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Abstract
Electrocardiography is a useful diagnostic tool for various cardiovascular diseases, such as myocardial infarction (MI). An
electrocardiograph (ECG) records the electrical activity of the heart, which can reflect any abnormal activity. MI recognition
by visual examination of an ECG requires an expert’s interpretation and is difficult because of the short duration and small
amplitude of the changes in ECG signals associated withMI. Therefore, we propose a newmethod for the automatic detection
of MI using ECG signals. In this study, we used maximal overlap discrete wavelet transform to decompose the data, extracted
the variance, inter-quartile range, Pearson correlation coefficient, Hoeffding’s D correlation coefficient and Shannon entropy
of the wavelet coefficients and used the k-nearest neighbor model to detect MI. The accuracy, sensitivity and specificity of
the model were 99.57%, 99.82% and 98.79%, respectively. Therefore, the system can be used in clinics to help diagnose MI.

Keywords Electrocardiograph ·Myocardial infarction · Wavelet transform · Feature extraction

1 Introduction

Myocardial infarction (MI) happenswhen theblood supply to
part of the heart decreases or stops entirely, initiating damage
to the heart muscle and possible death. Globally, about 15.9
million people suffered fromMI in 2015 [1]. AsMI develops
rapidly and initially has no obvious symptoms, detection and
treatment are time-critical [2]. The soonerMI is detected, the
more means are available to control its effect on left ventri-
cle contractility and function, leading to better therapeutic
outcomes and prognosis [3]. Therefore, the development of
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techniques for early and rapid MI detection is a worldwide
research goal.

Electrocardiography is a diagnostic tool in which elec-
trodes are placed on the skin to collect information about
the heart’s electrical activity over time [4]. If the electri-
cal or contractile function of the heart is interrupted due to
myocardial ischemia, the whole myocardial electrical sig-
nal flow will also be affected. For example, in the case of
MI, electrocardiogram (ECG) signals often manifest as S–T
segment elevations and Q waves. Twelve-lead electrocardio-
graphy is a traditional clinical means of monitoring changes
in cardiac electrical activity to assess the risk of MI. Before
this technology became popular, clinicians had used Min-
nesota coding [5] to extract time domain features of ECG
signals to identify heart diseases such as MI. However, this
time-consuming technique required a certain amount of clin-
ical experience for reliable results, as naked-eye inspection
of an ECG may lead to misdiagnosis of MI. Over time,
with technological development, Fourier and wavelet analy-
ses have been applied to ECG signal processing. Meanwhile,
researchers have started to study the frequency domain and
time–frequency domain features of ECG signals for MI
diagnosis, which has thus entered the era of computerized
automatic recognition.

The analysis of ECG signals includes preprocessing, peak
recognition, fragment segmentation, feature extraction, fea-
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Table 1 Characteristics of ECG data obtained from PTB database

Normal MI

Minimum age 17 36

Maximum age 81 86

Average age 43.43 60.37

Number of men 39 110

Number of women 13 38

ture selection, dimensionality reduction, classification and
model evaluation. The most important step is appropriate
feature selection. An ECG contains diagnostic features in
the time, frequency and time–frequency domains.

This study focused on identifying features that reflect the
correlation between the 12 leads, assuming thatMI affects the
relationship between these leads. In addition, we extracted
features related to energy and information domains. We used
Matlab 2017b for the data analysis.

2 Material

Wedrewour data from the publicly available PTBDiagnostic
ECG Database [6,7]. The database contains 148 MI patients
and 52 healthy control subjects. The details of this database
can be seen in Table 1. The data set contains 12-lead ECG
signals (I, II, III, avR, avL, avF, V1, V2, V3, V4, V5, V6) corre-
sponding to each person, which are digitized at 1000 samples
per second. Each record in the database was acquired over a
different time period, mostly around 2 min.

3 Method

3.1 Processing

Using the Daubechies 6 (“db6”) [8,9] wavelet basis function,
we de-noised and eliminated the baseline wander of the ECG
signals. We used a 0.081–20.833 Hz bandpass filter for filter-
ing, which corresponds to the 3rd–11th level sub-band. The
most useful information of ECG signals is concentrated in
this frequency band.

ECG signals are segmented into numerous small sections
(one beat per section). We used the Pan–Tompkins algorithm
[10] to detect the R-peaks. This algorithm is a robust R-peak
identifier with computational simplicity and ease of imple-
mentation.

Figure 1 shows an ECG signal after de-noising, removal
of baseline wander and R-peak detection. The upper panel is
the overall ECG signal, and the lower panel is a magnified
local section. As can be seen from the upper panel, each ECG
cycle on the whole-time axis has almost the same height after
baseline drift removal, and the signal becomes smoother after
de-noising. Using the Pan–Tompkins algorithm, we detected
all QRS waves, which are circled in Fig. 1.

After detecting the QRS complexes, each set of 255 sam-
ples before a QRS peak, 256 samples after the peak and the
QRS peak itself were grouped as a 512-sample segment and
considered as a single beat for the subsequent analysis. To
ensure that all data had 512 sample points, we removed the
first and last beat.

In total, we obtained 28,700 beats. There were 21,569
segments in the MI group and 7131 segments in the con-
trol group. After obtaining the ECG fragments, the 512 data
points were normalized to make the total variance equal to
one.

Fig. 1 ECG signal after removal
of baseline wander and R-peak
detection
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3.2 Wavelet analysis

Given the heart beats consisting of 512 samples, we used
the maximal overlap discrete wavelet transform (MODWT)
[11] to decompose the signal. MODWT, a modification
of the discrete wavelet transform (DWT), does not use a
down-sampling process, so wavelet coefficients at all scales
are equal in length to the original time series. Each beat
was decomposed into seven levels using the finite-impulse
response approximation of Mayer’s wavelet (“dmey”) [12].
Hence, we obtained five (3rd–7th) wavelet coefficients
for detailed sub-bands and one wavelet coefficient for an
approximate sub-band. Those six sub-bands contained the
frequencies between 0.326 and 20.833 Hz, which captured
almost all of the information of the original signal. Each
wavelet coefficient series had 512 values.

3.3 Feature extraction

Used six MODWT-decomposed wavelet coefficient series,
we calculated five types of features. Those features were
taken from three domains: energy, time series similarity and
information. The five features were variance, inter-quartile
range (IQR), Pearson correlation coefficient, Hoeffding’s D
correlation coefficient (henceforth Hoeffding’s D) and Shan-
non entropy.

Variance The variance of the MODWT coefficients of the
ECG signal beats, which has a linear relationship with the
signal energy in the specific frequency band. It is calculated
as

VX , j = 1

Mj

Mj∑

t=1

(
WX , j,t −WX , j

)2
(1)

where j = 1, . . . , 6 denotes the MODWT decomposition
level;Wx, j,t is value of a coefficient t at decomposition level
j; Mj is the number of the coefficients at decomposition level
j; WX , j is the mean at decomposition level j.

IQR The difference between the 75th and 25th percentiles
of each ECG signal beat’s MODWT coefficients, reflecting
the fluctuation of data in a nonparametric form. It is calcu-
lated as

IQRX , j = P75(WX , j,t ) − P25(WX , j,t ) (2)

where P·(·) represents the corresponding quantile.
Pearson correlation coefficient Measures the similarity

between two time series assuming that the data follow a nor-
mal distribution. It is calculated as

ρXY , j =
∑Mj

t=1

(
WX , j,t −WX , j

) (
WY , j,t −WY , j

)
√
VX , j

√
VY , j

(3)

where
√
VX , j is the standard deviation of the wavelet coeffi-

cients WX , j,t ; WX , j is the mean of the wavelet coefficients
WX , j,t ;Mj is the number of the coefficients at decomposition
level j.

Hoeffding’s D [13] A nonparametric measure of associa-
tion that detects more general departures from independence.
The statistic approximates a weighted sum over observations
of chi-square statistics for two-by-two classification tables.
It is calculated as

DXY , j = (n − 2)(n − 3)D1 + D2 − 2(n − 2)D3

n(n − 1)(n − 2)(n − 3)(n − 4)
(4)

D1 =
n∑

i=1

(Qi − 1) (Qi − 2) (5)

D2 =
n∑

i=1

(Ri − 1)(Ri − 2)(Si − 1)(Si − 2) (6)

D3 =
n∑

i=1

(Ri − 2)(Si − 2)(Qi − 1) (7)

where given decomposition level j, Ri is the rank of Wxji ;
Si is the rank of Wyji ; Qi is the number of points with both
Wxji andWyji values less than the i th point; n is the number
of the coefficients.

Shannon entropy [14] One of the spectral entropies, used
to quantify the spectra of the ECG signals. It is calculated as

H(U ) = E[−logpi ] = −
n∑

i=1

pi logpi (8)

where pi = ni/N , N is the number of samples; ni is the
number of samples in the i th bin; n is the number of the bin.

Given the time series of ECG signal,Maharaj andAndrses
[15] used the variance and Pearson correlation coefficient to
extract features and achieved a good classification perfor-
mance. Considering that the MODWT coefficients may not
follow a normal distribution and to enhance the robustness,
we calculated the IQR and the Hoeffding’s D. Finally, in
addition to the analysis of energy and similarity between
two time series, we also needed to consider the information
quantity or complexity, of the time series . We used Shannon
entropy for this purpose. Therefore, in total, we calculated
636 features, including 48 variances, 48 IQRs, 264 Pearson
correlation coefficients, 264 Hoeffding’s D values and 12
Shannon entropies.

3.4 Feature selection

Due to the large number of features, it is necessary to select
the particular features that offer themost significant informa-
tion for MI detection. In this paper, we performed Student’s
t test and obtained the t values of each feature. A higher t
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value means that a feature is more important, so we ranked
the features using their t values. We set a threshold t value
and selected the features whose t values were larger than
the threshold. We selected the threshold by calculating the
accuracy of each case and selecting the most accurate case.

In the process of 10 cross-validations, we obtained a group
of suitable features each time. We then sorted all of the fea-
tures by the number of times that they appeared. Features
appearing more than five times were included in the final
feature group.

3.5 Model training and validation

The k-nearest neighbor (kNN) classifier [16] was selected
to discriminate the MI patients and healthy people. The
kNN, relating the unknown sample to a known sample, is
an instance-based classifier. In this study, we chose k equal
to 5, which means that the five nearest neighbors within the
unknown sample were used for discrimination.

We used tenfold cross-validation (10-CV) and leave
one person out cross-validation (LOPOCV) to validate our
method. We calculated the accuracy, sensitivity and speci-
ficity to validate the model.

Obviously, a lack of data independence is likely to occur
when using 10-CV, as the data of the training set and test
set may come from the same person. To avoid this problem,
we also chose one person at a time, modeled the rest of the
people and predicted all of the leads of the selected person.
After repeating this for all of the people in the data set, the
average accuracy was calculated to evaluate the model. This
method is conceptually similar to the leave one out cross-
validation method, hence the name LOPOCV.

4 Result

4.1 Feature describe

A total of 28,700 beatswere segmented from200 subjects (52
healthy and 148withMIs). After 636 featureswere extracted,
we used heatmaps to describe the mean value of Pearson
correlation coefficient and of Hoeffding’s D.

Figures 2 and 3 are the visualized results of the correla-
tion between leads. Each graph contains two rows and six
columns, giving a total of twelve sub-graphs. The first row
shows the healthy controls, and the second row shows the
patients with MI. From left to right, the six columns are
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Fig. 2 Pearson correlation coefficient
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Fig. 3 Hoeffding’s D correlation coefficient
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Fig. 4 The outcome of each iteration in LOPOCV

the detailed wavelet coefficients of layers 3 to 7 and the
approximate coefficients of layer 7. Inside each sub-table
is a visualization of an upper triangular 12-order matrix.
The (i, j) elements in the matrix represent the correlation
between the i lead and the j lead and are colored accord-
ing to the value. Note that the upper and lower limits of the
Hoeffding’s D change with the number of samples. When
the sample size is small, the range of Hoeffding’s D is −0.5
to 1, but the minimum of D rapidly increases with sample
size [17].

From the heatmap, some differences between the features
in the MI group and healthy group can be seen. For example,
the Pearson correlation coefficients in a certain region are
positive in healthy people, but negative inMI patients. Those
features may facilitate automatic detection of the risk of MI
in healthy people.

Subsequently, because the model was validated in two
ways, we discuss the outcome of kNN individually in each
case. For the detailed LOPOCV results in Fig. 4, each iter-
ation is represented by green curves, and the red curves
represent the median accuracy at each threshold, while the
pink curve is the P25 and P75 accuracy, and the blue curve
is the average accuracy. Similarly, for each threshold, we
used cross-validation to calculate the corresponding accu-
racy. Note that for the same threshold, the features obtained
from different iterations may be slightly different. From the
outcome above, we concluded that when 80 was selected
as the threshold t value, we achieved the highest accuracy
in general. On average, 22 features were found at each
iteration. The details of the selected features are shown
in Table 2. In Table 2, SD means the standard deviation.
The symbol Hr means the Hoeffding’s D and Pr the Pear-
son correlation coefficient. The symbol Hr1,43 means the
Hoeffding’s D of 3rd level detail wavelet coefficient between
1st lead and 4th lead; other features follow the same pat-
tern.

Table 2 The detail of 22 selected features

Feature MI Health control t value

Mean SD Mean SD

Pr7,113 0.345 0.354 0.767 0.189 96.03

Pr9,103 0.311 0.381 0.765 0.241 94.69

Hr1,43 0.205 0.167 0.425 0.183 93.94

Hr7,113 0.048 0.052 0.115 0.066 87.89

Hr7,123 0.131 0.116 0.281 0.136 90.15

Hr8,93 0.320 0.208 0.556 0.163 87.52

Hr9,103 0.052 0.059 0.130 0.077 89.49

Hr9,113 0.127 0.122 0.286 0.139 92.33

Hr9,123 0.308 0.192 0.526 0.162 86.14

Hr1,104 0.438 0.205 0.698 0.127 100.88

Hr1,114 0.439 0.233 0.709 0.131 93.31

Hr1,124 0.475 0.246 0.741 0.143 86.37

Hr6,114 0.093 0.089 0.223 0.129 94.63

Hr7,124 0.107 0.103 0.245 0.142 88.93

Hr8,95 0.173 0.170 0.429 0.200 105.05

Hr8,105 0.199 0.188 0.456 0.207 97.74

Hr8,115 0.242 0.220 0.499 0.227 84.82

Hr2,56 0.094 0.092 0.242 0.133 105.21

Hr2,116 0.118 0.104 0.317 0.132 130.79

Hr2,126 0.354 0.218 0.599 0.166 86.87

Hr3,86 0.123 0.108 0.349 0.150 138.49

Hr3,96 0.394 0.198 0.635 0.120 97.09

4.2 Model performance

As shown above, the optimal threshold of the t value is 80.
Given this t value, we achieved an accuracy of 99.57%, sen-
sitivity of 99.82% and specificity of 98.79% for 10-CV and
accuracy of 87.96%, sensitivity of 93.24% and specificity of
72.01% for LOPOCV. The accuracy of LOPOCV is given
as the average. The outcomes of the other thresholds are
shown in Table 3, where Acc, Sen and Spc mean accuracy,
sensitivity and specificity, respectively. Note that the accu-
racy of LOPOCV is not symmetrically distributed. When the
threshold is 80, the median accuracy of LOPOCV is 98.88%,
and the lower and upper quartile accuracies are 90.26% and
100%.

5 Discussion

A novel methodology for the detection of MI by using
robust features from 12-lead ECG signals is proposed in this
paper. We used three types of feature (categorized as energy,
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Table 3 The outcome of 12 threshold values (%)

Threshold 10-CV LOPOCV

Acc Sen Spc Acc Sen Spc

10 99.94 99.96 99.86 78.58 84.30 61.28

20 99.92 99.95 99.80 81.13 87.49 61.88

30 99.92 99.96 99.80 82.62 89.01 63.30

40 99.90 99.96 99.71 82.92 89.01 64.48

50 99.87 99.95 99.65 84.65 89.55 69.81

60 99.78 99.89 99.47 84.53 89.76 68.70

70 99.75 99.87 99.38 86.29 90.96 72.18

80 99.57 99.82 98.79 87.96 93.24 72.01

90 98.13 99.15 95.05 87.12 92.89 69.67

sequence similarity and information features) to predict the
risk of MI. In the energy and sequence similarity categories,
we calculated both the normally distributed features and their
corresponding nonparametric features.

5.1 Advantage and disadvantage

In this study, we focused on the difference in the correlation
between the 12 leads betweenMIpatients and healthy people.
The selection of meaningful correlation coefficients, captur-
ing the features that describe the similarity between leads, has
good practical guiding value in exploring the mechanism of
disease. That is, the changes in the similarity between the
leads reflect the structural changes of the heart during MI,
which can be explained from a clinical point of view. Simi-
larly, variance reflects the energy of the leads, while entropy
reflects the information contained in them.

Another innovation of this study is its focus on robust
features. When describing the energy of a frequency band
in a lead, we extracted not only the traditional feature,
variance, but also the IQR, which reflects the lead fluctua-
tion more robustly. Similarly, when describing the similarity
between leads, in addition to the traditional Pearson correla-
tion coefficient, we also extracted Hoeffding’s D, which is
less susceptible to the influence of outlying data.

Although the features used in this study are simpler in the-
ory than those in similar studies, they nonetheless have better
explicability. In addition, through repeated experiments, we
finally chose 22 features, a relatively large number compared
with other studies. However, these features themselves are
relatively simple to calculate, so the total time spent on fea-
ture calculation was not longer than in other studies.

In addition, when repeating the above simulation 200
times, we found that although the set of features selected
in each iteration differed slightly each time, it always main-
tained high accuracy in the test set. This shows that for
diverse groups of people, our method can find a correspond-

ing group of features. The discriminatory ability was high
when predicting the MI risk in new people who were close
to the average. This demonstrates the generalizability of our
method in practical application.

One disadvantage of this method is that a large number
of features were included in the feature extraction stage, and
there may have been collinearity in the process of feature
selection. Another problem is that the same variable selection
method may not always be able to find a consistent feature
group for different populations. However, this problem is
common to all methods of automatic detection of MI and
needs further research.

5.2 Compares

Table 4 is a summary of 17 studies using the PTB database
to identify MI patients from healthy controls. The table con-
tains the year of publication, the type of feature extracted, the
classifier used, the model validation method and the accu-
racy, sensitivity and specificity. Through comparison, it can
be found that the accuracy, sensitivity and specificity of this
study are better than those of previous studies. A brief sum-
mary of published research is given below.

Half of the cited studies calculated specific features based
on the wavelet coefficients of signals. Acharya et al. [25] cal-
culated the entropy of the DWT coefficients of ECG signals.
Similarly, Sharma and Sunkaria [31] calculated the entropy
and energy of SWT coefficients and the median slope of
the original signal. Mohit et al. [28] used sample entropy
as features after processing the ECG data using rational-
dilation wavelet transform. Sharma et al. [32] used three
entropy-based features based on the optimal biorthogonal
wavelet filter bank. Sharma et al. [23] generated multiscale
energies and eigenvalues from specific wavelet coefficients
bands. Banerjee and Mitra [20] analyzed ECG data using
cross-wavelet transform and explored the resulting spectral
differences.

Some studies used wavelet analysis for feature extrac-
tion. Sun et al. [18] approximated the segmented ECG signal
by a 5-order polynomial, using polynomial coefficients as
features. Similarly, Bin et al. [22] used different orders of
polynomial fitted signals and took the coefficients as fea-
tures. Correa et al. [19] analyzed the morphological features
reflecting depolarization and repolarization of ECG signals.
Dionisije et al. [34] calculated the time and frequency domain
features of the signal and focused on the complexity of the
algorithm. Sadhukhan et al. [33] calculated the value of each
phase as a feature after discrete Fourier transformation.

Some studies have not extracted specific features from
wavelet coefficients, but treated those coefficients as awhole.
Remya et al. [24] used the coefficients of DWT to train arti-
ficial neural networks. Acharya et al. [26] obtained three
kinds of coefficient using discrete cosine transform, DWT
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Table 4 Summary of automated diagnosis of MI using PTB database

Author Year Feature Classifier Validation
method

Acc Sen Spc

Sun et al. [18] 2012 Polynomial
coefficients

LTMIL+kNN 10-CV NG 91.00 85.00

Correa et al. [19] 2014 Morphological
features

LDA 30% test set 93.73 93.90 93.44

Banerjee and
Mitra [20]

2014 XWT spectral Threshold-based
method

NG 97.60 97.30 98.80

Bhaskar [21] 2015 WT coefficient LIBSVM/NN 50% test set 91.07 NG NG

Bin et al. [22] 2015 Polynomial
coefficients

SVM/DT/RT/NB 50% test set 94.4 96.8 79.8

Sharma et al. [23] 2015 MEES-based feature SVM 5-CV 96.15 95.49 96.82

Remya et al. [24] 2016 DWT coefficient SAT
method/ANN

NG 93.61 93.22 94.28

Acharya et al.
[25]

2016 DWT entropy kNN 10-CV 98.8 99.45 96.27

Acharya et al.
[26]

2017 DCT/DWT/EMD
feature

kNN 10-CV 98.5 99.7 98.5

Acharya et al.
[27]

2017 – CNN 10-CV 95.49 95.49 94.19

Mohit et al. [28] 2017 FWAT entropy LS-SVM 10-CV 99.31 99.62 98.12

Reasat and
Shahnaz [29]

2017 – ANN LOPOCV 84.54 85.33 84.09

Liu et al. [30] 2017 – ML-CNN 5-CV 96 95.4 97.37

Sharma and
Sunkaria [31]

2017 SWT entropy/energy kNN/SVM 10-CV 98.69 98.67 98.72

Sharma et al. [32] 2018 OBWFB entropy kNN 10-CV 99.62 NG NG

Sadhukhan et al.
[33]

2018 DFT phase values LR/threshold-
based
method

5-CV 95.6 96.5 92.7

Dionisije et al.
[34]

2018 Time/frequency
feature

RF NG 83.26 87.95 78.82

Present studya 2019 MODWT entropy/
energy/correlation

kNN 10-CV 99.57 99.82 98.79

LOPOCV 87.96 93.24 72.01

NG not given
aThe threshold of the t value used here is 80

and empirical mode decomposition and then used locality-
preserving projections for dimensionality reduction (taking
the projection factor as a feature). Bhaskar [21] processed
wavelet coefficients using principal component analysis and
took the principal components as features. Some researchers
have processed ECG raw signals using artificial neural net-
works to differentiate MI patients from healthy people.
Among them, Acharya et al. [27], Liu et al. [30] and Reasat
and Shahnaz [29] used different types of CNN to work out
this task.

Most of the existing studies have used 10-CV for model
evaluation, while a few used test sets. The disadvantage of
both approaches is that the data used for model evaluation
and for modeling may come from the same person, that is,

the samples between training and test sets may not be inde-
pendent. Reasat and Shahnaz [29] paid attention to this point.
That study chose one person at a time, modeled the rest of the
people and predicted all of the leads of the selected person.
After repeating this for all of the people in the data set, the
average accuracy was calculated to evaluate the model. This
avoids the situation in which the test and training sets are not
independent and improves the generality of the results.

5.3 Application and future plan

Hospitals can be envisioned to establish ECG databases for
MI patients and healthy people according to their specific
needs and then calculate the corresponding features accord-
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ing to the methods proposed in this paper. To analyze the
ECG data of the patients for clinical purposes, they can be
input into the constructed model to obtain predictive results.

Many aspects of this study can be extended. We will fur-
ther analyze the specific clinical implications of the extracted
features, which need to be discussed with clinicians and
pathologists. We will also consider the application of this
method to ECG data collected in local hospitals and further
study the method’s practical value.

6 Conclusion

In this work, we computed five kinds of feature to analyze
healthy and MI ECG segments. These features covered the
energy, time series similarity and information domains,while
taking robustness into account. For feature selection, we per-
formed Student’s t test and used specific thresholds to find
the optimal feature set. The kNN classifier was applied for
classification. To alleviate over-fitting and improve the gen-
eralizability of the model, tenfold CV and LOPOCV were
used formodel validation.We have achieved impressive clas-
sification performance compared with similar studies, with
99.57% accuracy, 99.82% sensitivity and 98.79% specificity.
Using LOPOCV, the accuracy, sensitivity and specificity of
this study were, respectively, 87.96%, 93.24% and 72.01%.
Due to the simplicity of feature calculation, our method
promises to improve the speed of diagnosis and provide cost-
effective medical services for patients and hospitals.

Theproposedmethod is robust, accurate and cost-effective
and can be applied to real-time monitoring, diagnosis and
treatment of MI to reduce time, cost and medical resources.

Acknowledgements The work described in this paper is supported by
the National Natural Science Foundation of China (NSFC, 81773545).

Author contributions ZL wrote the paper and performed experiments.
JZ, YG, YC, QG and GM offered useful suggestions for the paper
preparation and writing. All authors have read and approved the final
manuscript.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

References

1. Vos, T., et al.: Global, regional, and national incidence, prevalence,
and years lived with disability for 310 diseases and injuries, 1990–
2015: a systematic analysis for the Global Burden of Disease Study
2015. Lancet 388(10053), 1545–1602 (2016)

2. Stuart, R., et al.: Davidson’s Principles and Practice of Medicine,
21st edn, pp. 588–599. Churchill Livingstone, London (2018)

3. Xingyu, Z., et al.: Atlas-based quantification of cardiac remodeling
due to myocardial infarction. PLoS ONE 9(10), 1 (2014)

4. Guven, G., Gurkan, H., Guz, U.: Biometric identification using
fingertip electrocardiogram signals. Signal Image Video Process.
12, 1–8 (2018)

5. Lankford, J.: The Minnesota code for ECG classification. Adap-
tation to CR (CH) leads and modification of the code for ECGs
recorded during and after exercise. J. Intern. Med. 183(481), 13–
17 (2010)

6. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and Phy-
sioNet: components of a new research resource for complex
physiologic signals. Circulation 101(23), 215–220 (2000)

7. Bousseljot, R., Kreiseler, D., Schnabel, A.: Nutzung der EKG-
Signaldatenbank CARDIODAT der PTB über das Internet.
Biomed. Tech./Biomed. Eng. 40(1), 317–318 (1995)

8. Ingrid, D.: Ten Lectures onWavelets, vol. 194. SIAM, Philadelphia
(1992)

9. Singh, B.N., Tiwari, A.K.: Optimal selection of wavelet basis func-
tion applied to ECG signal denoising. Digit. Signal Process. 16(3),
275–287 (2006)

10. Pan, J., Tompkins, W.J., et al.: A real-time QRS detection algo-
rithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

11. Percival, D.B.,Mofjeld, H.O.: Analysis of subtidal coastal sea level
fluctuations using wavelets. J. Am. Stat. Assoc. 92(439), 868–880
(1997)

12. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification
using PCA, LDA, ICA and discrete wavelet transform. Biomed.
Signal Process. 8(5), 437–448 (2013)

13. Hoeffding, W., Robbins, H.: The central limit theorem for depen-
dent random variables. Duke Math. J. 15(3), 773–780 (1948)

14. Shannon, C.: A mathematical theory of communication. Bell Syst.
Tech. J. 27(4), 623–656 (1948)

15. Maharaj, E.A., Andrses, M.A.: Discriminant analysis of multivari-
ate time series: application to diagnosis based on ECG signals.
Comput. Stat. Data Anal. 70, 67–87 (2014)

16. Duda, R.O., Peter, E.H., David, G.S.: Pattern Classification, pp.
177–191. Wiley, Hoboken (2007)

17. Hoeffding,W.: A non-parametric test of independence. Ann.Math.
Stat. 19(4), 546–557 (1948)

18. Sun, L., et al.: ECG analysis using multiple instance learning for
myocardial infarction detection. IEEETrans. Biomed. Eng. 59(12),
3348–3356 (2012)

19. Correa, R., Arini, P.D., Correa, L.S., Valentinuzzi, M.E., Laciar,
E.: New VCG and ECG indexes for early identification of acute
myocardial infarction patients. In: VI Latin American Congress on
Biomedical Engineering CLAIB 2014 (2014)

20. Banerjee, S., Mitra, M.: Application of cross wavelet transform
for ECG pattern analysis and classification. IEEE Trans. Instrum.
Meas. 63(2), 326–333 (2014)

21. Bhaskar, N.A.: Performance analysis of support vector machine
and neural networks in detection ofmyocardial infarction. Procedia
Comput. Sci. 46, 20–30 (2015)

22. Bin, L., et al.: A novel electrocardiogram parameterization algo-
rithm and its application in myocardial infarction detection. Com-
put. Biol. Med. 61, 178–184 (2015)

23. Sharma, L.N., et al.: Multiscale energy and eigenspace approach
to detection and localization of myocardial infarction. IEEE Trans.
Biomed. Eng. 62(7), 1827–2837 (2015)

24. Remya, R.S., et al.: Classification of myocardial infarction using
multi resolution wavelet analysis of ECG. Procedia Technol. 24,
949–956 (2016)

25. Acharya, U.R., et al.: Automated detection and localization of
myocardial infarction using electrocardiogram: a comparative
study of different leads. Knowl. Based Syst. 99, 146–156 (2016)

26. Acharya,U.R., et al.:Automated characterization and classification
of coronary artery disease and myocardial infarction by decompo-

123



Signal, Image and Video Processing (2020) 14:857–865 865

sition of ECG signals: a comparative study. Inf. Sci. 377, 17–29
(2017)

27. Acharya, U.R., et al.: Application of deep convolutional neural
network for automated detection of myocardial infarction using
ECG signals. Inf. Sci. 415–416, 190–198 (2017)

28. Mohit, K., et al.: Automated diagnosis of myocardial infarction
ECG signals using sample entropy in flexible analytic wavelet
transform framework. Entropy-Switz 19(9), 488 (2017)

29. Reasat, T., Shahnaz, C.: Detection of inferior myocardial infarc-
tion using shallow convolutional neural networks. In: 2017 IEEE
Region 10 Humanitarian Technology Conference (R10-HTC), pp.
718–721 (2017)

30. Liu, W., et al.: Real-time multilead convolutional neural net-
work for myocardial infarction detection. IEEE J. Biomed. Health
Inform. 22(5), 1434–1444 (2017)

31. Sharma, L.D., Sunkaria, R.K.: Inferiormyocardial infarction detec-
tion using stationary wavelet transform and machine learning
approach. Signal Image Video Process. 12(2), 199–206 (2017)

32. Sharma,M., Tan, R.S., Acharya, U.R.: A novel automated diagnos-
tic system for classification of myocardial infarction ECG signals
using an optimal biorthogonal filter bank. Comput. Biol. Med. 102,
341–356 (2018)

33. Sadhukhan, D., Pal, S., Mitra, M.: Automated identification of
myocardial infarction using harmonic phase distribution pattern of
ECG data. IEEE Trans. Instrum. Meas. 67(10), 2303–2313 (2018)

34. Dionisije, S., et al.: Real-time event-driven classification technique
for early detection andprevention ofmyocardial infarction onwear-
able systems. IEEE Trans. Biomed. Circuits Syst. 12(5), 982–991
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Automated detection of myocardial infarction using robust features extracted from 12-lead ECG
	Abstract
	1 Introduction
	2 Material
	3 Method
	3.1 Processing
	3.2 Wavelet analysis
	3.3 Feature extraction
	3.4 Feature selection
	3.5 Model training and validation

	4 Result
	4.1 Feature describe
	4.2 Model performance

	5 Discussion
	5.1 Advantage and disadvantage
	5.2 Compares
	5.3 Application and future plan

	6 Conclusion
	Acknowledgements
	References




