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Abstract
Single-channel speech separation (SCSS) plays an important role in speech processing. It is an underdetermined problem since
several signals need to be recovered from one channel, which is more difficult to solve. To achieve SCSS more effectively, we
propose a new cost function. What’s more, a joint constraint algorithm based on this function is used to separate mixed speech
signals, which aims to separate two sources at the same time accurately. The joint constraint algorithm not only penalizes
residual sum of square, but also exploits the joint relationship between the outputs to train the dual output DNN. In these
joint constraints, the training accuracy of the separation model can be further increased. We evaluate the proposed algorithm
performance on the GRID corpus. The experimental results show that the new algorithm can obtain better speech intelligibility
compared to the basic cost function. In the aspects of source-to-distortion ratio , signal-to-interference ratio, source-to-artifact
ratio and perceptual evaluation of speech quality, the novel approach can obtain better performance.

Keywords Deep neural network (DNN) · Single-channel speech separation · Joint constraint · Cost function · Dual outputs

1 Introduction

Single-channel speech separation (SCSS) is the process of
separating multiple sources from one channel, which has a
wide range of applications in automatic speech recognition
(ASR), hearing aids and speaker recognition [1–4].Because
of the excellent ability to model the nonlinear relationship
between input features and output targets, deep neural net-
work (DNN) has been widely used in the field of speech sep-
arations [5–14]. According to the number of DNN outputs,
the DNN-based methods can be divided into two categories:
single-output DNN andmulti-output DNN. DNNwith single
output can be used tomap the relationship between themixed
signal and the single target source. For example, Han et al.
used DNN with single output to directly learn the nonlinear
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relationship of magnitude spectrogram between the rever-
beration and the clean signal, which achieved performance
improvement in terms of denoising and de-reverberation [6].
Sun et al. proposed a two-stage method to address monau-
ral source separation problem with the help of single output
DNN [7]. This type of DNNmaps a specific signal and has a
significant separation performance. However, the single out-
put DNN can only separate one voice source at a time, which
is time consuming. For the multi-output DNN, the different
sources can be separated simultaneously, which costs less
time. In [8], Du et al. proposed the dual-output DNN archi-
tecture to separate the target and interfering speech at a time,
which demonstrated that the dual-output DNN outperforms
Gaussian mixture model (GMM)method in semi-supervised
mode [1]. Huang et al. used the recurrent neural network
(RNN) with dual outputs to separate the mixed signal, where
the ideal ratio mask was embedded as an additional process-
ing layer to the original output layer of the network [9]. The
method separated different sources at one time and obtained
performance improvements compared with the nonnegative
matrix factorization (NMF) method. In addition, Wang et al.
used multi-output DNN to train the detector for testing gen-
der, and then the signal sources were separated according to
different gender combinations [10]. Among different SCSS
methods, the cost function has a great influence on the perfor-
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mance of speech. In [13], a new cost function was proposed
to optimize the extended short time objective intelligibility
(ESTOI) measure, which obtained excellent performance.
What’s more, Joho et al. used a cost function to solve the
problem of blind speech separation (BSS) when the individ-
ual signal is non-stationary [15]. In our previous study, we
optimized the cost function to obtain the dictionary and got
good separation performance [16]. However, the cost func-
tions mentioned above did not take into account the joint
relationship between the sources to be separated. To tackle
this barrier and separate sources effectively, we propose a
new cost function considering the joint relationship between
the separated sources. On this basis, a good quality speech
separation algorithm with dual output is proposed, which
can simultaneously obtain two high-quality separated speech
sources. The rest of the paper is organized as follows. Sec-
tion 2 reviews themixedmodes of signal. Section 3 describes
the new cost function for the dual-output DNNmodel and its
solution. The experimental settings and results are displayed
in Sect. 4. Finally, we conclude the paper and describe future
work in Sect. 5.

2 Mixedmode of signal

In practice, mixed speech is generated by mixing the original
signals in oneormoreways, such as linear instantaneousmix-
ing, linear convolution mixing and nonlinear mixing. Since
the analysis of linear instantaneous mixing is more conve-
nient to description, we regard the mixed signal as the form
of linear mixing of multiple signals:

y(t) �
m∑

i�1

ai xi (t), (1)

where ai is a constant coefficient, representing the weight of
the i-th target speech signal, and xi (t), y(t) are the ith target
speech signal and the mixture of m(m ≥ 2) sources, respec-
tively. For simplicity, we consider the situation of mixed
signal containing two sources, i.e. y(t) � a1x1(t) + a2x2(t),
although the proposed algorithm can be generalized to more
than two sources. Then, the SCSS problem can be formulated
to estimate xi (t) from y(t) obtained by single microphone.

3 Proposed SCSS approach based on joint
constraint algorithm

In this section, we first introduce the model architecture of
the dual-output DNN for speech separation, and then propose
a joint constraint algorithm based on a novel cost function to
learn the dual-output DNN model for SCSS.

Fig. 1 Dual output DNN for speech separation

3.1 Model architecture

As shown in Fig. 1, our aim is to separate all single speech
signals from the mixed speech at the same time, rather than
to learn a model that treats a specific source as a target and
the other as interference [12].

In the training stage, we use the magnitude spectra of
mixed training signal as the features to train the model. By
short-time Fourier transform (STFT) of overlapping win-
dowed frame, the magnitude spectra of y(t) and xi (t)
(i � 1, 2) can be extracted, denote as Y(t, f ) and Xi (t, f )
(i � 1, 2) at time t and frequency f , respectively. The cor-
responding training target we used is the ideal ratio mask
(IRM), which can describe the distribution of the sources
accurately. The ideal ratio mask can be formulated as fol-
lows:

Mi (t, f ) � Xi (t, f )

a1X1(t, f ) + a2X2(t, f ) + ε
, (i � 1, 2), (2)

where Xi (t, f ) and Mi (t, f ) are the spectrogram and IRM
of i-th source, respectively. ε is a minimal positive number to
prevent denominator from becoming zero. In the separation
stage, multiplying the estimated ratio mask (RM) obtained
from well- trained DNN model with the amplitude spectrum
of the mixed test signal, we can obtain the estimations of the
individual acoustic signals [14], which can be described by
the following formula:

123



Signal, Image and Video Processing (2020) 14:1387–1395 1389

�

X1t � �

M1t � Y t

�

X2t � �

M2t � Y t

, (3)

where
�

X1t ,
�

X2t , Y t are the estimated spectra vectors of two
separated sources and the mixed signal vector at t-th frame,

respectively.
�

M i t is the estimated value of i-th IRM, and �
means Hadamard product.

It can be clearly seen from Eq. (3) that the accuracy of
the estimated RM has a direct impact on separation perfor-
mance. Therefore, we propose a novel cost function which
exploits the joint information of the dual output to obtain
more accurate estimated RM.

3.2 New cost function

For the single-output DNN, the cost function mainly focuses
on the mapping relationship between the input mixed signals
and target source [5]:

J1t � 1

2T

T∑

t�1

∥∥∥∥M t − �

M t

∥∥∥∥
2

2
, (4)

where T indicates the number of time frames. M t and
�

M t are
the IRM vector of target source and the corresponding esti-

mation vector at t-th frame, respectively. Here,
�

M t � f (Y t )

is the output of DNN. Ref. [10] trained the dual-output DNN
parameter with the basic cost function, which is used to learn
the relationship between different sources and corresponding
estimates:

J2 � 1

2T

T∑

t�1

(||M1t − �

M1t ||22+||M2t − �

M2t ||22), (5)

Obviously, Eq. (4) can only obtain the ratio mask of one
speech signal at a time, while Eq. (5) can get two speech
signal ratio masks. However, Eq. (5) ignores the joint rela-
tionship between the separated sources. Therefore, for the
dual-output DNN, we propose a joint constraint algorithm by
using a new cost function. It not only utilizes the nonlinear
relationship between the input mixed signals and individual
sources, but also considers the joint relationship between the
separated sources:

J3 � 1

2T

T∑

t�1

(∥∥∥∥M1t − �

M1t

∥∥∥∥
2

2
+

∥∥∥∥M2t − �

M2t

∥∥∥∥
2

2

+ λ

∥∥∥∥(M1t + M2t ) −
(

�

M1t +
�

M2t

)∥∥∥∥
2

2

)
, (6)

where 0 ≤ λ ≤ 1 is a regularization parameter. According
to Eq. (2), we can obtain

M1t � X1t

a1X1t + a2X2t + ε
,

M2t � X2t

a1X1t + a2X2t + ε
. (7)

For clarity, we consider that the mixed signal is added by
the source signal in equal proportion, i.e. a1 � a2 � 1,
although the proposed algorithm can be easily extended to
cases where the weight of target source is different. Hence,
M1t + M2t � 1 at t-th frame since the element in ε is the

same minimal positive number.
�

M1t and
�

M2t are the estima-
tions of M1t and M1t . There is a joint relationship between
�

M1t and
�

M2t : each element in the sum of
�

M1t and
�

M2t

approaches 1 when the estimates are completely accurate.
Compared with the basic cost function, we add a constraint
term to exploit the relationship between the dual outputs of
DNN. The first two items of Eq. (6) penalize the predicted
error of the IRM over the corresponding estimations, and the
third item takes advantage of the joint relationship between
�

M1(t, f ) and
�

M2(t, f ) to train the DNN model. Compared
with MaxDiffer [9], we use the joint relation term instead of
the maximum difference term, and compare the separation
performance between them in the experiment. The specific
solution of proposed algorithm is shown in next subsection.

3.3 Learning DNNmodel by solving the cost function

There are two essential steps in learning DNN model: for-
ward propagation and backpropagation (BP) [17]. Forward
propagation is the process of obtaining the results of the
output layer by calculating the weights and biases layer
by layer. BP algorithm is a process of reversely adjusting
weights and biases under the constraints of cost function.
We use BP with the gradient descent (GD) for training DNN
model. For simplicity of description, we analyze the signal
of t-th frame as a representative. Then the final result can be
obtained by accumulation. Hence, the function in Eq. (6) at
t-th frame can be stated as:

J(W,b; x, y)

� 1

2

((∥∥∥∥M1:512 − �

M
L

1:512

∥∥∥∥
2

2
+

∥∥∥∥M513:1024 − �

M
L

513:1024

∥∥∥∥
2

2

+λ

∥∥∥∥
�

M
L

1:512 +
�

M
L

513:1024 − 1

∥∥∥∥
2

2

))
, (8)

where W, b are the weight vector and bias vector, respec-

tively. For the third term of Eq. (6), the
�

M1t ,
�

M2t is the
first 512 and the last 512 output nodes of the actual DNN
output in t-th frame, since the number of output nodes in

our experiment are 1024. We use
�

M
L

m:n to represent
�

M i
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(t, f )(i � 1, 2), and the corresponding ideal ratio mask is

expressed as
�

Mm:n . The subscript of
�

M
L

m:n presents the mth
neuron node to the nth neuron node of the output layer net-
work, where L is the number of layers in DNN. In other
words,m:n is 1:512 and 513:1024 respectively, whichmeans

both M1:512 and M513:1024 are 512-dimensional vectors.
�

M
l

as the actual output of lth layer of DNN can be regarded

as σ
(
zl

) � σ

(
W l �

M
l−1

+ bl
)
. Here zl is the neuron out-

put state matrix of l-th DNN layer, and the element z in
the matrix can be obtained by the interaction of the previ-
ous layer of neurons xi with the weight and bias, namely
z � ∑(sl )

(i�1) Wi xi + b,, where sl is the number of nodes in
l-th layer. The activation function we used in DNN layers is
the sigmoid function σ(z) � 1/

(
1 + e−z

)
. In the proposed

cost function, the network takes the magnitude spectra of
mixed signal as input, while the corresponding training target
[M1:512, M513:1024] is the concatenation of ideal ratio mask
from different sources. Next, for the neuron node i of output
layer L , we calculate the ∂ J (W , b; x, y)/∂Zl

iof output layer
according to the following formula:

δli � ∂ J (W , b; x, y)

∂Zl
i

� 1

2

∂

∂Zl−1
i

(∥∥∥∥M1:512 − �

M
L

1:512

∥∥∥∥
2

2
+

∥∥∥∥M513:1024 − �

M
L

513:1024

∥∥∥∥
2

2

+ λ

∥∥∥∥
�

M
L

1:512 +
�

M
L

513:1024 − 1

∥∥∥∥
2

2

)

� ∂

∂Zl
i

1

2

512∑

j�1

((
Mj − �

M
l

j

)2

+ λ

(
�

M
l

j +
�

M
l

j+512 − 1

)2
)

+
1

2

∂

∂Zl
i

sl∑

j�513

(
Mj − �

M
l

j

)2

� 1

2

512∑

j�1

∂

∂Zl
i

((
Mj − �

M
l

j

)2

+ λ

(
�

M
l

j +
�

M
l

j+512 − 1

)2
)

+
1

2

sl∑

j�513

∂

∂Zl
i

(
Mj − �

M
l

j

)2

� 1

2

512∑

j�1

∂

∂Zl
i

((
Mj − σ

(
zlj

))2
+ λ

(
σ
(
zlj

)
+ σ

(
zlj+512

)
− 1

)2)

+
1

2

sl∑

j�513

∂

∂Zl
i

(
Mj − σ

(
zlj

))2

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(
Mi − σ

(
zli

))
· σ ′(zli

)
+ λ

(
σ
(
zli

)
+ σ

(
zli+512

)
− 1

)

· σ ′(zli
)
, 1 ≤ i ≤ 512

−
(
Mi − σ

(
zli

))
· σ ′(zli

)
+ λ

(
σ
(
zli

)
+ σ

(
zli−512

)
− 1

)

· σ ′(zli
)
, 513 ≤ i ≤ 1024

(9)

For the layer of l � L − 1, L − 2, . . . , 2, ∂ J (W ,b;x, y)
∂ zli

can be

calculated by the formula as follows:

δl−1
i � ∂ J (W , b; x, y)

∂Zl−1
i

� ∂

∂Zl−1
i

1

2

(∥∥∥∥M1:512 − �

M
L

1:512

∥∥∥∥
2

2
+

∥∥∥∥M513:1024 − �

M
L

513:1024

∥∥∥∥
2

2

+ λ

∥∥∥∥
�

M
L

1:512 +
�

M
L

513:1024 − 1

∥∥∥∥
2

2

)

� 1

2

∂

∂Zl−1
i

(
512∑

j�1

(
Mj − �

M
l

j

)2

+
sl∑

j�513

(
Mj − �

M
l

j

)2

+
512∑

j�1

λ

(
�

M
l

j +
�

M
l

j+512 − 1

)2
)

� 1

2

512∑

j�1

∂

∂Zl−1
i

((
Mj − �

M
l

j

)2

+ λ

(
�

M
l

j +
�

M
l

j+512 − 1

)2
)

+
1

2

sl∑

j�513

∂

∂Zl−1
i

(
Mj − �

M
l

j

)2

� −
512∑

j�1

(
Mj − σ

(
zlj

))
·
∂σ

(
zlj

)

∂Zl−1
i

+ λ

512∑

j�1

(
σ
(
zlj

)
+ σ

(
zlj+512

)
− 1

)

· ∂

∂Zl−1
i

(
σ
(
zlj

)
+ σ

(
zlj+512

))
−

sl∑

j�513

(
Mj − σ

(
zlj

))
·
∂σ

(
zlj

)

∂Zl−1
i

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

512∑
j�1

−
(
Mj − σ

(
zlj

))
· σ ′

(
zlj

)
· ∂zlj

∂Zl−1
i

+ λ
512∑
j�1

(σ
(
zlj

)

+σ
(
zlj+512

)
− 1) · σ ′

(
zlj

)
· ∂zlj

∂Zl−1
i

, 1 ≤ j ≤ 512
sl∑

j�513
−

(
Mj − σ

(
zlj

))
· σ ′

(
zlj

)
· ∂zlj

∂Zl−1
i

+ λ
sl∑

j�513
(σ (zlj )

+σ
(
zlj−512

)
− 1) · σ ′

(
zlj

)
· ∂zlj

∂Zl−1
i

, 513 ≤ j ≤ 1024

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

512∑

j�1

∂zlj

∂Zl−1
i

· σ ′(zlj
)
(−

(
Mj − σ

(
zlj

))
+ λ(σ

(
zlj

)

+σ
(
zlj+512

)
− 1)), 1 ≤ j ≤ 512

sl∑

j�513

∂zlj

∂Zl−1
i

· σ ′(zlj
)((

Mj − σ
(
zlj

))
+ λ

(
σ
(
zlj

)

+σ
(
zlj−512

)
− 1

))
, 513 ≤ j ≤ 1024

�
sl∑

j�1

∂zlj

∂Zl−1
i

· δlj · σ ′(zlj
)

�
sl∑

j�1

(
δlj · ∂

∂Zl−1
i

l−1∑

k�1

σ
(
zl−1
k

)
· Wl−1

jk

)

�
sl∑

j�1

(
δlj · Wl−1

j i

)
· σ ′(zl−1

i

)
�

⎛

⎝
sl∑

j�1

(
δlj · Wl−1

j i

)
⎞

⎠ · σ ′(zl−1
i

)

.

(10)

By replacing l − 1 with l, we can obtain δli � ∑sl+1
j�1(

Wl
ji · δl+1j

)
· σ ′(zli

)
. And the derivative of the weight W,

bias B of l-th layer can be obtained by the gradient descent
method:

∂ J (W , b; x, y)

∂Wl
ji

� ∂ J (W , b; x, y)

∂Zl
j

· ∂Zl
j

∂Wl
ji

� δl+1j

�

M
l

i

∂ J (W , b; x, y)

∂blj
� ∂ J (W , b; x, y)

∂Zl
j

· ∂Zl
j

∂blj
� δl+1j

, (11)
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Table 1 Joint constraint algorithm for SCSS

Task: Separate mixed signal using joint constraint algorithm based
on DNN with dual output.

Training Stage:
Input: Training speech signals of corresponding speaker x1−train ,
x2−train and mixed speech signal ytrain .
Step1: Preprocess the target and mixed speech signals with STFT,
obtained the spectrum Ytrain and the ideal ratio masks M1, M2.
Step2: Use Ytrain and [M1, M2] as the input and training target of
DNN, respectively.
Step3: Train the DNN with the constraint algorithm based on the
new cost function.
Step4: Find appropriate parameters.
Output: Well-trained DNN.

Separation Stage:
Input: mixed test speech signal ytest and the well-trained DNN.
Step1: Preprocess the test signals with STFT and obtain the
spectrum Ytest .

Step2: Obtain the estimated ratio masks
�

M1,
�

M2 with Ytest and
well-trained DNN.
Step3: Calculate magnitude spectra by Eq. (3).
Step4: Synthesize separated speech signals.

Output: The separated speech signals �
x1,

�
x2.

At the end of the training, with the learning rate α, we can
update the weights and bias by the following formula until
the number of iterations is met:

Wl
ji � Wl

ji − α
∂ J

∂Wl
ji

blj � blj − α
∂ J

∂blj

, (12)

In the separation stage, we can obtain the predicted ratio

masks
�

Mi (i � 1, 2) of i-th sources by the well-trained DNN
model, and then the estimated magnitude spectra of individ-
ual speech can be received using Eq. (3). With the amplitude
estimation of the speaker and phase of the mixed signal, we
can recover the signal from the frequency domain to the time
domain via inverse STFT. Finally, the estimated speech sig-
nal’s waveform is synthesized by an overlap add method.

3.4 Joint constraint algorithm for SCSS

On the basis of the new loss function, the whole process
of the joint constraint algorithm is described as Table 1. In
the training stage, the target and mixed speech signals are
preprocessed for obtaining the magnitude spectra and IRMs.
Then, the BP algorithm is used to solve the proposed cost
function, and the DNN parameters are obtained. Thus, the
training of DNN is completed. With the joint constraint of
input and outputs of DNN, a good separation effect can be
obtained. In the separation stage, the estimated ratio masks
canbeobtainedwith thewell-trainedDNNand the test signal.

Then the estimated magnitude spectra can be calculated by
Eq. (3), and we can synthesize separated speech signals.

4 Experiment and results analysis
In this section, we evaluate the system performance of speech
separation by conducting experiments on the GRID corpus
[18]. Firstly, we introduce the dataset and experimental
settings. Secondly, the impact of regularization parameter is
discussed. Thirdly, the comparison of performance between
the proposed algorithm and the basic DNN cost function is
displayed. Finally, we compare the performance of the pro-
posedmethodwith other SCSSapproaches based on different
combinations of training targets and the number of outputs.

4.1 Dataset and experimental setup

1) Datasets

We perform the SCSS experiment on the GRID corpus, from
which both the training set and the test set are selected. This
dataset contains of 18 males and 16 females, each person
has 1000 clean utterances. 500 utterances are also randomly
selected fromGRID corpus for each speaker as a training set.
The test data are randomly selected 50 sentences from the
remaining 500 utterances, and the final results are obtained
by averaging.

All utterances used in the training set and test set are down-
sampled to 25 kHz, and the input features are obtained by
STFT. The frame length used for the extraction is 512 sam-
ples, and frame shift is 256 samples.

2) Parameter settings

The dual-output DNN framework used in experiments is
512-1024-1024-1024-1024, which denotes 512 nodes for the
input layer, 1024 nodes for each of the three hidden layers
and 1024 nodes for output layer. Because of 512 nodes for
the output layer of single source, the size of nodes for the out-
put layer of dual source is 1024. The number of epoch and
the batch size in experiments are set to 50 and 128, respec-
tively. The learning rate of the first 10 epoch is set to 0.1, and
then decreases by 10% every epoch at last 40 epoch. As for
the regularization parameter, we set it to 0.5 when separating
male +male and female +male utterances, and 0.6 when sep-
arating female + female signal. The reasons for the selection
of regularization parameters are analyzed in Sect. 4.2.

3) Evaluation metrics

In this paper, we used several metrics to evaluate the per-
formance of separation, Perceptual Evaluation of Speech
Quality (PESQ) score [19], signal-to-distortion ratio (SDR),
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Fig. 2 Average separation performance with respect to regularization
parameter

signal-to-interference ratio (SIR) and sources-to-artifacts
ratio (SAR) [20]. The higher the metrics are, the less the
separated speech distortion is.

4.2 Influence of regularization parameter

To obtain the optimal result in our algorithm, we study the
effects of regularization parameter on the performance of dif-
ferent gender combinations. From the corpus, we randomly
select 2 males and 2 females, where a total of three gender
combinations (F + F, F + M and M + M) can be obtained. F
andM are female and male, respectively. And the regulariza-
tion parameter was changed from 0 to 1 with an increment
of 0.1. The effect of regularization parameter on PESQ is
shown in Fig. 2. We can see that when λ is less than 0.5, the
speech intelligibility of all the three gender combinations is
improved with the increase in λ. When the range of λ is from
0 to 0.3, the PESQ increased rapidly, and slowly increased
between 0.4 and 0.5. Because of the difference of diverse
gender combinations, the best separation performance of λ

is not the same. Among them, M + M separation and F + M
separation have the best performancewhen λ is set to 0.5. For
F + F separation, the highest separation performance can be
achievedwhenλ is set to 0.6. However, whenλ is greater than
0.6, the speech intelligibility of the separated signal begins to
decline slowly. Even in this attenuation, the separation per-
formance is better when λ is set to 1 than when λ is set to
0, which proves the effectiveness of the proposed algorithm.
Therefore, for different gender combinations, we choose dif-
ferent regularization parameters. Separating M + M and F +
Mmixed speech signals, λ is set to 0.5, and separating mixed
signal in F + F, λ is set to 0.6.

4.3 Performance comparison

In this part, we first compare our proposed algorithmwith the
dual-output DNN-based speech separation using the basic
cost function (noted as Basic). Secondly, the performance of
dual-output DNN with different training targets is evaluated.

Then, we assess the results of our method with single-output
DNN using different training targets. The comparators can
be noted as: AMS-single, AMS-dual (i.e. the basic func-
tion), IRM-single, and IRM-dual. IRMand amplitude spectra
(AMS) are the training targets of DNN, and dual and single
are the output numbers of DNN, respectively.

(1) Comparison with basic cost functions

To evaluate the effectiveness of the proposed method, we
have done a series of experiments compared with the cost
functions as Eq. (5) and cost function in [9]. We randomly
select 2 males and 2 females from the GRID corpus, where
a total of six gender combinations (F1 VS F2, F1 VS M1,
F1 VS M2, F2 VS M1, F2 VS M2 and M1 VS M2) can
be obtained. F1 and F2 are females. M1 and M2 are males.
The SDR, SAR, SIR and PESQ values of 50 sentences about
six gender combinations are tested, and all of our results
are averaged. From the results shown in (a) to (d) of Fig. 3,
we can see that compared with the basic dual output DNN
(Basic), the SDR, SAR, SIR and PESQ values of proposed
method have generally increased under different gender com-
binations. This is because the proposed method explores the
joint relationship between different sources. Specifically, it
can be observed from Fig. 3(a)–(d) that the proposed method
improves 0.77 dB in SDR, 0.69 dB in SAR, 0.51 dB in SIR
and 0.46 in PESQ compared with the basic cost function in
separating mixed signals of female–female. We can observe
that the optimization in terms of SDR and SIR is not obvi-
ous in F1 VS F2, because the pitch frequency is similar in
female speech sounds, and the difference between female
signals is smaller than other gender mixtures. As we can see
from Fig. 3, in terms of male–male separation, SDR, SAR,
SIR and PESQ were 1.72 dB, 1.42 dB, 0.86 dB and 0.4,
respectively, higher than themethodwith basic cost function.
What’s more, the performance of the male–male signal sepa-
rated by ourmethod is almost the same as that inmale–female
obtained by the basic algorithm. Even when SAR and PESQ
are used as measurement indicators, our method is slightly
higher than the female–male in basic function. It can be seen
from the overall trend in the figure that the separation per-
formance is best when signals are mixed up by male and
female speech signal. This is because there is the signifi-
cant discrimination contained in the signals between male
and female, such as in the amplitude and pitch frequencies.
Compared with the method in [9] (MaxDiffer), the perfor-
mance of the proposed algorithm is still outstanding. It can
be observed fromFig. 3 that the proposed algorithm improves
SDR, SAR, SIR and PESQ 0.57 dB, 0.48 dB, 0.16 dB and
0.284 compared with theMaxDiffer in separating mixed sig-
nals of female–female. In addition, the proposed algorithm is
0.44 dB, 1.2 dB, 0.35 dB and 0.198 higher in SDR, SAR, SIR
and PESQ than themethod usingMaxDiffer when separating
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Fig. 3 Performance comparison
for different separation
approaches. a SDR, b SAR,
c SIR and d PESQ
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Fig. 4 Schematics of F–F signals synthesis and decomposition. a Tar-
get (F1). b Target (F2). c Mixed (F1 + F2). d Estimation separated by
the DNN-basic (F1). e Estimation separated by the DNN-basic (F2).

f Estimation separated by the proposed algorithm (F1). g Estimation
separated by the proposed algorithm (F2)

Fig. 5 Schematics of M–M signals synthesis and decomposition. a Tar-
get (M1). bTarget (M2). cMixed (M1 +M2). dEstimation separated by
the DNN-basic (M1). e Estimation separated by the DNN-basic (M2).

f Estimation separated by the proposed algorithm (M1). g Estimation
separated by the proposed algorithm (M2)

male–male signal. Although in terms of F2-M1 separation,
the proposed method is slightly inferior to the method using
the maximum difference term in SDR and SIR, the overall
trend of separating the female–male signals is still better than
MaxDiffer.

We can see from these results that the algorithm proposed
has superiorities in the intelligibility of speech and the qual-
ity of separation. We randomly extract the utterances of the

different gender pairs from the corresponding test data, as
shown in Figs. 4, 5, and 6, where (a) and (b) are schematic
representations of the pure speech in the time domain, and
(c) represents the spectra of the mixed speech. (d) and (e)
are estimated sources separated by the DNN-basic method.
To give a fair comparison with (d) and (e), the normalized
version of our algorithm is shown in (f) and (g). It is obvious
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Fig. 6 Schematics of F–M signals synthesis and decomposition. a Target (F). b Target (M). c Mixed (F + M). d Estimation separated by the
DNN-basic (F). e Estimation separated by the DNN-basic (M). f Estimation separated by the proposed algorithm (F). g Estimation separated by
the proposed algorithm (M)

Table 2 Performance comparisons of dual-output DNN with different
targets

Combination Gender SDR (dB) SAR (dB) SIR (dB)

AMS-dual F + F 3.7093 3.3435 7.1954 1.219

F + M 4.7461 4.8484 9.8097 1.763

M + M 4.0484 4.6266 7.8512 1.702

IRM-dual
(basic)

F + F 5.7422 6.2422 10.7022 1.49

F + M 7.8955 8.3877 13.1102 2.071

M + M 6.541 7.2256 11.619 1.937

Proposed
algorithm

F + F 6.515 6.9355 11.2191 2.098

F + M 9.581 9.343 14.296 2.662

M + M 8.2652 8.6468 12.4819 2.562

that the amplitude of the speech obtained by our algorithm
is closer to the original signal.

(2) Evaluations of dual-output DNN with different training
targets

To evaluate the performance of dual-output DNN with dif-
ferent training targets in three gender mixtures, we conduct
experiments on three different gender combinations, namely
F + F, F + M, M + M. From the results displayed in
Table 2, we can see that the separation performance of IRM-
targeted DNN is better than amplitude spectrum-targeted
DNN in general. This can be explained that the mapping-
based approach works well at low frequencies, but loses
some details in medium and high frequencies, which are
important for speech intelligibility and speech quality [21].
The proposed algorithm is outstanding in different gender
combinations compared with other dual-output methods.
Especially in separating mixed signals of males, the pro-
posed method is 1.72 dB in SDR, 1.19 dB in SIR, 1.42 dB in
SAR and 0.63 in PESQ higher than the IRM-dual method. In
addition, compared with AMS dual output, the advantages
are more obvious. For example, in terms of F–M separation,
the optimizations of SDR, SAR, SIR and PESQ are 4.83 dB,
4.63 dB, 4.49 dB and 0.9, respectively. It can be seen from

Table 3 Performance comparisons of different targets and output num-
bers

Combination Gender SDR(dB) SAR(dB) SIR(dB) PESQ

AMS-single F + F 4.7381 4.9802 9.4581 1.521

F + M 5.8347 5.954 11.5716 1.858

M + M 5.025 5.467 9.9059 1.675

IRM-single F + F 6.7343 7.2066 11.308 2.281

F + M 9.6159 10.0293 14.9217 2.931

M + M 8.4084 8.7147 12.8915 2.744

Proposed
algorithm

F + F 6.515 6.9355 11.2191 2.098

F + M 9.581 9.343 14.296 2.662

M + M 8.2652 8.6468 12.4819 2.562

the results that the separation performance and speech intel-
ligibility of the separated signal are significantly improved
by the proposed method.

(3) Comparisons with single-output DNN using different
training targets

In this part, the single-output DNN is trained for mapping the
relationship between mixed signal features and target signal
features. As shown in Table 3, the performance of the pro-
posed algorithm is better than the AMS-single and slightly
lower than the IRM-single in general. It may be explained
that the single-output DNN is trained for one signal, and the
training parameters are more suitable for the specified signal.
Specifically, compared with single output, the dual output
results of each gender combination on SDR, SAR and SIR
decreased. However, the performance of our proposed algo-
rithm is slightly different from that of single-output DNN
on SDR, SAR, SIR and PESQ where the maximum reduc-
tion is 0.22 dB, 0.69 dB, 0.63 dB and 0.269, respectively.
For SDR in F + F, SAR in M + M, and SIR in F + M,
the results are almost the same as the single-output sepa-
ration method. The results clearly show the effectiveness of
the proposed algorithm. In addition, different sources can be
separated simultaneously by the dual-output method, while
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DNN based on single-output can only separate one signal at
a time, which is time consuming.

5 Conclusion

In this work, we propose a joint constraint algorithm based
on a new cost function which is used to train the dual output
deep neural network for the single-channel speech separa-
tion problem. The new cost function can exploit the joint
informationbetween the sourceswhich are needed to be sepa-
rated. In order to verify the proposed algorithm performance,
we compare it with the methods using state-of-the-art cost
function in the dual-output DNN. The experimental result
shows that the new method yields significant performance
improvements over them. It also indicates that the novel cost
function estimates the corresponding ideal output valuemore
accurately and exploits the relationship between the outputs.
In this joint constraint, the training accuracy of the separa-
tion method can be further increased, and its performance is
close to that of single-output DNN. What’s more, we further
explore the effect of regularization parameter on the intelligi-
bility of the separated sources. The separation performance
of the same gender needs to be further improved, so in the
futurework,wewill further reduce the distortion of separated
same-gender signals.
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