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Abstract
Despite remarkable progress, visual object tracking is still a challenging task as objects usually suffer from significant
appearance changes, fast motion, and serious occlusion. In this paper, we propose an anti-occlusion correlation filter-based
tracking method (AO-CF) for robust visual tracking. We first propose an occlusion criterion based on continuous response
values. Based on the criterion, objects are divided into four categories to adaptively identify the occlusion of objects. Then
we propose a new detection condition for detecting proposals. When the occlusion criterion is triggered, the re-detection
mechanism is executed and the tracker is commanded to stop, and then the re-detector selects the most reliable proposal to
reinitialize the tracker. Experimental results show that our method outperforms other state-of-the-art trackers in terms of both
precision rate and success rate on the widely used object tracking benchmark dataset. In addition, AO-CF is able to achieve
real-time tracking speed.

Keywords Visual tracking · Circulant matrices · Correlation filter · Kernel methods · Occlusion

1 Introduction

Object tracking is one of the most popular fields in computer
vision, with a wide range of applications in face recogni-
tion, behavior analysis and intelligent monitoring. Existing
tracking algorithms can be roughly classified as generative
and discriminative methods. The generative method seeks
to consider tracking as a problem of finding the most similar
region to the target. The target is represented as a template [1]
or parameter model in feature space [2,3]. The similarity is
measured in feature space or a low-dimensional subspace to
describe the target and incrementally learn the subspace to
adapt to appearance changes during tracking. The discrim-
inative method formulates the tracking problem as a binary
classification task whose goal is to discriminate the target
from the background [4,5]. This classifier is trained online
using sample patches of the target and the surrounding back-
ground.
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Correlation filter-basedmethod is known for accuracy and
real-time (about 20 frame/s) tracking, so we use correlation
filter as a basic tracker and improve it to handle object occlu-
sion. The main contributions of this paper are as follows:

1. An occlusion criterion based on response values is pro-
posed. Considering the different capabilities of different
objects to resist environmental disturbances, we also pro-
pose the idea of classifying objects to further improve
tracking performance.

2. In the re-detector, the EdgeBox [6] method is used to
detect objects. To reduce computational complexity, the
method of limiting the area is employed to filter the pro-
posals. Besides, three conditions are set to select different
detection thresholds to reduce the error detection proba-
bility of the re-detector.

3. Extensive experiments are carried out on the large-scale
benchmark datasets [7,8] and the experimental results
demonstrate the superiority of the proposed algorithm.

2 Related work

Since inception of theMOSSE tracker [10], several advances
have made discriminative correlation filter the most widely
used methodology in short-term tracking. Major boosts in
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performance are due to introduction of kernels [9], multi-
channel [11,12] and scale estimation [13,14]. In addition to
hand-crafted features, correlation filtering has recently been
combined with neural networks to exploit the potential of
deep features. The ACFN [15] with attentional feature-based
correlation filter network is proposed to track the objectswith
fast variation. Besides, the DCFNet [16] combines discrim-
inant correlation filter and Siamese network to ensure the
tracking speed while improving the accuracy.

There exist several algorithms that are able to handle drift
and occlusion. Hare et al. [17] propose a structured out-
put support vector machine to estimate the target’s location
directly. In [18], a template matching algorithm for object
tracking is proposed, where the template is composed of
several cells and has two layers to capture the target and back-
ground appearance, respectively. The mean image intensity
difference between two consecutive frames and a thresh-
old are used to detect occlusion in [19]. Kalal et al. [20]
decomposes the long-term tracking into three components:
tracking-learning-detection (TLD).Among themultiple clas-
sification results of the tracker, Zhang et al. [21] use a
minimum entropy criterion to select the best tracking results
to correct undesirable model updates and achieve the goal of
solving drift problems. In addition, Zhang et al. [22] propose
an output constraint transfer (OCT) method by modeling the
distribution of correlation response in a Bayesian optimiza-
tion framework tomitigate the drifting problem.Toovercome
the adverse effects of distorted data, Zhang et al. [23] further
propose the latent constrained correlation filters (LCCF) and
introduced a subspace alternating direction method of multi-
pliers (ADMM) framework to solve the new learning model.
Zhao et al. [24] propose an improved LCT tracker to handle
occlusion .

3 The basic correlation filter tracking
components

Suppose one-dimensional data x = [x1, x2, . . . , xn], a cyclic
shift of x is Px = [xn, x1, x2, . . . , xn−1]. Therefore, all the
cyclic shift visual samples, {Pux|u = 0 . . . n − 1}, are con-
catenated to form the data matrix X = C(x). To mitigate the
boundary effect, the input image is multiplied by a cosine
window. The circulant matrix has an interesting property,
which is expressed as X = FHdiag(Fx)F. The F is known
as the DFT matrix, which transforms the data into Fourier
domain, and FH is the Hermitian transpose of F. The objec-
tive function of linear ridge regression can be formulated as:

min
w

n∑

i

( f (xi ) − yi )
2 + λ||w||2 (1)

where λ is a regularization parameter and function f (x) =
wT x is used to minimize the squared error over samples xi
and their regression targets yi . The ridge regression has the
closed-form solution, w = (XT X + λI)−1XT y. Substituted
by Eq. 1, we have the solution ŵ∗ = x̂∗�ŷ

x̂∗�x̂+λ
, where x̂ = Fx

denotes the DFT of x, and x̂∗ denotes the complex-conjugate
of x̂. In the case of no-linear regression, kernel trick, f (z) =
wT z = ∑n

i=1 αiκ(z, xi ), is applied to allow more powerful
classifier. For the most commonly used kernel functions, the
circulant matrix trick can also be used [9]. The dual space
coefficients α can be learnt as α̂

∗ = ŷ
k̂xx+λ

, where kxx is
defined as kernel correlation in [9]. In this paper, we adopt
the Gaussian kernel in which the circulant matrix trick can
be applied as below:

kxx′ =exp

(
− 1

δ2

(
||x||2+||x′||2−2F−1(x̂ � x̂′∗))

)
(2)

where δ is the Gaussian kernel bandwidth. The circulant
matrix trick can also be applied in detection to speed up the
whole process. The patch z at the same location in the next
frame is treated as the base sample to compute the response
in Fourier domain,

f̂(z) = (k̂x̃z)∗ � α̂ (3)

where x̃ denotes the data to be learnt in the model. When we
transform f̂(z) back into the spatial domain, the translation
with respect to the maximum response is considered as the
movement of the tracked target.

For the scale variation of the objects, we apply the method
of the scale pool [14]. In this method, the template size is
fixed as sT = (sx , sy), and the scaling pool is defined as
S = {t1, t2, . . . , tk}. Suppose that the target window size is
st in the original image space. For the current frame, we
sample k sizes in {ti st|ti ∈ S} to find the proper target. The
samples can be resized into thefixed template size sT byusing
bilinear-interpolation, and the final response is calculated by

arg maxF−1 f̂(zti ) (4)

where zti is the sample patch with the size of ti st, which is
resized to sT. Since the response function obtains a vector,
themax operation is employed to find itsmaximum scalar. As
the target movement is implied in the response map, the final
displacement needs to be tuned by t to get the real movement
bias.

4 The occlusion criterion

In Table 1, we list the response value τ of the target in the sec-
ond frame in the partial sequences and also give the ratio μ
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Table 1 The response value of the second frame and the ratio of the object size in the first frame

Sequence Basketball Bird1 Box Boy Couple Cardark David Doll Faceocc1

τ 0.767 0.366 0.848 0.747 0.666 0.545 0.842 0.826 0.856

μ 0.011 0.004 0.029 0.004 0.020 0.009 0.065 0.019 0.182

Sequence Freeman4 Fish Girl2 Human5 Human6 Human7 Jogging-1 Jumping Lemming

τ 0.634 0.802 0.913 0.496 0.683 0.776 0.725 0.567 0.950

μ 0.003 0.069 0.025 0.002 0.003 0.056 0.041 0.011 0.020

Sequence Liquor Ironman Mhyang Shaking Sylvester Skiing Subway Panda Toy

τ 0.929 0.480 0.882 0.711 0.925 0.367 0.688 0.749 0.922

μ 0.049 0.013 0.057 0.019 0.041 0.003 0.010 0.009 0.035

Fig. 1 The trend of response curve in 11 challenging scenarios. a Illu-
mination variation (IR); b scale variation (SV); c occlusion (OCC);
d deformation (DEF); e motion blur (MB); f fast motion (FM); g in-

plane rotation (IPR);hout-of-plane rotation (OPR); ibackground clutter
(BC); j out-of-view (OV); k low resolution (LR)

of the object area to the entire image area. Figure 1 shows the
trend of response values in 5 continuous frames with 11 chal-
lenging attributes. As can be seen from Fig. 1, the response
values in the 11 challenge scenarios are drastically reduced
compared with the response values of the second frame. In
addition, we noticed that objects with larger τ have stronger
ability to resist interference than objects with smaller τ . For
example, for the objects Toy, Lemming, and Sylvester which
are with very large τ and μ, even when they are affected
by disturbances, the tracker still works well. In contrast, in
the case of Shaking, Jumping, Couple and Panda, the tracker
has experienced varying degrees of drift. As for the objects
Human5, Bird1, Boywithμ less than 0.005, the tracker drifts

in the tracking of the first two objects, while the last one
works well. It should be noted that the response value of
the object Boy is much higher than the objects Human5 and
Bird1. In Table 1, the objects with smaller μ generally have
lower response values, while the objects with larger μ gen-
erally have higher response values. This phenomenon also
indicates that the large size objects with high response values
in the initial environment are more resistant to interference
than small size objects with low response values.

In view of the above analysis, we first divide the objects
into four categories based on the response value τ and the
area ratio μ.
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⎧
⎪⎪⎨

⎪⎪⎩

a1 � τ ∧ b1 � μ → general objects
τ < a1 ∧ b1 � μ → general objects(weak)
a1 � τ ∧ μ < b1 → small objects
τ < a1 ∧ μ < b1 → small objects(weak)

(5)

As can be seen from Fig. 1, when the response value
drops to 0.25, the tracker has a tendency to fail. Further, the
tracker may have failed when the response value falls below
0.18. According to the classification, each category will be
assigned a threshold di |i=1...4, mainly to keep di ·τ at around
0.25. Taking into account the small objects are susceptible
to interference, the di of small objects will be appropriately
increased to improve the accuracy of the criterion.

⎧
⎪⎪⎨

⎪⎪⎩

general objects → d1
general objects(weak) → d2
small objects → d3
small objects(weak) → d4

(6)

The occlusion criterion consists of two phases. The first
phase is to find a situation where the response values of the
object drop dramatically over a period of time.And the task of
the second phase is to find more severely degraded response
values in the first phase.Herewe consider the response values
of five consecutive frames.

Y = [y(1), y(2), y(3), y(4), y(5)] < di · τ (7)

sum(Y < θ · di · τ) � 2, θ < 1 (8)

where y(i)|i=1,2...5 is the response value and y(i) is the ele-
ment of Y. θ is a coefficient mainly to keep θ ·di ·τ at around
0.18. The operator sum(·) is used to count the number of
y(i) < θ · di · τ in the set Y.

5 Re-detectionmechanism

Based on the sliding window, the EdgeBox algorithm clev-
erly designs a scoring function which uses the number of
edge segments completely contained in the sliding window
as a measure. If the score is large, the area is likely to contain
objects. Then, a series of proposals are generated based on
the score. The EdgeBox algorithm typically takes only about
0.35 seconds to process a 480×720 image. Given the advan-
tages of EdgeBox in terms of run-time and recall, we use this
method to detect objects. Meanwhile, the threshold is set to
accept only the top k bounding boxes. Considering the scale
variation of the object, our screening strategy is described
below:

1.2−1 · boccw · bocch < bw · bh < 1.2 · boccw · bocch (9)
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(a) The response value curves for general objects.
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(b) The response value curves for small objects.

Fig. 2 The response value curves for five consecutive frames (color
figure online)

where bw and bh are the width and height of the proposals.
boccw and bocch are the width and height of the object bounding
box.

In the re-detector, the correlation operation is imple-
mented on the filtered proposals and the maximum response
value is taken. Then, the detection result is used to reinitial-
ize the tracker if the maximum response value reaches the
threshold vτ . It should be noted that when the coefficient v

is set too large, it will cause no object to be detected, and if v

is too small, it may lead to error detection. In general, v takes
a value of 0.5, such as [24]. However, when environment dis-
turbance and object itself change dramatically, the response
value corresponding to the proposal is relatively small, and
vice versa. In view of the above concerns, how to properly
set the coefficient v is very important.

The response value curves for five consecutive frames
after the criterion is triggered are shown in Fig. 2, where
each curve represents a sequence. It is clear that the fluctu-
ation trend of the red curves is more intense than the green
curves. In a certain sense, the fluctuation trend of the response
value reflects the severity of the environmental disturbance
and the change of the object itself. The more intense the fluc-
tuation of the response curve, the greater the difficulty the
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(a) k = 200 (b) k′ = 32 (c) Bounding box

Fig. 3 The object extracted from k proposals

re-detector is in detecting potential objects. Therefore, we
adopt a relatively small threshold coefficient for the objects
represented by the red curves, while choosing a larger thresh-
old coefficient for green curves. Since the fluctuation trend
of the response value is mainly reflected in the first three
frames, the method of separating the objects represented by
the red and green curves is as follows:

τocc3 < τocc2 < τocc1 (10)

w < τocc1 − τocc3 (11)

z <
τocc1 − τocc2

τocc1 − τocc3
= r (12)

where τocc1, τocc2 and τocc3 are the response values of the first
3 frames after the criterion is triggered, respectively.w repre-
sents the minimum difference in response value between the
first frame and third frame. r is used to measure the degree
of decline of the response value of the second frame. Sub-
sequently, the separated curves will be assigned different
threshold coefficients v = [v1, v2, v3, v4]. Compared with
general object detection, small objects are easily interfered
by similar objects in the background and feature representa-
tions are inaccurate, this will cause the re-detector to capture
the wrong target. Therefore, it is necessary to appropriately
increase the vi of the small objects to reduce the probabil-
ity of the error detection. Figure 3 shows the entire process
of detection, screening and determination. In addition, the
whole flowchart of proposed method is shown in Fig. 4.

6 Experimental results and discussion

6.1 Overall performance

The performance of proposed tracker is evaluated on OTB
dataset using the one-pass evaluation (OPE) protocols. In
AO-CF, we use the fusion feature of raw pixel, hog, and
color label, and the scale pool is selected as [1, 0.99, 1.01].
The other parameters of the AO-CF tracker use the default
parameters of KCF. In the occlusion criterion, a1 = 0.6,
b1 = 0.005, d1 = 0.3, d2 = 0.5, d3 = 0.4, d4 = 0.6,
θ = 0.7. In the re-detection mechanism, k = 200,w = 0.05,
z1 = z2 = 0.6, v1 = 0.7, v2 = 0.5, v3 = 0.8, v4 = 0.6. We
compare AO-CF with 11 state-of-the-art trackers including

KCF [9], DSST [13], LCT [25], ACFN [15], DCFNet [16],
MEEM [21], OCTKCF [22], LCKCF [23], SAMF [14],
DLSSVM [26] and Staple [27]. In order to better demon-
strate the effectiveness of our proposed method, we also
make corresponding improvements to KCF, named IKCF.
The experimental environment is Intel Core i5 2.3GHz CPU
with 8.00GB RAM, MATLAB 2017b.

As shown in Fig. 5, AO-CF performs favorably against
the other twelve state-of-the-art methods. With the aid of
occlusion criterion and re-detection mechanism, the pro-
posed AO-CF significantly improves the performance in
both distance precision (5.9%) and overlap success (3.6%)
when compared to the foundational SAMF on the OTB-100
dataset. For the OTB-50 dataset, AO-CF gains 8.7% in dis-
tance precision and 6.0% in overlap success. Compared to
KCF, the IKCF has also greatly improved the precision and
overlap rate. The tracking speeds of AO-CF and IKCF are
51.2 frame/s and 93.3 frame/s, respectively.

6.2 Ablation study

Several modifications of the proposed method are tested
to expose the contributions of different parts in our archi-
tecture. Two variants use the proposed detection threshold
settingmethod in the detectorwith peak to sidelobe ratio (CF-
PSR) [28] and median flow (CF-MF) [29], and one variant
uses only 0.5 (CF-(0.5)) as the detection threshold. Figures 6
and 7 show the tracking results and the speed comparisons.
Compared to CF-(0.5) with a fixed detection threshold, our
method increases the overlap rate by 1.9%. In addition, our
tracker is also significantly better than CF-PSR and CF-MF,
which can be attributed to the fact that the proposed crite-
rion is more accurate than PSR and MF in the evaluation
of tracking failure. From the perspective of tracking speed,
our method still achieves good real-time performance even
if EdgeBox increases the amount of calculation. Compared
with othermethods (KCF, Staple, etc), although the proposed
tracker is not superior in speed, our approach is better than
them in terms of overall performance. It is worth noting that
the speed of CF-MF is seriously degraded due to the use of
a computationally intensive MF method.

6.3 Attribute-based evaluation

To further reveal the performance of the tracker, we also
evaluate the proposedmethod using 11 annotated attributes in
theOTB-100 dataset. In the distance precision comparison of
Fig. 8, AO-CF ranks first in IV, OPR, SV, OCC, IPR, BC, and
ranked second in DEF, LR. In the comparison of the overlap
success of Fig. 9, AO-CF ranks first in OPR, IPR, BC, and
ranked second in IV, OCC, DEF, MB, OV, LR. Regarding
the OCC, AO-CF has achieved considerable performance in
distance precision and overlap rate. Since other attributes also

123



758 Signal, Image and Video Processing (2020) 14:753–761

Fig. 4 The flowchart of AO-CF. The tracker is mainly composed of five components: correlation tracking module, object classification module,
occlusion criterion module, re-detection mechanism module and detection threshold setting module
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Fig. 5 Comparison of ten algorithms over OTB-50 and OTB-100
benchmark using OPE

make the response value drop and result in object loss, AO-
CF also performs well under these attributes, such as IPR,
OPR, IV, not just for OCC.

6.4 Qualitative evaluation

To intuitively present the superiority of our tracker, we visu-
alize the tracking snapshots of top 10 trackers on eight
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Fig. 6 Ablation study of AO-CF on OTB-100 dataset

FPS: frame/S

Fig. 7 Comparison of the tracking speed of 17 trackers

challenging sequences with OCC attribute. As can be seen
from Fig. 10, the AO-CF is still tracking objects robustly
when the objects undergo partially OCC or fully OCC.
However, most trackers drift to the background after the
objects are occluded. As for IKCF, it implements robust
tracking on five sequences. Benefiting from the powerful
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Fig. 9 Overlap success plots over 11 tracking challenges

AO-CF IKCF SAMF MEEM LCT DLSSVM Staple ACFN OCTKCF DCFNet

Fig. 10 Tracking results of top 10 methods on eight challenging sequences. From left to right and top to bottom, they are Basketball, Box, Girl2,
Coupon, Lemming, Panda, Soccer, Walking2, respectively

convolution feature, DCFNet performs well in Basketball,
Lemming,Panda, andWalking2, but fails inCoupon and Soc-
cer when similar interferers appeared. In addition, MEEM
and DLSSVM, which are based on SVM, also show inad-
equate ability to handle similar interferers in Coupon and
Soccer. The ACFN using the attention mechanism is mainly
suitable for FM, and the handling of the OCC is obviously
weak. For correlation filtering algorithms based on hand-
crafted features, namely, SAMF, LCT, Staple and OCTKCF,
due to the limited search area caused by the boundary effect,

these trackers drift in Girl2 and Panda when the object is
severely occluded. However, with the help of model updat-
ing mechanism, some correlation filtering algorithms also
show strong robustness in some OCC scenarios. For exam-
ple, SAMF in Box, Lemming, Walking2, LCT in Basketball
and Lemming. It is worth mentioning that OCTKCF, mod-
eled on the Bayesian optimization framework, performs
impressively in Soccer and Basketball sequences. In gen-
eral, the occlusion criteria and the re-detector significantly
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#11 #52 #10

Fig. 11 Red boxes show our results and the green ones are ground truth.
From left to right are MotorRolling, Skiing, Jump, respectively (color
figure online)

improve the ability of the AO-CF and IKCF to handle
OCC.

6.5 Failure cases

Apart from successful cases, we also discover a few failure
cases as shown in Fig. 11. For the MotorRolling sequence,
due to the serious in-plane rotation and scale variation of the
object, the object bounding box contains a large amount of
background information, which causes the proposed tracker
to drift. For the Skiing sequence, although the fast motion
of the object caused a sharp drop in the response value, the
re-detector fails to activate because the time is too short and
the conditions of the first phase in the occlusion criterion are
not met. Regarding the Jump sequence, the object bounding
box is almost at the position of the previous frame because
the target template is not updated in time.

7 Conclusions

In this paper, an effective tracker is proposed to handle
the occlusion of objects during tracking process. The pro-
posed occlusion criterion and re-detection mechanism take
the changes in tracking process into account comprehen-
sively. The experimental results show that compared with
the foundational SAMF on the OTB-100 dataset, the AO-CF
has achieved significant improvements in distance precision
(5.9%) and overlap success (3.6%). In the proposed tracker
performs outstandingly for OCC in attribute-based evalua-
tion. Moreover, our approach can obtain a real-time tracking
speed.
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