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Abstract
Concentrating on the issue that the existence of wind has an effect on the attitude estimation of unmanned aerial vehicle (UAV)
and thereafter degrades the controllability of theUAV, based on the extendedKalman filter (EKF), an approach of UAV attitude
estimation is proposed in the presence of wind interference. Firstly, attitude quaternion and drift bias of gyroscope are selected
to construct the state vector, and the state equation is established based on the kinematics model of gyroscope. After that,
observation equation can be obtained via using the measurement of accelerometer, magnetometer, and airspeed tube. In
what follows, the EKF update equation is exploited to determine the UAV attitude. As compared to the traditional EKF and
unscented Kalman filter, experimental results show that the proposed algorithm can depress the divergence of attitude angle
obviously, upgrade the attitude measurement accuracy considerably, and lower the attitude angle error significantly.

Keywords Wind interference · Attitude measurement · Quaternion · Extended Kalman filter

1 Introduction

With the rapid development of the microelectromechanical
system (MEMS) technology and advanced control technolo-
gies, four-rotor aircraft has become a research hot spot in
recent years [1, 2]. Compared with other unmanned aerial
vehicles (UAVs), four-rotor aircraft has the advantages of
small size, low cost, and good maneuverability. Therefore,
it has been widely used in transmission line inspections and
aerial photography [3, 4]. For four-rotor aircraft, pose esti-
mation is the basis for autonomous flight and therefore has
attracted more and more attentions from researchers and
engineers [5–9].To estimate the attitudeofUAV, complemen-
tary filtering was firstly applied [5]. However, the calculation
accuracy obtained via complementary filtering is rather low.
To tackle this issue, the extended Kalman filter (EKF) and
unscented Kalman filter (UKF) were employed to posture
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calculations such that the higher attitude estimation accu-
racy can be achieved [6, 7]. It is well known that UAV
must actually fly within the wind; however, wind interfer-
ence was not taken into account among the above-mentioned
methods. Concerning this problem, awind parameter estima-
tion algorithm was proposed by exploiting a single-antenna
global positioning system (GPS) and tachometer [8]. The
authors of [9] developed the nonlinear disturbance observer
for UAV to estimate the velocity and acceleration of the
wind, which is exploited to address the UAV attitude track-
ing control issue with the wind field. However, UAV has not
been well controlled due to the inaccurate wind speed. In
[10], an approach was developed to estimate wind velocity,
angle of attack (AOA) and sideslip of angle (SSA) of a fixed-
wing UAV only using kinematic relationships with Kalman
filter (KF). Unfortunately, the obtained wind speed is not uti-
lized to control UAV.Moreover, an adaptive controller design
was considered for the attitude and altitude of UAV quadro-
tors subjected to wind disturbances [11], howbeit, which is
still contaminated by wind field because of some unreal-
istic assumptions. It should be noted that the algorithm of
[8–11] only investigated wind parameter estimation with-
out involving the influence of wind power on drone control
or attitude measurement. However, aircraft is susceptible to
wind in application, which will result in a rather high attitude
estimation error and then control of the UAV can be effected
heavily [12].
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Focusing on this issue, an attitude measurement of UAV
method is developed in this paper in the wind disturbance
environment to enhance the robustness of the attitude estima-
tion such that theUAV control performance can be improved.
Considering the wind force as observation, the extended
Kalman state equation is established on the basis of the
quaternion differential equation and gyro noise error. More-
over, the gyro estimation error can be compensated by using
the data collected via accelerometer, magnetometer, GPS,
and airspeed meter [13, 14].

2 The solution of attitudematrix

To describe clearly the attitude information such as pitch,
yaw, and roll angle, the following two coordinate systems
are employed in this paper: the navigation coordinate system
n, i.e., the east–north–up (ENU) coordinate system shown in
Fig. 1, and ψ , θ , and φ indicate yaw, pitch, and roll angle,
respectively, and the body coordinate system b(xb, yb, zb)
shown in Fig. 2, where xb, yb, and zb, respectively, point
right along the horizontal, forward along the longitudinal,
and upward along the vertical axis of the body. The origin
of the drone is the center of gravity of itself. Due to the fact
that the attitude calculation is implemented under the naviga-
tion coordinate system, and therefore the attitude information
should be mapped from the coordinate system b to n through
the coordinate transformation matrix cbn ∈ C

3×3 illustrated
as [15, 16]:

cbn �

⎡
⎢⎢⎣
C1
1 C2

1 C3
1

C1
2 C2

2 C3
2

C1
3 C2

3 C3
3

⎤
⎥⎥⎦ (1)

where q � [q0 q1 q2 q3]T�[q0 e]T denotes a quaternion, q0
is the scalar part, e � [q1 q2 q3] is the vector part, and

C1
1 � q20 + q21 − q22 − q23 , C2

1 � 2(q1q2 − q0q3)

C3
1 � 2(q1q3 + q0q2), C1

2 � 2(q1q2 + q0q3)

C2
2 � q20 − q21 + q22 − q23 , C3

2 � 2(q2q3 + q0q1)

C1
3 � 2(q1q3 − q0q2), C2

3 � 2(q2q3 + q0q1)

C3
3 � q20 − q21 + q22 − q23

.

The direction cosine form of cbn , i.e., Euler angle form,
can be illustrated as:

cbn �

⎡
⎢⎢⎣
L1
1 L2

1 L3
1

L1
2 L2

2 L3
2

L1
3 L2

3 L3
3

⎤
⎥⎥⎦ (2)

where

Fig. 1 Navigation coordinate system

Fig. 2 Body coordinate system

L1
1 � cos θ cosψ, L2

1 � cosψ sin θ sin φ − cosφ sinψ

L3
1 � sin φ sinψ + cosφ sin θs cosψ, L1

2 � cos θ sinψ

L2
2 � cosφ cosψ + sin φ sin θ sinψ

L1
3 � − sin θ, L2

3 � sin φ cos θ

L3
3 � cosφ cos θ, L3

2 � cosφ sin θ sinψ − sin φ cosψ

in which ψ , θ , and φ indicate yaw, pitch, and roll angle,
respectively. Comparing (1) with (2), the quaternion of the
attitude angle can be concluded as follows [17]:

ψ � arctan

(
2(q1q2 + q0q3)

q21 + q20 − q22 − q23

)

θ � − arcsin(2(q1q3 − q0q2))

φ � arctan

(
2(q2q3 + q0q1)

−q21 + q20 − q22 + q23

)
(3)
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where arctan (·) and arcsin (·) denote arctangent and arcsine
function, respectively.

With the discussion above, the quaternion representation
of the attitude angle can be obtained. By using this for-
mulation, the extended Kalman state equation under wind
disturbance condition can be formulated in the following sec-
tion.

3 The proposed algorithm

3.1 Kalman filtering state equation of attitude
calculation

According to the description in [18], the Kalman filter pre-
diction equation can be written as:

xk � Φk,k−1xk−1 + wk−1 (4)

where xk ∈ C
4×1 denotes the state vector estimation matrix

at time k, Φk,k−1 ∈ C
4×4 is one-step transfer matrix from

time k − 1 to k and wk−1 ∈ C
4×1 is the system excitation

noise sequence.
Since the state variable is a quaternion, by using the

quaternion differential formulation, the state equation can
be depicted as [19]:

q̇(t) � 1

2

⎡
⎢⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωx 0 ωx

ωz ωy −ωx 0

⎤
⎥⎥⎦q(t) (5)

where q̇(t)�[q0(t) q1(t) q2(t) q3(t)]T stands for the state esti-
mate of the quaternion form at time t . ωx , ωy , and ωz are,
respectively, the angular velocity of the body frame with
respect to navigation frame along with the x-, y-, and z-axis,
respectively.

Because the system state equation shown in (5) is con-
tinuous, it is not easy to be tackled by using the discrete
methods. Concerning this, the Picca approximation [6] can
be exploited to discretize (5), which can be shown as:

q(k) � Φk,k−1q(k − 1) (6)

where q(k) � [q0(k) q1(k) q2(k) q3(k) ]T is the state esti-
mate of the quaternion form at time k, and

Φk,k−1 �

⎡
⎢⎢⎢⎢⎢⎣

Φ1
1 Φ2

1 Φ3
1 Φ4

1

Φ1
2 Φ2

2 Φ3
2 Φ4

2

Φ1
3 Φ2

3 Φ3
3 Φ4

3

Φ1
4 Φ2

4 Φ3
4 Φ4

4

⎤
⎥⎥⎥⎥⎥⎦

Φ1
1 � 1 − �θ20

8
+

�θ40

384
, Φ2

1 � −
(
1

2
− �θ20

48

)
�θx

Φ3
1 � −

(
1

2
− �θ20

48

)
�θy, Φ4

1 � −
(
1

2
− �θ20

48

)
�θz

Φ1
2 �

(
1

2
− �θ20

48

)
�θx , Φ2

2 � 1 − �θ20

8
+

�θ40

384

Φ3
2 �

(
1

2
− �θ20

48

)
�θz, Φ4

2 � −
(
1

2
− �θ20

48

)
�θy

Φ1
3 �

(
1

2
− �θ20

48

)
�θy, Φ2

3 � −
(
1

2
− �θ20

48

)
�θz

Φ3
3 � 1 − �θ20

8
+

�θ40

384
, Φ4

3 �
(
1

2
− �θ20

48

)
�θx

Φ1
4 �

(
1

2
− �θ20

48

)
�θz, Φ2

4 �
(
1

2
− �θ20

48

)
�θy

Φ3
4 � −

(
1

2
− �θ20

48

)
�θx , Φ4

4 � 1 − �θ20

8
+

�θ40

384

�θx �
∫ k+1

k
ωx dt, �θy �

∫ k+1

k
ωy dt

�θz �
∫ k+1

k
ωz dt, �θ20 � �θ2x + �θ2y + �θ2z

.

3.2 The observation equation in the presence
of wind interference

In the wind disturbance environment, observations consist
of the following three measurements: accelerometer, mag-
netometer, and the wind power. With these measurements,
the Kalman observation equation can be described as:

z(k) � hkx(k) + v(k) (7)

where z(k) denotes measured value matrix at time k, hk is
measurement matrix, x(k) is the state vector and v(k) indi-
cates the measurement noise.

Firstly, accelerometer and magnetometer are considered.
With the reference coordinate system, the gravity and geo-

magnetic vector can be defined as g � [
0 0 1

]T
and h0 �[

hx hy hz
]T
, respectively [20]. The matrix forms of them

can be written as:

⎡
⎣
gx
gy
gz

⎤
⎦ � cbn

⎡
⎣
0
0
1

⎤
⎦ (8)

⎡
⎣
mx

my

mz

⎤
⎦ � cbn

⎡
⎣
hx
hy

hz

⎤
⎦ (9)
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where g and m are measurements of accelerometer and the
magnetometer in the body coordinate system b, respectively.

With Eq. (2), by using the Jacobian matrix, (8) and (9) can
be reformulated as:

gx � 2(q1q3 − q0q2)

gy � 2(q2q3 + q0q1)

gz � q20 − q21 − q22 + q23 (10)

mx � mx1 + mx2 + mx3

my � my1 + my2 + my3

mz � mz1 + mz2 + mz3 (11)

where

mx1 �
(
q20 + q20 − q20 − q20

)
hx , mx2 � 2(q1q1 + q1q1)hy

mx3 � 2(q1q3 − q0q2)hz, my1 � 2(q1q2 − q0q3)hx

my2 �
(
q20 + q20 − q20 − q20

)
hy, my3 � 2(q0q1 + q2q3)hz

mz1 � 2(q1q3 + q0q2)hx , mz2 � 2(q2q3 − q0q1)hy

mz3 �
(
q20 − q20 − q20 + q20

)
hz

.

With the discussion above, the quaternion representation
of the accelerometer and magnetometric measurements can
be obtained. The third measurement, i.e., the wind power, is
analyzed as follows.

3.3 Wind observation equation

3.3.1 Air flow coordinate system

The air flow can be represented by the airspeed vector VT

with an amplitude of AT . Its direction is defined by the two
angles relative to the body, i.e., the attack angle α and the
side slip angle β, which are, respectively, illustrated as [21]:

AT �
√
u2T + v2T + w2

T (12)

α � arctan

(
wT

uT

)
(13)

β � arcsin

(
vT

VT

)
(14)

where uT , vT , and wT are the three-axis components of air-
speed in the body coordinate system b. VT denotes the value
of airspeed.

Let cw
b ∈ C

3×3 be the rotation matrix from the body coor-
dinate system b to the airflow coordinate system w, due to
the fact that cw

b � (cw
b )

−1 � (cw
b )

T, and then, we have [21]:

aw � cw
b a

b (15)

where the vector a is, respectively, represented as aw and ab

in the navigation coordinate system w and body coordinate
system b.

Similar to that in [21], the rotation matrix cw
b can be

expressed as:

cw
b �

⎡
⎣

cosβ sin β 0
− sin β cosβ 0

0 0 1

⎤
⎦

⎡
⎣

cosα 0 sin α

0 1 0
− sin α 0 cosα

⎤
⎦

�
⎡
⎣

cosα cosβ sin β sin α cosβ

− sin β cosα cosβ − sin α sin β

− sin α 0 cosα

⎤
⎦

. (16)

Replacing a with VT , Eq. (15) can be rewritten as:

Vw
T � cw

b V
b
T (17)

whereVT denotes the airspeed vector and cw
b ∈ C

3×3 stands
for the rotation matrix from the body coordinate system b to
the airflow coordinate system w.

3.3.2 Wind disturbance

The inertia speed V of the aircraft is the sum of airspeed VT

and wind speed W [22], which can be formulated as:

V � VT +W. (18)

By defining the disturbance wind asWn in the navigation
coordinate system n, the speed in the body coordinate system
b can be expressed as:

Vb � Vb
T + cbnW

n (19)

which can be rewritten as:

cbnW
n � Vb − Vb

T (20)

where Wn�[WN WE WD]T, Vb
T�[uT vT wT ]T, and Vb�

[u v w]T. In the coordinate system n, the matrix form of (20)
can be depicted as:

⎡
⎣
uT
vT
wT

⎤
⎦ �

⎡
⎢⎣

u

v

w

⎤
⎥⎦ − cbn

⎡
⎢⎣
WN

WE

WD

⎤
⎥⎦ (21)

where WN , WE , and WD , respectively, denote wind speed
with respect to navigation frame along with N-, E-, and D-
axis. uT , vT , wT and u, v, w indicate air and ground speed
with respect to body coordinate system along with the x-, y-,
and z-axis, respectively.
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With the observation shown above, it is obvious that the
quaternion is a nonlinear function with respect to measure-
ment of accelerometer, magnetometer, and the wind force.
Therefore, it is difficult to be solved. Focusing on this issue,
it can be linearized by using the Jacobi matrix [23]. With
(10), (11), and (15), hk ∈ C

9×4 can be expressed as:

hk �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
2q0 −2q1 −2q2 2q3
H1 H2 H3 H4

H5 H6 H7 H8

H9 Hx Hy Hz

2q3 −2q2 −2q1 2q0
−2q0 2q1 −2q2 2q3
−2q1 −2q0 −2q2 −2q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

where

H1 � 2
(
q0hx + q3hy − q2hz

)
, H2 � 2

(
q1hx + q2hy + q3hz

)

H3 � 2
(
q1hx − q2hy − q0hz

)
, H4 � 2

(
q0hx − q3hy + q1hz

)

H5 � 2
(
q0hx − q3hy + q1hz

)
, H6 � 2

(
q2hx − q1hy + q0hz

)

H7 � 2
(
qhx + q2hy + q3hz

)
, H8 � 2

(
q2hx − q0hy − q3hz

)

H9 � 2
(
q2hx − q1hy + q0hz

)
, Hx � 2

(
q3hx − q0hy − q1hz

)

Hy � 2
(
q0hx + q3hy − q2hz

)
, Hz � 2

(
q1hx + q2hy + q3hz

)

.

3.4 Attitude calculation based on the extended
Kalman filtering

Based on the above-mentioned Kalman prediction Eq. (6),
observation Eq. (7), and the measurement matrix with wind
disturbance hk shown in (22), the EKF can be exploited to
acquire the attitude angle, in which prediction and update
process are shown in Fig. 3.

(1) Prediction step:

State one-step prediction:

X(k|k − 1) � �k|k−1X(k − 1) (23)

where X̂(k|k − 1) is the prediction of the state variable X̂(k)
and �k/k−1 is the state one-step transfer matrix.

One-step prediction covariance matrix:

P(k|k − 1) � �k|k−1P(k − 1)�T
k|k−1 + Q (24)

where P(k|k − 1) is the prediction of the state covariance
matrix P(k − 1), Q is the system noise covariance matrix,
and �k|k−1 is the state one-step transfer matrix.

(2) Correction step:

Fig. 3 EKF flowchart

Kalman gain update:

K (k) � P(k|k − 1)hTk
(
hk P(k − 1)hTk + R

)−1
(25)

where R is the observed noise covariance matrix.
Status update:

X̂(k) � X̂(k|k − 1) + K (k)
(
Z(k) − hk X̂(k|k − 1)

)
(26)

where Z(k) denotes the measurement matrix at time k.
Status covariance matrix update:

P(k) � (I − K (k)hk)P(k − 1) (27)

where I denotes the identity matrix.
EKF predicts the status of the update process. Initial value

X̂(0) is given by accelerometer, airspeed tube and magne-
tometer. The initial value of covariance matrix P(0) can be
selected as an identity matrix. In this process, it is assumed
that both the system and observed noise are white, and their
covariance matrix can be, respectively, denoted as Q and
R. Based on the obtained �k,k−1 and hk with (6) and (22),
respectively, one can acquire the UAV attitude estimation via
(23)–(27).

4 Numerical simulations

In this section, the effectiveness of the developed algorithm
can be verified with the data collected via the following sen-
sors: gyroscope, magnetometer, GPS, and airspeed tube. It
is noted that all numerical examples are implemented via
MATLAB 2014b version on a laptop with CPU 1.8 GHz
Intel Core(TM) i5 and 8 GB RAM.
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The basic simulation parameters can be illustrated as fol-
lows:

(a) Both the attitude estimation frequency and sample fre-
quency of MPU9150 are 200HZ.

(b) According to the geomagnetism in Dalian, the refer-
ence geomagnetism vector is:

m0 � [
0.263 3.29 3.38

]T × 10−5 (28)

(c)With the platformbeing horizontal, the reference accel-
eration vector can be determined as:

a0 � [001]T (29)

(d) The initials conditions of Kalman filter are:
The initial value of the quaternion can generally be

depicted as:

q0 � [
1 0 0 0

]T
. (30)

It iswell known that the error covariance indicates the con-
fidence of prediction state at present. The smaller it is, the
more we believe the current prediction state. Moreover, the
error covariance matrix determines the initial convergence
speed, and then, a smaller value is generally set to facili-
tate the acquisition. Consequently, the initial value of error
covariance matrix can be expressed as:

p0 � diag
[
0.2846 0.2846 0.2846 0.2846

]T
(31)

where diag(·) denotes the diagonal matrix.
The smaller the value of Q, the easier the system will

converge; however, it will easily diverge if it is too small.
Therefore, initial value of Q can be given as:

Q � diag(0.02 0.02 0.02 0.02). (32)

As for measurement noise, if it is too large, the Kalman
filter response will be slower because the confidence in the
newly measured value is reduced. Conversely, the smaller
the value is, the faster convergence speed of the system is.
However, it is easy to oscillate if it is too small. Considering
this, the initial value of R can be installed as:

R � diag(10, 10, 10, 20, 20, 20). (33)

(e) The initials values of wind force are:
The attack angle is α � 5◦ and the side slip angle is

β � 10◦. With the reference coordinate system, the wind
vector can be defined as:

Vb�[u v w]T � [0 1 0]T. (34)
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Fig. 4 Attitude angle estimation error with wind speed being 5 m/s.
a Roll angle estimation error, b pitch angle estimation error, c yaw
angle estimation error

To verify the effect of wind interference on the attitude
estimation, Figs. 4 and 5 illustrate the attitude angle estima-
tion error versus number of samples in the following three
conditions: the absence of wind, considering wind and with-
out considering wind in the presence of wind with its speed
being, respectively, 5m/s and 8m/s. Obviously, it can be seen
from Figs. 4 and 5 that the attitude angle estimation error in
the absence of wind is smallest among these three cases,
and the estimation error achieved by the proposed method is
larger than that in the absence ofwind. It can also be observed
that the estimation error of roll, pitch, and yaw is, respec-
tively, 1.3, 1.2, and 1, with its speed being 5 m/s and 1.9,
2.2, and 2.1 with speed being 8 m/s considering wind inter-
ference in the presence of wind. Besides, regardless of any
condition, the attitude angle estimation error withwind speed
being 8 m/s is larger than that of 5 m/s, which implies more
wind power makes more attitude estimation error. Moreover,
the angle estimation error with speed of 8 m/s is larger than
that of 5 m/s. The above mentioned is attributed to the fact
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Fig. 5 Attitude angle estimation error with wind speed being 8 m/s.
a Roll angle estimation error, b pitch angle estimation error, c yaw
angle estimation error

that the larger the wind force, the greater the disturbance to
the UAV, and therefore, the greater the error, while there is no
wind outside, the disturbance to UAV is almost zero, so the
error is small. Furthermore, the estimation error without con-
sidering wind power in the presence of wind is largest, which
indicates that the developed method can alleviate the effect
of wind interference on the attitude estimation, and hence,
the robustness of the flight control of UAV can be improved.
In addition, the attitude estimation error can converge at the
number of sample being 50 in above-mentioned three cases
with various wind powers, which implies that the proposed
method has a rather fast convergence speed. From the dis-
cussion above, it can be seen that the proposed algorithm can
depress the divergence of attitude angle obviously, shorten
the attitude convergence time sharply, upgrade the attitude
measurement accuracy considerably, and therefore improve
the performance of the UAV control effectively.

To testify the superiority of the proposed algorithm on
the attitude estimation, the attitude angle estimation error
acquired via the developed approach and EKF [6] as well as
UKF [7] in the presence of wind with its speed being 5 m/s,
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Fig. 6 Attitude angle estimation error of three methods (EKF, UKF, the
proposed method) with wind speed being 5m/s. a Roll angle estimation
error, b pitch angle estimation error, c yaw angle estimation error

versus number of samples, is illustrated in Fig. 6. Obviously,
it can be seen from Fig. 6 that the attitude angle estima-
tion error of the proposed algorithm has the smallest error
in comparison with the EKF and UKF methods. Moreover,
the attitude angle error fluctuation of the developed method
proposed algorithm is also lowest. Consequently, it can be
concluded that the proposed algorithm can obtain a more
accurate and robust attitude angle estimation than that of
EKF and UKF.

Remark Based on the above conducted experiments, one
can see that the angle estimation error is reduced significantly
by the developed algorithm in comparison with state-of-the-
art algorithms under various wind conditions: the absence of
wind, considering wind and without considering wind in the
presence of wind with its speed being, respectively, 5 m/s
and 8 m/s. Consequently, the proposed method can achieve
more effective UAV control.
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5 Conclusion

Focusing on the issue that the existence of wind interfer-
ence has influence on the attitude measurement of UAV has
been investigated via including the wind interference into the
Kalman filter observation equation. Numerical simulations
show that the proposed method can obtain the lowest attitude
measurement error in comparison with EKF and UKF meth-
ods in the presence of wind interference, which can improve
the attitude angles accuracy obviously, and the performance
of UAV control can be improved significantly. However, the
proposed algorithm has its drawbacks, since the gyroscope
model we used is an empirical model, which might result in
the estimate error. And we are going to study more accurate
models in our future works.
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