77

MEON 0.2312 0.1664 0.2644 0.3274 0.11

QUEADI 0.5337 0.3898 0.5460 0.2863 1.90

The results for QUEADI are written in bold

Fig. 8 Performance of the method with a different number of PCA
components (from 1 to 80)

described in Sect. 3. However, apart from the SRCC,
other criteria are also reported [22], such as Kendall Rank
order Correlation Coefficient (KRCC), Pearson linear Cor-
relation Coefficient (PCC), and Root Mean Square Error
(RMSE). They evaluate the prediction accuracy, mono-
tonicity, and consistency of NR methods. The PCC and
RMSE are calculated after a nonlinear mapping between
the objective and subjective scores (Qp and S): Qp =
β1 (0.5 − 1/(1 + exp(β2(Q − β3)))) + β4Q + β5, where
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[β1, β2, . . . , β5] are parameters of the regression and Q and
Qp are the objective and obtained scores, respectively.

The results for the following NR methods with avail-
able source code are reported: FRIQUEE [4], NOREQI [16],
OG-IQA [10], BRISQUE [14], GM-LOG [27], NIQMC [5],
HOSA [26], IL-NIQE [30], dipIQ [12], and MEON [13].
The IL-NIQE and NIQMC do not require training images,
and deep learning approaches (i.e., dipIQ and MEON) are
already trained, and their source codes do not offer an oppor-
tunity to train them. Consequently, they are evaluated on the
testing images, as the remaining methods. For a fair com-
parison, the SVR parameters of the learning-based methods
are set to optimize their SRCC performance and all tech-
niques assessed the same 100 subsets of testing images. The
experiments are run on a machine with Intel Core i7-4790k
4.00GHz, 16GB RAM, Microsoft Windows 7 64bit, and
MATLAB R2019a. The results are presented in Table 3.
The table also contains the runtime comparison, reporting
the average time of computing the feature vector by a given
metric.

As reported, the proposed technique, QUEADI, clearly
outperforms the compared methods on the new authenti-
cally distorted image database. Themeasure is better than the
second-best technique (NOREQI) by a large margin. Other
learning-based techniques perform closely to NOREQI,
except for the deep learning methods. These methods were
pretrained by their authors, and they cannot reliably predict
the quality of images with authentic distortions. The pro-
posed measure has an average time complexity; it is much
faster than FRIQUEE and IL-NIQE and slower than worse
performing OG-IQA, GM-LOG, or BRISQUE.

5 Conclusions

In this work, a novel IQA benchmark database with authen-
tically distorted images and subjective scores is intro-
duced along with a new NR-IQA measure (QUEADI). The
QUEADI uses introduced diverse perceptual features and
effectively maps them to subjective scores by the SVR to
obtain a quality model. In the approach, global and local
image features and their statistics are considered as well as
image moments and invariants, or popular quality indicators
with their modifications. The features are analyzed taking
into account their impact on quality performance. The exper-
imental comparison of the method with the state-of-the-art
NR techniques on the introduced dataset reveals its superior
performance, in terms of typically used evaluation criteria.

In the future, other features or statistics that can success-
fully describe the quality of authentically distorted images
will be investigated.

The MATLAB code of the proposed QUEADI and the
new IQA dataset is available at http://marosz.kia.prz.edu.pl/
BR-QUEADI.html.
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