
Signal, Image and Video Processing (2020) 14:1245–1253
https://doi.org/10.1007/s11760-020-01665-9

ORIG INAL PAPER

DLT-Net: deep learning transmittance network for single image haze
removal

Bin Li1 · Jingjuan Zhao2 · Hui Fu3

Received: 12 September 2019 / Revised: 15 January 2020 / Accepted: 20 February 2020 / Published online: 2 March 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Outdoor images taken in inclement weather conditions are often contaminated with colloidal particles and droplet in the
atmosphere. These captured images are susceptible to low contrast, poor visibility, and color distortion, which is the reason
for serious errors in digital image vision systems. Therefore, defogging research has material significance for practical
applications. In this paper, image dehazing is regarded as a mathematical inversion and image restoration process on the basis
of fog image degradation model. The global atmospheric light A can be approximately estimated by combining Gaussian low-
pass filtering with the single-threshold segmentation and binary tree method. And a deep learning transmittance network is
adopted to modify transmittance. Comparison experimental results show that our method is effective in dealing with thick fog,
complex scenes and multicolor images. In addition, our method is superior to four other state-of-the-art defogging methods
in visual impact, universality and running speed.
Graphic abstract The overall framework of our method

End

Start Input
imageH(x, y) Feature

extraction
Nonlinear
mapping

Optimized 
transimittance

 low-frequency 
part

single threshold 
segmentation

binary tree 
method

Image
reconstruction

( , ) –( , ) = + A
1 0max{ ( , ), }

H x y AF x y
t x y t

t1 (x, y)

Keywords Mathematical inversion · Image restoration · Binary tree · Deep learning · Transmittance

1 Introduction

Currently,many computer vision technologies are required to
work in perfect weather condition and high-definition envi-
ronments, whereas the visibility of each pixel in the object
image only relies on the pixel radiance of the scene. In the-
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ory, intelligent vehicles, fire monitoring and other image
vision applications can only work if the input image is haze-
free. Therefore, contaminated images can bring about serious
damage. Hence, the study of image defogging is of great
value.

The primary target of enhancement-based defogging
approaches is to artificially enhance the visual quality of
degraded images [1–3]. The traditional enhancement-based
defogging approaches contain image histogram equalization
and its derivative methods [4]. Other main enhancement-
based defogging approaches include Retinex methods [5],
prior information-based enhancement methods [6], homo-
morphic filter dehazing algorithm [7], etc.

In general, the restoration-based defogging approaches
perform better than other kinds of approaches. Sulami [8]
proposed an algorithm related to Fattal’s strategy [9]. This
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algorithm assumed that the scene albedo and the transmit-
tance are statistically independent. Sulami’s method can not
only obtain compelling defogging results but offer a reliable
way of transmittance estimation. Nevertheless, this method
cannot work effectively when the hypothesis is broken. On
the basis of the multiple observation, He et al. [10] put for-
ward the famous theory dark channel prior (DCP) which
holds that at least one color channel in the clear outdoor
image has very low pixel intensity. This method can obtain
quite remarkable defogging results, while it consumes a long
processing time because of soft matting strategy. To promote
the efficiency, he further introduces guided filter [11] into
this algorithm, which has a compelling effect on preserv-
ing edge and restraining gradient reversal artifacts along the
sharp edges, whereas theDCP theorywill be invalidwhen the
scene objects are essentially similar to the global atmospheric
light and no shadow is cast on the scene. Presently, vari-
ous DCP model-based defogging algorithms [12–14] have
been developed.Nevertheless, the transmittancemap of these
algorithms is not smooth and the image noise cannot be
avoided. Li et al. [14] put forward aDCP-based deep learning
algorithm for calculating the bright region of transmittance
map based on inverse tolerance, while the calculation of tol-
erance needs parameter adjustment for different input haze
images. The color aberration cannot be fully eliminated
with too small tolerance, whereas restoration errors can be
occurred in dark regions with too large tolerance. Through
deep analysis of each pixel and training of each haze image,
a multi-scale convolution network model is obtained by Ren
et al. [15]. However, the processing efficiency of this method
decreases with the increase in image size.

In this paper, the deep learning transmittance network is
used to get and optimize transmittance. The other parame-
ter, global atmospheric light value, is obtained by combining
Gaussian low-pass filtering, simple threshold segmentation
method and binary tree method.

2 Theoretical model

On the basis of the theory of atmospheric scattering [16], the
fog image degradation model is composed of two parts: one
is the attenuation of reflected light between the target and
the camera, and another is the scattering process of global
atmospheric light from the object to the camera. Therefore,
the image degradation mechanism in heavy weather can be
depicted by the atmospheric light attenuation model and the
atmospheric light scattering model, as shown in Fig. 1. This
is the theoretical basis of fog image degradation and themain
basis of image restoration from degradation. The basic for-
mula of the atmospheric scattering model [17] is given by
Eq. (1).

Diffusedsky light

Observationpoint Ground reflected light

Scattering medium

Fig. 1 Atmospheric light scattering model

Fig. 2 Estimation of global atmospheric light. a Initial fog image,
b image processed by low-pass filtering, c single-threshold segmen-
tation, d binary tree method

H (x, y) � F(x, y)t(x, y) + A(1 − t(x, y)) (1)

where (x, y) means the image pixel coordinates, H(x, y) the
fog image, F(x, y) the fog-free image, A the global atmo-
spheric light, and t(x, y) the transmittance.

After estimation of A and t(x, y), the fog-free image can
be recovered from the deformation of Eq. (1).

3 Methods

3.1 Estimation of global atmospheric light value A

3.1.1 Obtain the low-frequency part of the image

In Park’s theory [18], there are two reasons for image degra-
dation in haze environment. First, the overall image color is
gray white due to the expansion of illumination parameters;
second, the reflection parameters areweakened,whichweak-
ens the image details, edges and other image characters. The
interaction of these two influences makes the overall effect
of haze image not good.

Therefore,Gaussian low-pass filtering is used to obtain the
low-frequency part of the image, and then single-threshold
segmentation method and binary tree algorithm are used to
acquire the approximate global atmospheric light value, as
can be seen in Fig. 2.
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3.1.2 Estimation of approximate global atmospheric light A

Through continuous experiments, it can be seen that when
the value of global atmospheric light is between 218 and
223, the dehazing effect is good. Besides, manual selection
of threshold can save processing time. Therefore, we choose
a single-threshold segmentation method [19] to obtain the
approximate area of global atmospheric light A. And then
global atmospheric light A is determined by binary tree
method [20, 21].

3.2 Estimation of transmittance

3.2.1 Feature extraction

1. Dark channel feature map

The dark channel feature map is obtained on the basis of the
theory of dark channel prior, i.e., in the non-sky region of a
fog-free image, the pixel values of at least one color chan-
nel are extremely low and some are even close to zero. Dark
channel mainly exists in the shadow of the object or land-
scape projection, color or black scenery surface. In the case
of red objects, the green and blue channels are very low in
brightness, so there are dark channels. In this paper, a 5*5
inverse convolution kernel is used to complete the convolu-
tion of the input image to obtain the dark channel feature
map.

2. Hue difference

Ancuti [22] proposed that in the fog area, except for the depth
discontinuous region, the brightness value of other parts
changes very little. Based on this assumption, the degraded
image and its semi-inverse image are transformed into HSI
space. In RGB three channels, the pixel values of the orig-
inal pixel and the inverse pixel are compared, respectively,
and the larger value is taken. The semi-inverse image can be
described as Eq. (2).

Hc
si(x, y) � max[Hc(x, y), 1 − Hc(x, y)], c ∈ {R,G, B}

(2)

where Hc(x, y) represents the pixel grayscale values of RGB
color channels and Hc

si(x, y) the pixel grayscale values of
semi-inverse haze images. Hc

si(x, y) ranges from 0.5 to 1.
Due to the high pixel value in the image area severely affected
by haze, the semi-inverse pixel value remains unchanged.

The hue-difference �H can be obtained by taking the
absolute value through the function abs(), as shown in
Eqs. (3)–(5).

Feature extraction Nonlinear mapping Image construction

a1×a1×
c×n1

a2×a2×
n1×n2

a3×a3×
n2×c

Fig. 3 Three modules of deep convolutional neural network

θ �
{

1/
2[(R − G) + (G − B)]

[(R − G)2 + (R − B)(G − B)1/2]

}
(3)

H �
{

θ B ≤ G
360 − θ B > G

θ ∈ [0, 360] (4)

�H � abs(H − Hsi) (5)

where H and Hsi mean hue value of Hc(x, y) and Hc
si(x, y).

Then we manually set a threshold value t as 10°. The image
part with �H less than this threshold is set as fog zone, and
the image part with �H greater than this threshold is set as
non-fog zone.

3.2.2 Mathematical model of DLT-Net

The operations of DLT-Net can be divided into three cat-
egories: feature extraction, nonlinear mapping and image
reconstruction. And the overall structure is shown in Fig. 3.

1. The operation of feature extraction

Feature extraction V1(*) is an important part of DLT-Net.
Specifically, it is the process of representing the image block
of the initial transmittancemap as high-dimensional variable,
which can be expressed by Eq. (6).

V1(He(x, y)) � f1(W1 ∗ He(x, y) + B1) (6)

where He(x, y) denotes feature maps, which are composed
of dark channel, hue-difference feature and grayscale feature
maps, * convolution operation, f 1(*) means activation func-
tion, and W1 and B1 weights and deviations, respectively.
Figure 3 shows an example, with c and n1 representing the
number of color channels and convolution kernel, a1 repre-
senting the size of convolution kernel.

2. The operation of nonlinear mapping

The n1-dimensional image feature block extracted from
the input transmittance is nonlinearly mapped to another
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n2-dimensional vector space. The object of the nonlinear
mapping operation is not the input transmittance block, but
the feature image block. This process can be modeled as
Eq. (7).

{
V2(x1) � f2(W2 ∗ x1 + B2))
x1 � V1(He(x, y))

(7)

Here, f 2(*) means activation function, x1 the intermediate
variables, and W2 and B2 weights and deviations, respec-
tively. The output of the nonlinear mapping is close to the
transmittance block of haze-free image in theory. Although
increasing the number of convolutional layers is beneficial
to feature extraction, the parameters of the network model
will increase rapidly, leading to the difficulty of convergence
and the increase in training time. Therefore, network design
is very important.

3. The operation of image reconstruction

The image reconstruction uses a set of trained filters to aver-
age the overlapping areas of the feature image blocks in the
previous layer to obtain the complete transmittancemap.This
process can be depicted as Eq. (8).

{
V3(x2) � f3(W3 ∗ x2 + B2))
x2 � V2(x1)

(8)

where f 3(*) means activation function, x2 the intermediate
variables, W3 and B3 weights and deviations, respectively.

3. Activation function

In the first group of DLT-Net, we used limited rectified linear
unit (L-ReLU) and hyperbolic tangent (tanh) as activation
functions to adapt feature extraction process and ensure the
transmittance between 0 and 1. The function of limited rec-
tified linear unit (L-ReLU) and its derivative are Eqs. (9) and
(10), respectively.

L − ReLU � ln
(
1 + ex/

2

)
+ 0.1x (9)

L − ReLU′(x) � ex

1 + ex
+ 0.1 (10)

It can be seen from the formula that L-ReLUhas four basic
properties necessary for activation function: (1) The function
is nonlinear, which can play a good nonlinear mapping role
in CNN; (2) since the derivative of the function (9) is greater
than 0, the function is monotone decreasing, which ensures
that every layer of network in CNN is a convex function; (3)
when x>0, the mathematical model of L-ReLU is equivalent
to f (x) � x; (4) The output value of the function is infinite,

and the model can achieve higher training efficiency when
training at a lower learning speed.

Compared with the traditional activation function,
L_ReLU activation function does not disappear in the gra-
dient descent method. As x approaches positive infinity and
negative infinity, the limit of the derivative of ReLU function
is 1.1 and 0.1, respectively. When the derivative of L_ReLU
function is too large, its value is close to 1.1. While if x is
too small, it’s going to be close to 0.1 and it’s not going to
be 0. Therefore, L_ReLU activation function can be used for
effective gradient descent training in CNN.

Besides, since the pixel value of the feature graph is greater
than zero, the range of the tanh function is between 0 and 1,
as shown in Eq. (11).

0 < (eHe(x,y) − e−He(x,y))
/
(eHe(x,y) + e−He(x,y)) < 1 He(x, y) > 0

(11)

In the other groups of DLT-Net, rectified linear unit
(ReLU) is selected as activation functions to improve pro-
cessing efficiency.

5. Network training

Based on the objective of DLT-Net, Eq. (12) is used as the
loss function [23] to compare the predictive transmittance
map with the reference transmittance map.

C(W, b) � 1

2n

∑
i

||t1(x, y) − t ′(x, y)||2 (12)

Here, t1(x,y) and t′(x,y) represent the predictive transmit-
tance and the reference transmittance, respectively. W and
b mean weights and deviations, separately. n is the sum of
transmittance map pixels in the training set.

In the process of training parameters, not only the syn-
thetic haze images, but also the outdoor real scene haze
images were selected. For synthesis haze images, Fc(x, y)
is the pixel value of ground-truth image, and for the real out-
door fog images, Fc(x, y) is set to 0.015 on the basis of dark
channel prior and repeated experiments. The reference trans-
mittance can be obtained by combining Eq. (1), as shown in
Eq. (13).

(13)

C(W, b) � 1

2n

∑
i

||t1(x, y) − t ′(x, y)||2

� 1

2n

∑
i

||V3(x2) − ||A − Hc(x, y)||
||A − Fc(x, y)|| ||

2

Stochastic gradient descent algorithm (SGD) [24] is used
to constantly adjust the weight and bias to get the minimum
cost function. All initial weights of DLT-Net are randomly
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initialized with a Gaussian distribution with standard devia-
tion of 0.001, and all initial biases of DLT-Net are set to 0.
The process of updating weights and biases by SGD method
is given in Eqs. (14) and (15).

W � W(old) − η
∂

∂W(old)
C(W, b) (14)

b � b(old) − η
∂

∂b(old)
C(W, b) (15)

In Eqs. (14) and (15),W and b express weights and biases
after the update, respectively, W(old) and b(old) weights and
biases before the update, separately.

3.2.3 Structure of DLT-Net

Before entering DLT-Net, preprocess the image and adjust
its size to 483*483. This process can ensure that the image
size after convolution, pooling or up-sampling is an integer.

1. The first group of DLT-Net

In the first group of DLT-Net, there are convolutional lay-
ers, pooling layers and fully connected layers. The input
image is processed by 3×5×5 inverse convolution kernel
to obtain dark channel feature map. In the following two
pair of convolution and pooling processes, with convolu-
tional and pooling kernels 128 3×3×3, 128 128×3×3,
256 128×3×3 and 258 256×3×3,we can get 128×239×
239, 128×239×239, 256×59×59 and 256×3×3 feature
maps, respectively. Besides, we also adopt max-pooling pro-
cess with a pooling kernel of 512 256×5×5 to obtain local
extremum. The essence of this operation is to select the max-
imum value of the neighborhood, which not only has spatial
invariance, but also satisfies the local constant hypothesis of
hazy medium.

Finally, 1024 1×1 feature map can be gotten through
two sets of fully connected operations. And transmittance
between 0 and 1 can be obtained by activation function tanh.

2. The second group of DLT-Net

In first group of DLT-Net, there are convolutional lay-
ers, pooling layers and up-sampling operation. The hue-
difference feature map obtained by preprocessing is taken as
the input image. In the following two pairs of convolution and
pooling processes, with convolutional and pooling kernels 16
3×3, 16 16×5×5, 32 16×3×3 and 32 32×3×3, we can
get 16×241×241, 16×119×119, 32×59×59, 32×29×
29 featuremaps, respectively. Thenweuse convolutional ker-
nel of 1 32×5×5 to obtain two-dimensional feature map.
And the image size is linearly enlarged to 483*483 by the
up-sampling operation.

Fig. 4 Estimation of transmittance by DLT-Net

Fig. 5 Transmittance map of our method. a A simple dark channel of
haze image, b initial transmittance, c transmittance of our method

3. The third group of DLT-Net

In third group of DLT-Net, we used convolution operation
to deal with the fuzzy and noise problems caused by the
output by the up-sampling operation of the second group, and
optimize the detail and clarity of the transmittance map. The
grayscale feature map obtained by preprocessing combined
with the output image of the second group is taken as the
input image. In addition, we use 0 padding to resize feature
maps.

As an illustration, the DLT-Net is applied to estimate
the transmittance map of a haze image. Besides, estimation
of transmittance by DLT-Net and transmittance map of our
method are shown in Fig. 4 and Fig. 5, respectively.

4 Comparison and analysis of experimental
results

In this paper, the image defogging effectiveness is compared
with other typical defogging methods. All the comparison
experiments are performed on MATLAB 2017a under Win-
dows 10 and run on a desktop computer in configuration with
Intel(R) i7-6700U 3.4 GHz processor and 16 GB RAM. We
created our own image set, which contains 5000 outdoor fog
images, and completed the creation of synthetic fog images.

123



1250 Signal, Image and Video Processing (2020) 14:1245–1253

Fig. 6 Comparison of our approach and four advanced dehazing meth-
ods applied to haze images. a Initial haze image, b–e dehazing result
by methods [2, 12, 14, 15], f our result

These images cover different outdoor natural scenes, includ-
ing various natural landscapes, buildings, lake views, aerial
photography images, distant and close views, etc.

This paper adopts subjective and objective evaluation
strategies. Subjective evaluation strategy is based on human
visual perception, while objective evaluation strategy is on
the basis of experimental data. The objective evaluation
strategy in this paper includes full-reference image quality
assessment metrics, no-reference image quality assessment
metrics, and the algorithm efficiency. And the comparison
algorithms are method [2, 12, 14, 15].

4.1 Subjective evaluation

In this paper, haze images are selected to complete the exper-
iment, including the test images of buildings, roads and lake,
etc. The resolutions of the images were also set as 280*380,
380*580 and 580*680, respectively.

The scene in Fig. 6a is relatively simple, mainly buildings
and trees. Here, we compared our results with four excellent
dehazing algorithms: algorithm [2, 12, 14, 15], as shown in
Fig. 6b–e. It can be seen from Fig. 6b that the method [2]
has achieved good visual effect after image enhancement.
Although method [12] improves the contrast, the color of the
image is obviously distorted, especially in the sky area and
the nearby leaves, as shown in Fig. 6c. Similar experimental
results can also be seen in Fig. 6d. The result shows that
method [14] has a low color fidelity and there are a lot of
halo artifacts in a large area of sky. In Fig. 6e, there is much
noise, and the image effect is slightly dark. And it can be
easily seen in the canopy part of the image. Besides, the
effect of our method is bright and clear.

The roads, cars and buildings in Fig. 7a contain very com-
plex scenery, and it is difficult to restore image. The dehazing
effect shown in Fig. 7b is excessively enhanced, and the color
deviation of the sky area and the square is obvious. As can
be seen from Fig. 7c, the brightness of recovery effect is

Fig. 7 Comparison of our approach and four advanced dehazing meth-
ods applied to haze images. a Initial haze image, b-e dehazing result by
methods [2, 12, 14, 15], f our result

Fig. 8 Comparison of our approach and four advanced dehazing meth-
ods applied to haze images. a Initial haze image, b–e dehazing result
by methods [2, 12, 14, 15], f our result

improved, but the residual amount of fog is relatively high.
Halo effect exists in the dehazing effects of Fig. 7d and e,
especially in Fig. 7e. In this paper, the close-up and distant
scenes are restored well by our method, and a certain amount
of fog is retained to make the image more realistic.

As regards the fog image contains large areas of sky
and lake in Fig. 8a, the visual effect is greatly proposed by
methods [14, 15] and our method, as shown in Fig. 8b–f.
The output image of method [2] is obviously over-saturated,
resulting in unnatural scene color distortion, which means
that this method stretches local contrast and generates false
edges. In the experiment of method [12], the noise variance
is set to a relatively large value to restrain noise amplifica-
tion. As the scene depth increases, the image noise increases
sharply. Although the method [14] preserves image details
of tree’s areas, it leads to unnatural scene color. Although
the restoration effect in Fig. 6e is close to the real scene, the
details are somewhat fuzzy. Figure 8f displays the defogging
result of our algorithm. It can be seen that fog most objects in
the scene have been restored, proving that the haze has been
almost cleared.
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Table 1 The full-reference evaluation of our method and comparison
methods

MSE SSIM PSNR

Method [2] 12.8535 0.7732 16.1894

Method [12] 10.1229 0.7789 17.8603

Method [14] 10.0121 0.7851 17.1572

Method [15] 9.2126 0.8369 19.7163

Improved method 8.8915 0.8235 20.3895

4.2 Objective evaluation

4.2.1 Full-reference evaluation metrics

We also adopt full-reference evaluation metrics to compare
the dehazing effect of our method and methods [25, 26],
including mean square error (MSE), peak signal–noise ratio
(PSNR) and structural similarity image measure (SSIM).

The full-reference evaluation of our method and compar-
ison methods is shown in Table 1.

In general, a smaller MSE indicates that the defogging
algorithm has good performance, and higher values of SSIM
and PSNR imply a better performance of dehazing. Multi-
scale analysis is used to process each pixel, so the SSIM
value ofmethod [15] is relatively high. The dehazing effect of
method [2] has a lot of image noise, distortion and halo phe-
nomenon, and the three indicators are not ideal. In the process
of image partitioning by method [14], it is difficult to avoid
image noise, so PSNR index is not very good. Halo effect
and unnatural scene color distortion problems inmethod [12]
result in poor MSE and PSNR indexes.

4.2.2 No-reference evaluation metrics

Four famous no-reference evaluation metrics [27–29] are
adopted to evaluate our method and four outstanding defog-
ging methods, which contain e, r, ε and information entropy
(IIE). The ratio e represents the new visible edges of restored
image.

In general, a bigger IIE indicates that the defogging algo-
rithm has good performance, making the image details clear
and the contrast high. Moreover, higher values of e and r
imply a better performance of image levers, details and con-
trast, whereas a value of 2approaches to zero reflects better
visual effect.

The results of the evaluations (e, r and 2) are shown in
Table 2, and the bold numbers represent the best index results
obtained by our algorithm or the algorithms [2, 12, 14, 15].
From the experimental data, our method gets most of the
highest values of IIE, e and r, and the lowest value of 2. In
short, the images recovered by our method have rich image
details and layers, high image contrast and brightness. The
r index of Fig. 6b processed by method [2] is the highest;
this is because the image is over-enhanced and color cast
phenomenon appears. The IIE index of Fig. 7e processed by
method [15] is the highest; this is because the dehazing image
contains a lot of interference information.

4.2.3 Time efficiency

The processing time [26] of our method and comparison
methods in this paper is shown in Table 3. Taking an image
with a resolution of 380*520 as an example, the process-
ing time of our method is 3519 ms, which is relatively fast.
Combined with the independent component analysis algo-

Table 2 The no-reference
evaluation of comparison
methods

Indicator Images e r σ IIE

Fog image Figure 6a
Figure 7a
Figure 8a

0.5398
0.7352
1.0601

1.2539
1.5887
1.7569

0.3131
0.1979
0.1023

7.2979
7.5732
6.9031

The algorithm [2] Figure 6b
Figure 7b
Figure 8b

0.4815
0.5396
1.1368

2.2022
2.2359
2.3571

0.3685
0.1359
0.0889

7.7035
7.2979
7.1079

The algorithm [12] Figure 6c
Figure 7c
Figure 8c

1.1382
0.6015
1.2812

1.4889
2.1578
2.2869

0.1856
0.3969
0.1339

7.3989
7.5515
6.9918

The algorithm [14] Figure 6d
Figure 7d
Figure 8d

0.6541
0.9482
1.4051

1.8973
1.7981
1.9678

0.1049
0.2621
0.0886

7.4021
7.6375
7.2912

The algorithm [15] Figure 6e
Figure 7e
Figure 8e

0.9842
1.2165
1.4608

1.8792
1.9746
1.8531

0.1531
0.1668
1.2885

7.7012
7.8816
7.0941

The improved
algorithm

Figure 6f
Figure 7f
Figure 8f

1.3965
1.1754
1.4862

2.1915
2.3979
2.3665

0.0678
0.0896
0.0521

7.9031
7.6986
7.4033
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Table 3 Time efficiency of
comparison methods with
different resolutions (unit: ms)

Indicator Resolution
ratio

Algorithm
[2]

Algorithm
[12]

Algorithm
[14]

Algorithm
[15]

Improved
algorithm

Figure 5 280×380 398 1963 3625 2980 2541

Figure 6 380×520 857 3015 5592 4621 3519

Figure 7 520×680 1235 4018 7196 6839 4278

Fig. 9 The histogram comparison of MSE, SSIM and PSNR indexes
among our method and methods [2, 12, 14, 15]

rithm, method [2] took 857 ms. Method [12] used the fast
Fourier transform to complete image processing, which took
3015 ms. Besides, method [14] uses an adaptive wiener filter
to process transmittance. By calculating the local variance of
haze image, the image is divided into flat area, texture area
and edge area. This process takes some processing time. The
multi-scale analysis method was conducted on each pixel
[15] to train different haze images, so the parameters train-
ing process took a long time (Fig. 9; Table 3).

5 Conclusions

In this paper, a deep learning transmittance network is
designed to complete single image dehazing. Firstly, Gaus-
sian low-pass filtering method is used to obtain the low-
frequency part of the image, and then single-threshold
segmentation method and binary tree algorithm are used
to acquire the approximate global atmospheric light value.
After that, a deep learning transmittance network DLT-Net is
designed to estimate the transmittance map of haze images.
Using the approximate global atmospheric light value and the
optimized transmittance, the fog-free image can be recovered
from the deformation formula of the atmospheric scattering
model.

The main innovations of this paper are as follows.

1. The image captured in dense haze environment and the
interference of white objects in haze image scene pose

challenges to the process of haze removal. The global
atmospheric light A is usually located in the densest part
of haze in the image, which belongs to the low-frequency
region. Therefore, the approximate interval of the global
atmospheric light value can be obtained by using Gaus-
sian low-frequency filter.

2. A deep learning transmittance network DLT-Net is
designed to estimate the transmittance map of haze
images. The three-group network structure can output the
transmittance map which is close to the real state. The
effect and efficiency of our algorithm can be improved
by extracting different image features and adjusting the
image size through preprocessing, respectively.
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