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Abstract

Any optimization of gradient descent methods involves selecting a learning rate. Tuning the learning rate can quickly become
repetitive with deeper models of image classification, does not necessarily lead to optimal convergence. We proposed in this
paper, a modification of the gradient descent algorithm in which the Nestrove step is added, and the learning rate is update in
each epoch. Instead, we learn learning rate itself, either by Armijo rule, or by control step. Our algorithm called fast gradient
descent (FGD) for solving image classification with neural networks problems, the quadratic convergence rate o(k>) of FGD
algorithm are proved. FGD algorithm are applicate to a MNIST dataset. The numerical experiment, show that our approach

FGD algorithm is faster than gradient descent algorithms.

Keywords Gradient algorithm - Nesterov algorithm - Learning rate control - Image classification - Neural networks

1 Introduction

Computer vision helps machines to view and comprehend
digital images, something that humans can do autonomously
to high accuracy levels. Image processing is an important
computer vision field, with major real-world applications
such as autonomous vehicles [2], industry [15], medical
diagnosis [19], and face recognition [21]. Image processing
has many tasks, such as:regularization [7,8], clustering [13],
localization [6] and classification [9]. In this paper we con-
cerned by image classification that is the process of assigning
a class label to an image.

Typically, the current state of the art solution to image clas-
sification uses artificial neural network [19], convolutionary
neural network [17] and deep neural network [11,14], but
this approaches has limitations such as the need for carefully
designed structures and poor interpretability. The training
algorithms used for solving image classification are gradient
descent algorithms [4,15,19] and genetic algorithm [9].

However, the gradient descent algorithms and stochas-
tic algorithms are easy to converge into the local minimum
slowly. In fact, it is possible to divide the image classification
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into two phases: extraction and classification of the feature.
It is possible to perform two stages in the order. It can avoid
simultaneously adjusting the parameters of the entire net-
work and reducing the parameter adjustment difficulty.

Based on the above considerations, an improved gradi-
ent descent method are proposed, called stochastic gradient
descent algorithm (SGD). SGD combines the advantages of
the gradient descent algorithms, back propagation [4] and
stochastic strategy, and it is used as a training algorithm of
the classifier such as Nestrov accelerate gradient (NAG) [3].

In this paper, we propose a fast iterative algorithm for
image classification with neural network called fast control
gradient algorithm (FGD), combined SGD algorithm with
controlled learning rate by Armigo rule and accelerated the
algorithm by Nestrove step.

Neural network is composed of the stacked restricted
boltzmann machines [10], or auto-encoder [1], which is used
to extract the image features and then classify those extracted
features by the softmax classifier.

FGD is proposed as the softmax classifier’s training algo-
rithm and is used to find the optimum of the softmax classifier
parameters.

We discuss the complexity convergence of FGD the pro-
posed algorithm and present some promising results of
numerical experiments application to MNIST dataset, show
that the proposed classification method FGD has better
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accuracy and antiover-fitting than other image classification
methods such as SGD and NAG.

These algorithms are implemented in this paper using
python programming tool for analyzing MNIST dataset [12].

This paper is organized in as drafted below in Sect. 1
introduction. Section 2 notations and assumptions. Section 3
classification. In Sect. 4 gradient algorithms. And finally the
results are discussed in Sects. 5 and 6 concludes.

2 Notations and assumptions

First, we establish notation for future use:

features x; is the input variables,

— target y; is the output variable that we are trying to predict,
training example is a pair (x;, y;),

training set is the dataset that we’ll be using to learn a list
of n training examples

{(xi,yi):i=1,...,n},

Note that the superscript ‘i’ in the above notation is simply
an index into the dataset. We will also use the following
notation:

— E = %" is a finite dimensional Euclidean space of input
variables,

— x' the transpose of x = (x1, x2, ..

— Ixll2 = Vx'x = \J(x}+---+x2) is the Euclidean
norm of x;

— < x,y >= x'y is the inner product and corresponding
norm ||x||2.

., X)) € E;

To describe the classification problem slightly more formally,
given a training set, our objective is to learn a function % :
E — 0 called a hypothesis, so that 4(x) is an optimal
predictor for the corresponding value of y.

We consider the following basic problem of convex opti-
mization

min f(x), (D

xeE
where f : E —> 9 is a smooth convex function of type C1-1,

i.e., continuously differentiable with Lipschitz continuous
gradient L:
IVEx) — VE(WI < LIIx —yll Vx,y € E,

and Vf(x) is the gradient of f(x).
It is assumed that solution x* of (1) exists.
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Typically computational algorithms for (1) rely on the use
of gradient oracles which provide at arbitrary point x the
value of objective function f(x) and some gradient g of f(x),
then g = VI (x).

3 Image classification with neural networks

3.1 Model
We define the following activation functions:

— the sigmoid function

o:R— (0,1)
1
T e
— the hyperbolic tangent function

tanh : R — (—1,1)
2 —1

T e

— the rectified linear unit function

ReLU : R — R*
x — max{0, x}

Neural networks is machine learning models [18], which as
functions of their input, are the alternating composition of
linear transformations, i.e.,

R — R™
x+—> Wx+5b

where b € R™ and W is a m x n matrix, with activation
functions, applied to each coordinate. b and W are usually
parameters of the model to be estimated.

In all of the layers to be trained, we denote the biases b
and weights W by parameters w.

We denote C = {0, 1, ..., ¢ — 1} the classification where
¢ is number of classes, on input x, the neural network model
must output y € {R¢: ", y; = 1}. For k € C, the softmax
function

oYk
o ==

(M S e
is applicable.

The typically the crossentropy, a smooth approximation of
classification error is objective function in our minimization
problem:

1 N
f(W)=—NjX_;

o

—1
2jq log(Zy (xj; W) )
q=0
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- _Jlifxjisinclass g N where z = Wx + b. Using chain rule:

where z;, = { 0 otherwise and 7,4 (x; w) is the pre-
dicted probability that x; belongs to class g. a Wb _0gda |

We define the training loss function L(w) as : a_zg( b X, y) = oo 9z —(y—a(l —a)
L(w) = f(W) +0R(W) Then

0 dg 0z T
where 6 is parameter of regularization and R(w) = [|w||? is Wg(W» b,x,y) = oW —(y—a)a(l —a)x
£, regularization. 9 90 9
g 0%
The popular algorithms for estimated the parameters w %g (W,b,x,y) = 9z 0b =—--—owal —a).

of neural networks is gradient descent algorithms with back
propagation.

For each step ¢, the technical used in SGD algorithms is
replacing Eq. ( 2) of classification error f(w) by

1 c—1 .
fowty=—— 3" 3"z log(Z(xj; W) 3)
|M;|
JixjeM; qg=0
where M, is mini-batch. Equation (3) satisfy,
E[f(w, 0] = f(w)

and

E[wa(wa D] =Vy f(w)

However, once before testing, the sample is shuffled arbitrar-
ily, separated into batches of a fixed size, and these batches
are used one at a time until they are all collected. This is then
repeated from the first batch in the same order again. Each
epoch then consists of sequential batches covering all train-
ing data, starting with the first batch and ending with the last
one.

3.2 Back propagation
The updating weight parameters and fixed errors should be
doing through the layers in the neural network, by combining
GD algorithm and back propagation algorithm.

Let £, »(x) the activation function as:

Ly p(x) =0 (Wx +b)

where x is input of training sample. The loss function is:
1 2

gW.b.x.y) =~y — tw @l

Since the property of sigmoid function is:

o =o(a), 2;_01 =a(l —a).
z

4 Gradient methods
4.1 Gradient descent (GD)

The neural network algorithm uses an optimization method
to evaluate global optimum. The optimization method used in
the neural network algorithm was GD algorithm, represented
by Eq. (4), a well referenced artificial intelligence function to
model a first order optimization algorithm that helps us to find
alocal minimum. GD is an algorithm that is used to minimize
a function, in this case, the cost function. The aim was to find
a value of w which renders the lowest error and enables the
cost function to reach a local minimum. Each iteration in this
method aims to find a new value of w that yields a slightly
lower error than the previous iteration. A learning rate is also
used to control how large of a step we take downhill during
each iteration. Since GD algorithm starts with some initial
w, and repeatedly performs the update:

ad
wi =w; —n—-»Ff(w), i=0,...,n. 4)
awi

Here, n is a constant learning rate. This is a very natural
algorithm that repeatedly takes a step in the direction of
steepest decrease of f. Since differentiation and combina-
tion are interchangeable we can calculate the gradient as a
sum of discrete components thus avoiding unnecessary com-
plications of analytical formulas for neural network. To find
a local minimum of a function using gradient descent, one
takes steps proportional to the negative of the gradient at the
current point. If instead one takes steps proportional to the
positive of the gradient, one approaches a local maximum of
that function; the procedure is then known as gradient ascent.
In our case, we are looking for minimum value of the cost
function, represented by Eq. (5).

y(w) = f(w) (5)
Note that the value of the step size n is allowed to change

at every iteration of the neural network algorithm, known
as learning rate, of the optimization process. With certain
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assumptions on the function y and particular choices of 7,
convergence to a local minimum can be guaranteed. When
the function y is convex, all local minimum are also global
minimum, so in this case gradient descent can converge to
the global solution.

4.2 Control gradient algorithms

The simplest algorithms for (1) are gradient methods of the
kind

Ml — xk g, g6 =VEGEH, k=0,1,... (6)

X
which were under intensive study since 1960’s. It was shown
that (6) converges under very mild conditions for learning
rate 7y satisfying “divergence series” condition ) , nx =
oo, g — +0.

Let us suppose a learning rate nx—; was used at iteration
k — 1 and let us identify at x* the relation between Nk—1 and
the learning rate providing minimization of f in the direction
—g*=1. To this end Uryasev used in [20] scalar products

up =< gk, g1 >

It was heuristically suggested in [20] to correct learning rate
according to the formula

NdecrNk» if w4 <0,

Nincr Nk, Otherwise,

Nk+1 = { )

where:

— Ndecr 18 a decreasing coefficient,
— Tincr 18 a increasing coefficient,

— 0 < ndecr < 1 < Niner and Niner-Ndeer < 1.

Remark The control learning rate of Uryasev is equivalent
to the second conditions of Wolfe:

< gk’ gk—l

k)2
>=clig”ll
where c is real positive.
In this paper, we used Armijo condition [5]:

fG&E) — f&ET > B < g xF — x> ®)

where 0 < B < 0.5. Then, the control learning rate can be
calculate by this equation:

Ndecr Nk 1if Eq. (8) satisfied,
Nincr Nk, Otherwise,

N+l = { ©)
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4.3 Fast gradient descent (FGD) algorithm
Gradient and Nesterov step [16]
1. Select a point yg € E. Put

k=0, bp=1, x ! =y,.

2. kth iteration.
a) Compute gx = VI(yr)
b) Put
Xk = yi — mgr,
biy1 = 0.5(1 + ,/4b7 + 1), (10)

Yerr =X+ Pk =X,

The recalculation of the point y; in(10) is done using a
“ravine” step, and 7y is the control learning rate (7).

Remark We assume that

1

< — 11
M= 7 (1)

4.3.1 Convergence rate of FGD

Lemma1 Forany x,y € R", we have

L
FO) = fO+ < VI, y—x >+ ]y — x|
Proof For all x, y € R", we have

FO)=FO) + [} <Vfx+iy—x),y—x>dt
= fO)+ < V), y—x >
—}—fol <Vfx+t(y—x)—Vf(x),y—x>dt.

Therefore, if A = f(y) — f(x)— < Vf(x),y — x > then

A<IfO @)= < V@), y—x > |
=1 fy <V f@+1(y—x) = VFfx),y—x>d]
<[ 1<V @+1(y—x) =V @),y —x > |df
<y I <Vf@+1(y—x) = Vl.ly —xllds
< Jo tLlly — x|

L
= Zly —xI*.

Then, Lemma 1 hold. ]

Lemma2 The sequence (by)k>1 generated by the scheme
(10) satisfies the following:

k+1
_; <bp k=1, (12)



Signal, Image and Video Processing (2020) 14:1565-1572

1569

Proof We have

0.5(1 +/4b? | +1) > 0.5(1 +2b7_,)

then
by > ! +b
k = ) k—1
Therefore, we have by > % O

Lemma3 Let {x*, yi} be the sequence generated by the
FGD, then for any x € W' we have

L L
fx) = F&5 + >l = X2 - Sl = yEII%. (13)

Proof By the convexity of f we have

S = fO+ < ViQr),x — > . (14)
By Lemma 1
L
FOH = fO0+ < VG0 6" = e = +5 1" = wll®
(15)
Combining (14) and (15), we have
k k L ky2
fx) > fO+ < VFOr), x —x >—5M%—xH-
(16)

Since x¥ = y — meV f (yx), then

1 L
f) = f&5+ oo < —xkx —xF > = I — xk%.

7)

Using (11), we obtain

L
F) = FER+ L <y —xF x —xF > =y — 252
2

(18)
Since
<wem x2S - R
Hllx = X512 = o = well®)
then from (18) the inequality (13) hold. O

Theorem 1 If the sequence {xi}i>0 is constructed by FGD,
then there exist a constant C such that

fl) — f(x*) < C/k (19)

Proof We denote

x4 (1 — bL)xk. (20)

We know that ﬁ € (0, 1], Vk > 0, by the convexity of f
we have

1 1
f@) = — [0+ (1= b—)f(xk)- 1)
k+1 k+1
21) x b,%Jrl, we get
bRy f(z) < bt FO5) + (bFy — b)) (x5 (22)
With b7 | — b1 = by yield
iy f(zk) < bEy f(x™) = bEF(x*) + b} f(x5). (23)

(23) + by, f(x*T), we get

b (f R — (@) = b (F ) = F(x%))

(24)
—bI(f(xF) = F(x™)).

By Lemma 3, we have

L L
FOHY—fzp) < 5 Iek=yies ||2—5||Zk—x"“||2. (25)
Then,

2 L 2 k+1)12 2 k41
b1 7 Ulze = Yt I1” = llze = X112 = by (f (KD

—f(x*) = BI(f(xK) — F(x*)).

(26)
Let pr = x*=1 4 b (x* — x*¥=1), then
_ 1 1\ k k
2k — Yk+1 = mX*—f-(l - m)x —X
bi—1 k k—1
F(G) =X @
— ;(x* _ .Xk_l +bk(xk_1 _ Xk))
b1
= 5 (O = pr)
and
k+1 1 1k k+1
Kk — X _mx*+(1—m)x —X
= g @ = b F -2 @28)
= i O = prr)
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Fig.1 Samples from the Label: 2 Label: 0 Label: 1
MNIST dataset

Label: 2 Label: 5 Label: 6

Label: 3 Label: 7

Table 1 Comparison of the

. . Methods Training accuracy (%) Test accuracy (%) Loss cost CPU time/s
classification accuracy between
FGD and four classified FGD 97.54 94.59 031 83.17
methods
SGD 91.87 91.40 0.88 132.66
NAG 96.50 94.58 0.35 127.46
Momentum 96.287 94.43 0.31 128.31
Adadelta 92.87 92.38 0.67 132.75
35 . .
== FGD Using Eqgs. (27) and (28) in (26), we have
30 . SGD
mm NAG
1 Momentum L L
* = Adadelta 7||x* - Pk||2 - 7”x>k — Pk+1 ||2
_ 207 > b (FORTD) = F) = bR () = f ™).
2 15 4
10 Since bg = 0 and pg = x~ 1 =x0, then we get
0.5 4
00— T e T BUGH — ) = St —xO)?
0 250 500 750 1000 1250 1500 1750 k -2 :
# of epoch

Fig. 2 Comparing epoch of FGD with SGD, NAG, Moumentum and
Adaselta Let C = 2L|x* — x°)2, using Lemma 2 then theorem hold.

O
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Fig.4 predict sample using True: 9, Pred: 9 True: 4, Pred: 4 True: 5, Pred: 5 True: 3, Pred: 3
o . . .
I -
True: 5, Pred: 5 True: 6, Pred: 6 True: 0, Pred: 0 True: 2, Pred: 2
True: 2, Pred: 2 True: 3, Pred: 3 True: 6, Pred: 6 True: 6, Pred: 6
True: 6, Pred: 6 True: 7, Pred: 7 True: 9, Pred: 9 True: 8, Pred: 8
.
True: 8, Pred: 8 True: 1, Pred: 1 True: 3, Pred: 3 True: 4, Pred: 4
35 =D MNIST dataset is performed to verify the performance of the
304 SGD FGD algorithm.
NAG To train the network, we present digits from the 60,000
251 Momentum MNIST training set to the network. The different gradi-
204 Adadelta ent descent optimization sch as, SGD, NAG, Momentum,

cost

154

104

0.5

0.0+— T T T T T T
0 20 40 60 80 100 120

CPU time in secounds

Fig. 3 Comparing CPU time of FGD with SGD, NAG, Moumentum
and Adaselta

5 Computational experiment

All the experiments were carried out on a personal computer
with an HP i3 CPU processor 1.80 GHz, 4 Go RAM, x64,
using Python 3.7 for Windows 8.1.

In this section, the dataset used is MNIST [12], consisting
of 60,000 training and 10,000 test 28 x 28 grayscale images
of handwritten digits, 0 to 9, as shown in Fig. 1, so 10 classes.

Adadelta and our approach FGD are used in this experi-
ments. For the results of comparing methods see Table 1,
Figs. 2 and 3, this results show that the FGD is faster with
best classification accuracy.

The class-assigned neuron response is then used in the
10,000 MNIST test set to measure the network’s classi-
fication accuracy. The estimated number is calculated by
multiplying each neuron’s responses by class and then choos-
ing the class with the highest average firing rate see Figs. 4
and 5.

6 Concluding remarks

In this paper, the gradient descent algorithm are acceler-
ated by Nestrov step and control learning rate via Armijo
condition called FGD algorithm for solving minimum loss
function of image classification. The convergence rate of
FGD algorithm proved that it is quadratic convergence, and
the comprising of numerical results of FGD with four gra-
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Predicted Target (yhat)

Fig.

Neural network: FGD on MNIST dataset

0
1
2
3
4
5
6
7
8
9
01 2 3 4 5 6 7 8 9
Actual Target (y)
5 Average confusion matrix of the testing results overt en pre-

sentations of the 10,000 MNIST test set digits using FGD algorithm

dient descent algorithms in dataset MNIST, show that FGD
algorithm is robust and faster than others methods.
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