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Abstract
Computer aided diagnosis of cancer is a field of substantial worth in current scenario since approximately 38% population
of the world is suffering from the disease. The detection of cancer is based on the observation of deformation in nuclei
structure using histopathology slides/images. The proposed technique utilizes nuclei localization prior to classification of
histopathology images as benign and malignant. The features used for classification are an ensemble of 150 bag of visual
word features, extracted from preprocessed image and 20 handcrafted features, extracted from the internal parts of nuclei
using localized histopathology images. The simulation results confirm the superiority of proposed localization based cancer
classificationmethod as compared to existingmethods of the domain. It has reported average classification accuracy of 95.03%
on BreakHis dataset.

Keywords Medical imaging · Histopathology · Histopathology image · Feature extraction · Image classification

1 Introduction

This microscopic image analysis in the medical field is a
very helpful and emerging field. The hematoxylin and eosin
(H&E)-stained histopathology images (HIs) are segmented
to get the specific region characteristics for the detailed
analysis. The statistical features are utilized in image seg-
mentation to mark the object of interest [1–3]. Wang et al.
presented a multi-scale region growing and curvature scaling
for automatic breast cell nuclei segmentation and classifica-
tion (ANSC) [2].Wang in [4], has proposed a semi-automatic
method (SAM) for cell segmentation. Various statistical
features have been studied to enhance different regions of
interest [4–6]. The HI segmentation finds applications in
identification of diverse objects like tissue, gland, etc. [7–9].
Vu et al. [8] proposed class specific features learning based
technique to separate the interclass difference named as
discriminative feature-oriented dictionary learning method
(DFDLM). Naylor et al. [9] presented a nuclei segmentation
using deep regression (NSDR) approach in order to target

B Yashwant Kurmi
yashwantkurmi18@gmail.com

1 Maulana Azad National Institute of Technology,
Bhopal 462003, India

2 Jawaharlal Nehru Cancer Hospital and Research
Center, Bhopal, India

3 All India Institute of Medical Sciences Bhopal, Bhopal, India

the touching nuclei regions. In most of the HI segmentation
methods, firstly the basic marking is performed, followed by
stain decomposition [10] as per the dataset requisites. The
Laplacian-of-Gaussian filtering and the Gaussian mixture
model (GMM)-based pixel clustering have been investigated
for seed point extraction for nuclei segmentation in [11] and
[12], respectively.

Many researchers have been investigating the use of
localization using segmentation as preprocessing of feature
extraction. Support vectormachine (SVM) and convolutional
neural network based classifiers are the classifiers based on
hyperplane selection [13–17]. Yan et al. [18] presented a
hybrid technique for breast cancer HI classification using
convolutional and recurrent deep neural network (CRDNN).
Yang et al. [19] worked on the feature selection for high-
dimensional data mining using the nearest neighbor-based
feature weighting. Klein et al. [20] developed a fast Bayesian
optimization technique ofmachine learning hyperparameters
on large datasets. Most of the above discussed methods faces
problem in extraction of features due to the overlapped nuclei
which in turn leads to the reduction in the dependability of
classification.

This paper suggests a classification of HIs for can-
cer detection using nuclei localization as a preprocessing
step. A significant number of relevant features have been
extracted using a combination of bag of visual words and the
handcrafted features form segmented HI. The significance
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Fig. 1 Block diagram of the proposed algorithm: a nuclei localization
in HI and b HI classification in benign and malignant

of handcrafted features has been tested using neighbor-
hood component analysis (NCA) [19]. Further, the SVM
[15] and multilayer perceptron (MLP) [16] classifiers have
been applied along with optimized hyperparameters using
Bayesian optimization [20] for the benign and malignant HI
classification.

In remaining manuscript, the second section presents
nuclei localization method, Sect. 3 explains the selection of
appropriate features, and details of classification models are
given in Sect. 4. Experimental setup is presented in Sect. 5,
followed by result analysis in Sect. 6. Finally, Sect. 7 con-
cludes the research findings.

2 Localizationmethod

The proposedmethod is presented through the block diagram
in Fig. 1a shows the localization part and Fig. 1b shows the
classification part. In localization, input HI ( f ) is prepro-
cessed followed by the identification of nuclei region and
nuclei boundaries. The final outcome of the described HI
processing provides complete nuclei segmented (localized)
image ( fL ).

Fig. 1b is presenting the combination of proposed fea-
ture extraction and classification. Details of proposed feature
extraction and classification are explained in Sect. 3 and 4,
respectively.

For preprocessing, firstly the stain decomposition is
applied on f . It focuses on stains co-occurrence in associ-
ation with the circular mixture model and soft-clustering of
pixels [10]. The pixel level clustering is done through period-
icity of hue signals on the unit for decomposition. It results
a preprocessed image fp. The nucleus contains euchromatic
(active region comparatively brighter than other region) and
heterochromatic (inactive region comparatively darker than

Fig. 2 Hematoxylin & Eosin stained images illustration. a original
image, b preprocessed image, c ground truth and d the decomposed
hematoxylin stain component for benign (upper) and malignant (lower)
images

other region). The nucleus is always a darker region and
called as key points. Figure 2 illustrates the benign andmalig-
nant images with their ground truth and stain decomposed
counterparts.

2.1 Nuclei initialization

The nuclei initialization is performed on preprocessed HI to
initiate the segmentation. Firstly, fp is converted to respective
grayscale image fg in the range {0, 1} and further enhanced
using normalization factor α in order to transform the range
from [0.15–0.4] to [0–0.4]. The pixel values of enhanced
grayscale HI ( fr) are shown in Eq. 1

fr(x, y) �
⎧
⎨

⎩

0; if fg(x, y) ≤ 0.15
α × fg(x, y); if 0.15 < fg(x, y) ≤ 0.4
fg(x, y); else

. (1)

The difference ofGaussian (DoG) is applied on fr and returns
fDoG. Similarly, Hessian of Laplacian of Gaussian (HLoG)
operators is applied on fr and produces fHLoG . All three
images ( fDoG, fHLoG and fr) are segmented through Otsu
thresholding [21], and three segmented images are combined
to identify the nuclei key points. The nuclei region is pro-
cessed with morphological erosion and overlapped nuclei
are separated by considering nuclei radius r ≤ R as con-
straints to get the nuclei seeds. The large regions are taken as
multiple nuclei, while considering the nuclei shape and size.
The ultimate result of this step is nuclei center marked image
( fMark).

2.2 The nuclei region estimation

The nuclei regions are identified through application of the
normalized graph cut method [22] on fp followed by the
application of key point-contour link creation algorithm [5]
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by considering marked key points of fMark. It connects the
key points with the outcome of the normalized graph cut
method. The link length is chosen as 3–7 pixels based on the
size of nuclei. Image fp is represented as a graphG � (V , E),
where V defines set of vertices {v1, v2, . . .} and E defines
set of edges {ε1, ε2, . . .}. The links are categorized in two
sections: object O and background B.

Ncut(O, B) � cut(O, B)

assoc(O, V )
+

cut(B, O)

assoc(B, V )
(2)

where

cut(O, B) �
∑

u∈O,v∈B
w(u, v)

assoc(O, V ) �
∑

u∈O,v∈V
w(u, v) (3)

Here wij �
{
1 if vivj ∈ ε,∀(vi , vj) ∈ V
0 otherwise

(4)

The normalized graph cut method is applied in a recursive
manner and separates strong and weak links. Strong links
signify the nuclei connects and other objects are signified by
weak links. The overall shape of the nuclei in HI is defined
by strong links and images containing the extracted nuclei
region is defined as fRE. The image fRE may suffer from
the boundary region problem. In the proposed method, the
solution of this problem is addressed by nuclei boundary
estimation.

2.3 Nuclei boundary estimation

The nuclei boundary estimation corresponding to estimated
nuclei region points is graphically illustrated in Fig. 3a, b.
The contours are extracted by nuclei edges with an opti-
mum boundary estimation as displayed at bottom in Fig. 3b.
Nuclei boundary extraction by the combination of receptive
field (CORF) model is based on the edge detection which are
extracted unit wise. The combination of small edge sections
is taken as the receptive field (RF) unit. The response RS of
a CORF operator is defined as the weighted geometric mean
of the responses of all edges sections, for more detail please
refer [11].

The segmentation outcome has boundaries that are not
aligned to each other are removed using the nucleus center to
boundary association. CORF followed by modified gredient
at discontinuity [23] results a clear demarcation of nuclei and
indicates the nuclei boundary in HI and returns fBE. Further,
the complete nuclei localization is furnished by transforming
the inside region of estimated boundary by 1 s and the rest of
the area of image fBE as 0 s which results as compete nuclei
mask fMask. The application of fMask on fp produces final
localized image fL.

Fig. 3 Nuclei boundary estimation by combination of receptive field
(CORF) and improved by modified gradient at discontinuity (MGD),
a working principle of the CORF model and MGD model, b the visual
illustration of nuclei boundary estimation by CORF model and bound-
ary refinement by MGD model

3 Feature extraction and selection

Appropriate class prediction is the prime focus of the pro-
posed HI analysis. Basically, a classifier needs a set of
features to classify the data into their suitable classes.

3.1 Bag of visual words

A set of hundred and fifty shape features is extracted using
BoWmodel from fp [24]. The codebook containing a certain
number of code words (or visual words) is constructed with
their local descriptors or features.

3.2 Handcrafted features

Here, the handcrafted (HC) features based on the internal
structure of the nuclei are proposed. The fL is utilized for
the extraction of HC features. The fL is separated into two
regions: heterochromatic region (HCR) [25] and euchromatic
region (ECR) [25], through the application of stain color dif-
ferentiation. A modified threshold is utilized to separate the
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HCRandECRof the nuclei which is twice of theOtsu thresh-
old. The nuclei component above the threshold value is the
ECR and the rest is HCR. As per the histopathology analysis,
HIs have the ECR and HCR constituents about to be equiv-
ocal for benign tumor and for malignant tumors the HCR is
dominating as that of ECR in all the tissue structures. The
size of the nuclei increases in the presence of the tumor along
with the increases in shape irregularity and heterochromatic-
ity. The set of 31 HC features (F1–F31) is defined in Table 1.

3.3 Neighborhood components analysis

Neighborhood components analysis (NCA) is a supervised
learningmethod for classifyingmultivariate data into distinct
classes according to the significance parameter in data [19].

To understand NCA, let us consider a set of N number of
training samples T � {(x1, y1), . . . , (xi , yi ), . . . (xN , yN )}.
where vector x is d-dimensional feature spacewith class label
y. The weighting vector w is determined in such a way to
select a feature subset by optimizing the nearest neighbor
classification. The weighted distance DW between two sam-
ples xi and x j in terms of the weighting vector w is given
as:

Dw(xi , x j ) �
d∑

l�1

w2
l

∣
∣xil − x jl

∣
∣ (5)

where wl represents the associated weight of lth feature.
The probability distribution based effective approximation of
reference point is determined first using 1-nearest neighbor
classification by maximizing its leave-one-out classification
accuracy on the training set T . The related probability of xi
to pick x j as its reference point is given as:

pi j �
{

κ(Dw(xi ,x j))∑
k ��i κ(Dw(xi ,xk ))

if i �� j

0, if i � j
(6)

where the kernel κ(z) � exp(−z/σ ) is used with a kernel
width σ . The kernel width is taken as input variable that
plays a key role in deciding the reference point. Thus, the
probability of correct classification of the query point xi is
given by:

pi �
∑

j
yi j pi j (7)

where yi j � 1 only for yi � y j and yi j � 0 else. As a result,
the leave-one-out classification accuracy can be approxi-
mated as:

ρ(w) � 1

N

∑

i

pi � 1

N

∑

i

∑

j

yi j pi j . (8)

Table 1 Features description of nuclei and image level

F1—Average nuclei size: The nuclei size will be determined based
on the average number of pixels

F2—Nuclei count: Number of nuclei present in the image

F3—Perimeter: The nuclei perimeter is calculated through which
we determine the irregular border

F4—Irregular border: The nuclei shape is matched with a
circular cum elliptical shaped nucleus and provided a score in
between 0 and 1. For complete match, it is 1 for no match, it is 0.
The average value is taken for the whole image

F5—Streaks: The streaks are counted as darker region appear due
inappropriate staining and not the part of nuclei

F6—Max-diameter: Average of major axis of elliptical shape

F7—Projections: Represents the major axis projection with
respect to minimum axis.

F8—Min-diameter: Average of minor axis of elliptical shape

F9—Aspect ratio: It is equal to the difference between maximum
column value and the minimum column value of the nuclei
divided by the difference between the maximum row value and
minimum row value of the nuclei

F10—Entropy1: Average nuclei entropy

F11—Entropy2: Image entropy

F12—Number of colors: The dominated color components in the
nucleus region 1, 2 or 3 corresponding to R, G, or B

F13–14—Color ratios-1&2: The ratio of the dominant color
components to non-dominant color component

F15—Euler number: The parameter defines the number of nuclei
minus the number of holes in the image

F16—Thinness ratio: It is the ratio of the area and the perimeter of
the object

F17—Crowdedness or nuclei density: Median of the distances
between nuclei centroids from each individual to all others

F18—Nuclei mean intensity: It is clear from its name itself, the
individual nuclei intensity is calculated and the median is taken
from that

F19—Image mean intensity: The mean image intensity of the
original image

F20–21—Heterochromatic area and Euchromatic area: The
internal part of the nucleus

F22—Center of area of heterochromatic area

F23—Axis of least second moment of heterochromatic area

F24—Center of area of euchromatic area

F25—Axis of least second moment of euchromatic area

F26—Total nuclei area: It is the area taken of nuclei regions

F27—Center of area of nuclei regions

F28—Axis of least second moment of nuclei regions

F29—HTE ratio: It is the ratio of the heterochromatic and
euchromatic area

F30—HTT ratio: It is the ratio of the heterochromatic and the total
area

F31—ETT ratio: It is the ratio of the Euchromatic and the total
area

123



Signal, Image and Video Processing (2020) 14:665–673 669

As σ tends to zero, ρ(w) becomes the true leave-one-out clas-
sification accuracy. A regularization term (λ > 0) is further
introduced to perform feature selection and alleviate overfit-
ting, hence the object function modified as:

ρ(w) � 1

N

∑

i

∑

j

yi j pi j − λ
∑d

l�1
w2
l (9)

The regularization parameter is tuned using cross validation.
To update weights, the object function with regularization
ρ(w) is differentiated with respect to wl as follows:

∂ρ(w)

∂wl
�

∑

i

∑

j

yi j

⎡

⎣
2

σ
pi j

⎛

⎝
∑

k ��i

pi k |xil − xkl | − |xil − xkl |
⎞

⎠wl

⎤

⎦

− 2λwl

(10)

Using the above derivative that leads to the corresponding
gradient ascent update equation, features optimization is per-
formed on 31 extractedHC features. TheNCA is applied here
to reduce redundant features. Which results that one-third of
the features are not carrying useful information and removed.
This optimization provides 20 significantHC features; hence,
further processing is performed using significant HC fea-
tures.

4 Classificationmodels

The block diagram of the general classification model with
features extraction and selection, along with model hyperpa-
rameter optimization is shown in Fig. 1b. In the proposed
computer aided cancer diagnosis method, two classifiers
SVM and MLP model are employed for classification.

4.1 Support vector machine

The SVM [15] classification model provides high flexi-
bility to classify distinct classes. The nonlinearity can be
introduced in SVM using a soft margin parameter C . The
formulations of soft margin linear SVM are given as:

Minimize

[
1

2

n∑

i�1

w2
i + C

N∑

i�1

ξi

]

(11)

subjected to yi ( �w.�x + b) ≥ 1 − ξi for i � 1, . . . , N .
The additional separation distance can be introduced by

nonlinear projection in the high-dimensions using Gaussian
kernel, defined as:

K
(�xi , �x j

) � exp
(
−γ

∥
∥�xi − �x j

∥
∥2

)
(12)

The SVM model’s training is performed using k-fold cross
validation. The training and testing process are repeated k
times, by tracking the performance of themodel in predicting
the holdout set using a performance metric such as accuracy.
The tenfold cross validation with C � 1, and γ � 1 is used
for SVM model training and testing. A set of 40 objective
evolutions provide best feasible point box constraint 0.0012
and kernel scale 0.0192.

4.2 Multilayer perceptronmodel

The neural network based classifier performance depends
on the model selected and appropriate training of the model.
We have trained aMLP [16] for the binary classification with
some nonlinearity, described for input feature vector x as:

O0 � x, Ol � Fl
(
Wlô(l−1)

)
for l � 1, . . . , L. (13)

The input vector x is taken as “output of the zeroth layer”. A
hat notation ô(l−1) represents an operation where a number
1. prepended to a vector to increase its dimension. Hence, the
bias terms of the layer l can be written as the first column of
matrix Wl . The notation Fl represents the application of an
activation function (sigmoid) on all components of a vector.
The softmax function is also used as the activation function in
the output layer of the five layered (Input+3hidden+output)
MLP model. Number of neurons in 3 hidden layers are 6,
10, and 8, respectively. The MLP feed forward fully con-
nected model is implemented with a sigmoid activation. The
model is trained using backpropogation with learning rate
η � 0.12 by considering input features as training parame-
ters and image labels as target variable. For the parameters
update, the gradient is computed using the stochastic gradi-
ent descent algorithm, termedasweight error. Theparameters
are updated in such a way as they move the MLP, one step
closer to the error minimum. We have taken the batch size of
5 samples and 1000 epochs for optimum result.

4.3 Hyperparameter tuning framework

Further, hyperparameter tuning is done with the objective to
maximize the validation accuracy as:

X∗ � argmax
X∈χ

f (X) (14)

where X ⊆ RD and f(x) represent the model performance on
validation data for a set of hyperparameters X. Let the hyper-
parameters search space is bounded between l and u are the
D-dimensional vectors denoting the lower and upper ranges,
respectively. The ultimate goal is to optimize the hyperpa-
rameters on whole training data. We start by taking a small
subset of the trainingdata to identify the optimal hyperparam-
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Fig. 4 a Original image, b preprocessed image, c ground truth, d the
hematoxylin component of stain decomposed image, e nuclei seg-
mented image, f heterochromatic component, g euchromatic compo-
nent of the nuclei

eters using Bayesian optimization [20], which is repeatedly
applied to a number of different smaller subsets. Themean of
the optimal hyperparameters is determined to find the robust
estimate. The parameters C, γ and kernel are optimized for
SVM and the hidden layers, activation, solver and learning
rate are optimized for MLP classifier.

5 Experimental setup

The experimental setup covers the datasets used in the
localization and classification and the evaluation parame-
ters calculated for performance analysis. The dataset name
Bisque is an acronym for Bio-Image Semantic Query User
Environment. Which provides a cloud based system to store,
organize, visualize and analyze the various dataset images,
and breast cancer (BC) dataset is one of the collections of
Bisque. The Bisque dataset contains 32 benign and 26malig-
nant cases [26]. The dataset Breast Cancer Histopathological
Image Classification (BreakHis) contains 9109 microscopic
images (from 82 patients) of breast tumor tissue using 40×,
100×, 200× and 400× magnifying factors [7].

5.1 Proposedmulti-organ dataset

Aset ofmicroscopic images frommultiple organs is prepared
and analyzed with 10 cases for each. The images are taken
at different magnification as 40×, 100×, 400× and 1000×
. The images at 100× are utilized for the gross analysis of
cancer detection based on localized nuclei characteristics and
1000× are utilized for analysis of nuclei localization along
with ECR and HCR segmentation. Ta
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Table 3 The FS, JI and HD of the proposed multi-organ (Breast � Bst, Cervix � Cvx, Tongue � Ton) image dataset at 1000X magnification

Methods Jaccard Index Hausdorff Distance F1-Score Accuracy

Organ Bst Cvx Ton Avg Bst Cvx Ton Avg Bst Cvx Ton Avg Bst Cvx Ton Avg

ANSC [2] 0.395 0.389 0.363 0.382 9.422 10.498 9.35 9.76 0.716 0.699 0.771 0.729 0.859 0.814 0.704 0.792

SAM [3] 0.514 0.497 0.466 0.492 11.352 12.394 10.34 11.36 0.72 0.818 0.779 0.772 0.863 0.833 0.712 0.803

DFDLM
[8]

0.457 0.454 0.424 0.445 11.93 11.296 14.51 12.58 0.683 0.761 0.836 0.760 0.826 0.876 0.769 0.824

NSDR [9] 0.677 0.587 0.536 0.600 8.287 10.405 9.43 9.37 0.727 0.681 0.869 0.759 0.87 0.89 0.858 0.873

Proposed 0.71 0.719 0.597 0.675 6.919 7.54 8.24 7.57 0.847 0.853 0.901 0.867 0.925 0.915 0.915 0.918

The bold face values represent the best performance in between baseline methods, while bold and italic show the overall best

5.2 Evaluation parameters

To measure the performance of the proposed localization
method, the parameters used are: F1-score (FS) [27, 28],
Jaccard index (JI), [29] and Hausdorff distance (HD) [30]
for segmentation. The accuracy and area under curve (AUC)
[31] are used for the classification performancemeasurement
along with the receiver operating characteristic (ROC) curve
[31].

6 Results and discussion

The evaluation of localization and classification is analyzed
qualitative and quantitative.

6.1 Localization work evaluation

The image localization is visually illustrated in Fig. 4. The
images in the upper three rows are of Bisque dataset, fourth
row image is from proposed dataset, and lower two rows are
from the BreakHis dataset. Figure 4a shows the H&E stained
original image, and Fig. 4b depicts the preprocessed image
followed by their corresponding ground truth in Fig. 4c. The
hematoxylin component of the stain decomposed image is
shown inFig. 4d. Figure 4e–gvisualizes the nuclei segmented
image, HCR and ECR components, respectively. First and
fifth rows are the benign cases, and rests are the malig-
nant cases. For the malignancy, the HCR increases inside
the nuclei.

The quantitative performance of the proposed localiza-
tion method is presented in terms of average FS, JI and HD
is shown in Table 2, for Bisque and BreakHis (400× mag-
nification images) dataset. The proposed method provides
an average FS of 0.861, which is 23% and 21% better than
the best performing baseline methods NSDR and DFDLM,
respectively. The proposed method provides a JI value for
BreakHis dataset images about 0.721 with overall average is
0.713. The average accuracy is 0.919 which is 10% greater
than the NSDR method.

Table 4 Dataset description for classification experiments five times the
original samples images

Experiment Operation Benign samples Malignant
samples

Total

Exp.1 Total 160 130 290

Exp.2 Total 2890 6160 9050

Exp.3 Total 2890 2960 5850

Exp.1 Bisque dataset the only available combination
Exp.2 BreakHis dataset with given image combination 1
Exp.3 BreakHis dataset with given image combination 2

The performance of the proposed localization method is
also validated by the proposed multi-organ dataset, which
comprises 10 images from each organ, including breast,
cervix and tongue with equal counts of benign and malig-
nant cases, shown in Table 3. The accuracy of the proposed
method is 0.918which is at par to the standard datasets result.

6.2 Experimental setup for classification

The experimental setup is divided into three categories of dif-
ferent dataset and image augmented combinations. The small
dataset size is increased by flipping and shearing operation at
10 degrees along horizontal (or vertical) axis gave two set of
images. The random cropping and 10% random noise addi-
tion provided other two sets of images. The image dataset
size becomes (four regenerated sets + original) five times as
shown in Table 4. Exp. 1 is designed using Bisque dataset
with 160 benign and 130 malignant HIs. Exp. 2 is designed
with BreakHis data that has total 9050 images with 2890
benign and 6160 malignant cases as an imbalance dataset. In
Exp. 3, the dataset imbalance problem is taken care. For bal-
ancing purpose, five–five selected images are taken from the
ductal carcinoma in situ (DCiS) [7]. It provides a set of 5850
images at 400× fromBreakHis dataset. The Exp.3 comprises
of 2890 benign image and 2960 malignant HIs.

123



672 Signal, Image and Video Processing (2020) 14:665–673

Table 5 Average accuracy (Ac%) and area under the curve (AUC) for
Bisque and BreakHis datasets classification

Features Measures Features by Bag
of words (BoW)

BoW with
handcrafted
features

Datasets Methods SVM MLP SVM MLP

Bisque Exp1 Ac (%) 82.83 78.27 90.06 94.48

AUC 0.75 0.77 0.86 0.91

BreakHis Exp2 Ac (%) 81.83 79.71 93.47 93.86

AUC 0.9 0.79 0.91 0.92

BreakHis Exp3 Ac (%) 85.35 83.34 93.73 96.75

AUC 0.86 0.86 0.92 0.94

Average Ac (%) 83.34 80.44 92.42 95.03

AUC 0.84 0.81 0.90 0.92

Table 6 Confusion matrix Exp. 1–Exp. 3(in %) data into benign (B)
and malignant (M) classes

Class Exp.1 Exp.2 Exp.3 Method

B M B M B M

B 89.38 10.62 93.11 6.89 93.63 6.37 SVM

93.75 6.25 93.63 6.37 95.85 4.15 MLP

M 9.23 90.77 6.64 93.36 7.26 92.84 SVM

6.92 93.08 5.96 94.04 3.58 96.42 MLP

Table 7 Comparison of classification performance with previous works
on BreakHis dataset

Method Accuracy (%) AUC

MDC [17] 88.32 0.84

CRDNN [18] 86.37 0.85

Proposed 95.03 0.92

The bold face values represent the best performing values

6.3 Evaluation of the classification work

The MLP classifier performed best using the combination of
BoW and HC features with an average accuracy of 96.75%
for the balanceddataset (Exp.3),while for imbalanceddataset
(Exp.2) 93.86% as shown in Table 5.

The MLP provides the highest AUC of 0.94 for balance
dataset. The confusion matrix for Exp. 1–Exp.3 using BoW
with HC features is shown in Table 6. The average accuracy
of the proposed method is 95.03%, which is 10% and 7%
higher than the CRDNN and MDC methods, respectively.
The average AUC has reported 0.92 in comparison to 0.84
and 0.85 provided by MDC and CRDNN, respectively as
shown in Table 7.

7 Conclusion

This paper presents an innovative HI localization based clas-
sification method using a combination of BoW features and
HC features. The proposed method categorizes the HIs in
benign and malignant classes. The extraction of HC features
is performed on the basis of the intra-nuclei region separa-
tion of localized image in two components: HCRs and ECRs.
Total 31HC features are extracted out of which 20 significant
features are selected using neighborhood components anal-
ysis. The BoW in association with HC features, is used for
classification using MLP and SVM models. The simulation
results are obtained using Bisque, BreakHis and proposed
datasets. The proposed localization method has attained an
average accuracy of 91.85%. The performance of the MLP
model using balanced dataset has reported as best with an
average accuracy of 95.03%, which is 10% and 7% higher
as that of CRDNN and MDC methods.
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