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Abstract
As a local filter, the guided image filtering (GIF) suffers from halo artifacts. To address this issue, a novel weighted aggregating
strategy is proposed in this paper. By introducing the weighted aggregation to GIF, the proposed method called WAGIF can
achieve results with sharp edges and avoid/reduce halo artifacts. More specifically, compared to the weighted guided image
filtering and the gradient domain guided image filtering, the proposed method can achieve both fine and coarse smoothing
results in the flat areas while preserving edges. In addition, the complexity of the proposed approach is O(N ) for an imagewith
N pixels. It is demonstrated that the GIF with weighted aggregation performs well in the fields of computational photography
and image processing, including single image detail enhancement, tone mapping of high-dynamic-range images, single image
haze removal, etc.

Keywords Edge-preserving filtering · Weighted aggregation · Detail enhancement · HDR tone mapping · Haze removal

1 Introduction

Edge-preserving image filtering is the most fundamental
operation in the fields of image processing, computer vision
and computer graphics.Most popular edge-preserving image
filtering techniques can be classified into two categories:
regularization algorithms with global optimization (i.e.,
L0 norm gradient minimization [26], total variation (TV)
[13,16], propagated guided image filtering (PGIF) [18] and
weighted least squares (WLS) [5,17]) and local algorithms
(i.e., bilateral filtering (BF) [4,22,25], domain transform fil-
tering (DTF) [19], wavelet-based Filtering [1,20,27] and
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guided image filtering (GIF) [9,12,15,21]). Regularization
algorithms optimize a cost function which consists of a data
fidelity term and a regularization term globally. The data
fidelity term measures fidelity of the filtered image and the
input image.On the other hand, the regularization termessen-
tially enforces a soft constraint on the global structure and
smoothness of the filtered image. Generally speaking, the
regularization techniques are often outstanding and compu-
tationally expensive. On the contrary, the local algorithms
efficiently predict the intensity of each interest pixel in a
small spatial range (patch) around the underlying pixel. It is
indicated in [9] that halo artifacts are inevitably produced in
local filters because of edge blurring. Themechanism of halo
artifacts was discussed in [4,14,15,26].

The GIF, which is one of the fastest local edge-preserving
filters, is widely used in image enhancement [6,10], tone
mapping of high-dynamic-range (HDR) images [5,7], haze
removal [8], etc. As a local filter, GIF suffers from halo arti-
facts. To optimize the edge-preserving performance, several
improvedGIF algorithms have been proposed in recent years.
The weighted guided image filter (WGIF) [15] incorporates
an edge-aware weighting into the regularization parameter
of GIF. As such, the regularization parameter in WGIF is
adaptive to a specified edge-aware weighting instead of a
fixed one in GIF. The gradient domain guided image filter
(GDGIF) [12] incorporates an explicit first-order edge-aware
constraint into the GIF. The key ideas of the WGIF and
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the GDGIF are similar, i.e., the regularization parameter
(smoothing factor) is small in an edge patch and big in a
flat patch. The edge-aware strategy makes edges to be pre-
served better in WGIF and GDGIF than the ones obtained
by GIF and thus reduces halo artifacts. However, it is noted
that while the edge-aware weighting is introduced, textures
may be treated as edges and cannot be smoothed. Besides the
edge-aware methods, the multi-scale idea described in [24]
is also selectable for solving the halo problem.

In this paper, the halo problem is analyzed from a new per-
spective, i.e., we argue that the halo artifacts are caused by
inaccurate estimation of pixel intensities. The average aggre-
gation employed inGIF,WGIF,GDGIF, etc. is indiscriminate
for all patches. For a pixel located on the edges, the estima-
tions of this pixel in some patches are close to the means,
which are far from the true value, and yield blurring edges.
To solve this problem, we propose to estimate a specific pixel
from patches with different weights. Then, a novel weighted
aggregation strategy, in which weights are measured by the
mean square errors (MSE), is proposed to yield final out-
put. It is shown in experiments that the proposed aggregation
not only preserves edges effectively, but also achieves good
smoothing results in strong texture regions.

2 The proposedmethod

Before the weighted aggregation strategy is proposed, the
GIF, WGIF and GDGIF techniques are briefly reviewed.

2.1 Guided image filtering

The principle of the GIF is that the input image I is filtered
with a given guidance imageG. It is assumed that the filtering
output Î is a linear transform of the guidance image G in a
small patch wk , and the filtered output ( Îk(p)) at pixel p is
expressed as:

Îk(p) = akG(p) + bk, ∀p ∈ wk, (1)

where ak and bk are linear coefficients assumed to be constant
in the patch wk centered at pixel k. A solution to determine
the linear coefficients ak and bk is proposed by minimizing
the following cost function:

E(ak, bk) =
∑

p∈wk

[
(akG(p) + bk − I (p))2 + εa2k

]
, (2)

where ε is a fixed regularization parameter penalizing large
ak . More specifically, the effect of ε in the GIF is similar to
the range variance δ2r in the BF [25]. A big value of ε leads
to the resultant images which are visually smooth and edges
are blurred, and vise versa.

Accordingly, the WGIF [15] and the GDGIF [12] have
been proposed by employing an adaptive regularization
parameter instead of afixedone. First, an edge-awareweight-
ing is introduced in WGIF [15], which is defined as follows:

Γp = 1

M

∑

i∈G

δ̃G,p + β

δ̃G,i + β
, (3)

whereβ is a small positive constant,M is the number of pixels
in the guided image G and δ̃G,i and δ̃G,p are the variances of
G in 3×3 patches centered at the pixels i and p, respectively.
Then, the ε is modified as εp = (0.001 × L)2/Γp, where L
is the dynamic range of the guided image G. Instead of the
fixed regularization parameter in GIF, the values of εp in
WGIF are different at different pixels. The value of Γp is
always large (Γp > 1), while the pixel p locates in an edge
region and is small (Γp < 1) when p is in a flat region. As
such, a small εp is adopted in edge regions, while a big εp is
used in flat regions. A similar idea is introduced in GDGIF
[12]. The edge-awareweighting inGDGIF is also formulated
similarly as Eq. (3), but δ̃G,p and δ̃G,i terms are multiplied
separately by the variance of the guided image inwp (Eq. (9)
in [12]). The GDGIF claims that the edges are detected more
accurately than WGIF with the new edge-aware weighting.

Equation (2) is a linear ridge regression model and coeffi-
cients (ak , bk) can be solved by minimizing the cost function
and expressed as:

ak = covk(G, I )

δ2G,k + ε
,

bk = Īk − akḠk, (4)

where covk(G, I ) is the covariance of the guided image G in
wk , δ2G,k is the variance of the guided image in wk , and Ḡk

and Īk are the means of G and I in wk , respectively. With
the values of ak and bk , the filtered output of the pixel p
is computed by Eq. (1). It is highlighted that the pixel p is
involved in all patches wk that cover p. The value of Îk(p)
is not identical when the pixel p is computed in different
patches. A commonly used aggregating strategy in several
algorithms (i.e., GIF [9], WGIF [15], GDGIF [12], etc.) is to
average all the possible prediction values of the pixel p:

Î (p) = 1

N

∑

k|∀wk ,p∈wk

Îk(p) = āpG(p) + b̄p, (5)

in which N is the number of pixels in wk , Îk(p) is the lin-
ear prediction of the pixel p in the wk (Eq. 1) and āp =
1
N

∑
k∈wp

ak and b̄p = 1
N

∑
k∈wp

bk are means of a and b
in the patch wp centered at the pixel p (Eqs. (9) and (10) in
[9]), respectively.
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(a) (b) (c)

Fig. 1 Average aggregation results. The parameters ofGIF are ε = 0.42

and r = 16 (r is the radius of the filtering patch). a and b Input image
and filtered result, respectively. c Profiles of input signal and filtered
result (color figure online)

As described in [9], the output Î (p) of the pixel p approx-
imates to the input I (p) when āp is close to 1. Meanwhile,
the Î (p) approximates to the mean of the pixels in wp when
āp is close to 0. Moreover, the conditions of ak ≈ 1 and
bk ≈ 0 are held in regions with high variances (δ2G,k � ε),
and the conditions of ak ≈ 0 and bk ≈ 1 are held in regions
with low variances (δ2G,k � ε). Considering a simple case
that the patchwp centered at a single step edge, each pixel in
wp is involved in one or more flat patches where ak approx-
imates to 0. Therefore, the value of āp in wp is smaller than
1 evidently. Thus, the edge is blurred and halo artifacts may
arise. Hence, it is reasonable to prevent halo artifacts in GIF
method by improving the aggregating method as introduced
in the following section.

2.2 GIF with weighted aggregation

To further illustrate the effect of the average aggregation
on the edge blurring, some experimental results of GIF are
shown in Fig. 1 visually. For a pixel near an edge (e.g., p
in Fig. 1c), it should be involved in some patches (e.g., wi

(red) in Fig. 1c) which are on the same side and others on
the different side (e.g., w j (green) in Fig. 1c). Within the
GIF algorithm framework, it is easily derived that the output
Îi (p) in wi is closer to the expected result than the Î j (p) in
w j . In other words, the estimation error of p in w j is big-
ger than the one in wi . With the average aggregation, big
errors in those patches like w j are introduced in the final
result averagely. Thus, edges are blurred especially when
big smoothing parameters (r , ε) are selected (Fig. 1c). As
analyzed in [5,9,24], these blurred edges result in halo arti-
facts (Fig. 1b). It is obvious that the final aggregated result
becomes more accurate if big weightings are assigned to the
patches whose estimation errors are small. Meanwhile, the
halo artifacts can be alleviated. In this study, the mean square
error (MSE) is adopted to measure the estimation accuracy
in each patch.

Considering the estimation processing in a wk , the mean
square error (MSE) of the GIF can be expressed as:

(a)

(b)

Fig. 2 Curves of the MSE. a Curve of ek on the condition of ε =
0.152. bValues of ek while a 1D square signal is corrupted with a white
Gaussian noise (r = 3)

ek = 1

N

∑

i∈wk

[(akG(i) + bk) − I (i)]2 . (6)

Assuming that the estimation with low MSE has high con-
fidence and a high weight is assigned accordingly. An
aggregating weight γk of the patch wk is introduced, and
the aggregation step of the GIF is reformulated as:

Î (p) = 1

‖γk‖
∑

k|∀wk ,p∈wk

γk [akG(p) + bk] , (7)

where γk = exp(−ek/η) (η > 0 is a small constant scalar) is
the aggregatingweight of the patchwk and‖γk‖ = ∑

j∈wk
γ j

is a normalization coefficient.
Figure 2 provides an intuitive understanding of the pro-

posed aggregation in one-dimensional signal. Putting G ≡ I
and formulations of ak and bk (Eq. 4) to Eq. (6), we have
ek = ε2δ2I ,k/(δ

2
I ,k + ε)2 where δ2I ,k is variance of I in wk .

Figure 2a shows the curve of ek (ε = 0.152). Figure 2b indi-
cates values of ek (red), while a 1D square signal is corrupted
with a white Gaussian noise (r = 3). As illustrated in Fig. 2a,
the value of ek decreases monotonically with δ2I ,k increasing

when δ2I ,k is bigger than ε and varies inversely when δ2I ,k is
smaller than ε. In the case that a pixel p locates on an edge
area, variances of all patches covering p aremuch bigger than
ε (δ2I ,k � ε), and a patch with high variance has a lowMSE,

which means that the prediction Îk(p) in this patch wk is
much close to the input I (p). Accordingly, a high aggregat-
ing weight γk is assigned to this patch. On the contrary, when
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(a) r = 4, ε = 0.152
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(b) r = 16, ε = 0.42

Fig. 3 1D signal processing. The input (blue) is a square step signal
with a white Gaussian noise whose mean is zero and variance is 0.001
(color figure online)

a pixel p locates on a flat area, δ2I ,k � ε is tenable for all
patches (wk) covering the specific pixel p. In this case, aggre-
gating weights in patches which have low variance are big
and the final results approximate to the mean. As illustrated
in Fig. 2b, the values of MSE in edge patches are higher than
ones in flat patches. Moreover, the curve of MSE achieves
local minimum value when the patch center locates at edges,
which reveals that the predictions in these patches are close
to the true values.

Figure 3 demonstrates the results of the proposed method
and the relevant GIF-based methods in one-dimensional sig-
nal. In order to illustrate the differences among selected
methods, two sets of smooth factors (r , ε) are selected:
(4, 0.152) (Fig. 3a) and (16, 0.42) (Fig. 3b). It is observed
that the GIF with the proposed weighted aggregation (green)
achieves much better results than other methods. The result
by the proposed method on large smooth factors, which is
almost the same as the ground truth, reveals that the proposed
method is robust to smooth parameters r and ε. Figure 3
shows that both WGIF and GDGIF are helpful in edge pre-
serving, but both methods yield oscillations in flat regions,
which implies that the WGIF and GDGIF are sensitive to
signal oscillation. Hence, the WGIF and GDGIF methods
are only good to the images with weak textures. On the con-
trary, the proposed algorithm not only preserves edges well,
but also removes signal oscillations in flat areas. To verify
the performance of the proposed method on 2D images, one
more example, which is originated from [5], is adopted for
analysis as shown in Fig. 4. For the BF method, the param-
eters are chosen as δs = 12, δr = 0.8. Since the parameters

(a) Input

(b) BF (c) WLS (d) GIF

(e) WGIF (f) GDGIF (g) Proposed

Fig. 4 2D image filtering. a Input image by courtesy of [5].bBase layer
of BF [25]. c Result of WLS optimization (α = 1.8, λ = 0.35). d–f
Results of GIF [9], WGIF [15] and GDGIF [12], respectively. g Base
layer decomposed by proposed method (η = 0.005). (b)–(f) Obtained
by original codes

r and ε in GIF play similar roles in δs and δ2r in BF, r and
ε in GIF-based methods are selected as 12 and 0.82, respec-
tively. The guided image for GIF-based approaches is the
input image itself. It is observed that BF and GIF methods
remove the fine-scale noise, and the step edges are blurred
accordingly. While the edge-aware weighting is introduced
by WGIF and GDGIF, oscillations caused by noise cannot
be removed because they are treated as edges. On the con-
trary, by applying weighed aggregation to GIF, it is possible
to achieve both fine and coarse smoothing results, i.e., pre-
serves the step edges sharply without introducing obvious
artifacts (Fig. 4g) and removes oscillations in flat regions.
In summary, the proposed method significantly outperforms
GIF, WGIF, GDGIF, BF and WLS.

Substituting Eq. (4) into Eq. (6), we obtain

ek = 1

N

∑

i∈wk

(
akG(i) + Īk − akḠk − I (i)

)2

= 1

N

∑

i∈wk

[
ak(G(i) − Ḡk) − (I (i) − Īk)

]2

= a2k δ
2
G,k − 2akcovk(G, I ) + δ2I ,k, (8)

where δ2G,k and δ2I ,k are variances of the guided image G and
the input image I in wk , respectively, and covk(G, I ) is the
covariance of G and I in wk . This is the expression of the
MSE ek . With some simplifications, the weighted aggrega-
tion (Eq. 7) can be reformulated as:
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Î (p) = G(p)
∑

k∈wp

γk

‖γk‖ak +
∑

k∈wp

γk

‖γk‖bk . (9)

According to Eqs. (9) and (8), the pseudo-code of the
proposed weighed aggregation GIF, namely WAGIF, is
described by Algorithm 1. It is noted that the symbol mean
in Algorithm 1 is an average filtering operator within a box
window of radius r .

Algorithm 1 GIF with Weighted Aggregation
Input: filtering input image I , guidance image G, radius r , regulariza-

tion ε, scalar η

Output: filtered output image Î
1: compute δ2G , δ

2
I , cov(G, I ), a and b as the Algorithm 1 in [9].

2: N = (2 ∗ r + 1)2

e = a. ∗ a. ∗ δ2G − 2. ∗ a. ∗ cov(G, I ) + δ2I
γ = exp(−e./η)

sumγ = mean(γ ) ∗ N
3: gama = (γ. ∗ a)./sumγ

gamb = (γ. ∗ b)./sumγ

4: Î = N ∗ (mean(gama). ∗ G + mean(gamb))

2.3 Analysis on computational complexity

The main computational burden of either step 1 described in
[9] or steps 2–4 in Algorithm 1 is the average filter mean.
Besides that, the rest operators in Algorithm 1 are pixel-wise
operations. Furthermore, the average filter mean can be effi-
ciently computed in O(N ) by using integral image technique
[3] or moving sum method described in [9]. Therefore, the
proposed WAGIF naturally has linear computational com-
plexity (O(N )) and is independent of the filtering radius r .
Experiments demonstrate that the C++-based implementa-
tion achieves a steady running time when different filtering
radii r are selected. By working on a PC platform with Intel
Xeon E5 2.1GHz CPU and 128GB RAM, the operation
time is about 285ms/MP. Moreover, the proposed WAGIF
can be easily extended to the GPU platform for high perfor-
mance and the running time in GPU implementation is about
48ms/MP.

3 Applications and experiments

In this section, the WAGIF is applied to several applica-
tions including single image enhancement [4,23], HDR tone
mapping [4,11] and single image haze removal [8]. The
experiments are performed on MATLAB platform. In order
to verify the contribution of the weighted aggregation to
GIF, only GIF-based algorithms (e.g., GIF [9], WGIF [15],
GDGIF [12] and PGIF [18]) are employed for comparison,
and the codes of the GIF, WGIF and GDGIF are provided by

the corresponding authors. The parameters used in all experi-
ments are selected as follows: r = 15, ε = 0.152. Moreover,
η = 0.005 is selected for single image enhancement and
HDR tone mapping, and η is set to 0.0015 for single image
haze removal.

Single image enhancement In this work, the input image
is decomposed into a base layer and a detail layer, where the
base layer is a reconstructed image formed by homogeneous
regionswith sharp edges and the detail layer represents image
texture. Generally, the edge-preserving filters are performed
on the base layer. Then, the output image is reconstructed
by combining the smoothed base layer and magnified detail
layer. A detailed description of the image detail enhancement
can be found in [4].

Figure 5 illustrates enhanced images by differentmethods.
As shown in zoom-in patches in Fig. 5b, e, halo artifacts are
obvious in outputs of GIF and PGIF (i.e., the black shadow
near the petal in the first row and the purple halo around the
stamen in the second row). Halo artifacts are reduced signif-
icantly in the enhanced images via WGIF, but they are still
perceived (see the first result in Fig. 5c). As claimed in [12],
GDGIF reduces halos better thanWGIF (Fig. 5d). Compared
with other results shown in Fig. 5, halo artifact reduction by
the proposedmethod is comparable toGDGIF andWGIF, but
the enhanced images of the proposed method have clearest
details and are perceived naturally and pleasurably.

HDR tone mapping Tone mapping [4,11], which con-
verts a high-dynamic-range (HDR) image into a conventional
low-dynamic-range (LDR) image, is a popular application in
digital photography. This work can be viewed as a type of
image detail enhancement in which an HDR image is also
decomposed into a base layer and a detail layer. Different
from single image enhancement, in which the detail layer
is magnified, the base layer in HDR tone mapping is com-
pressed. Hence, HDR tone mapping is also referred to as
HDR image compressing.

In these experiments, a popularHDR tonemapping frame-
work introduced in [4] is applied, i.e., an HDR image is
decomposed into a base layer and a detail layer by an
edge-preserving filter in log domain. Then the base layer
is compressed by a specific scale factor. The LDR images
after tonemapping by variousmethods includingGIF,WGIF,
GDGIF, PGIF and the proposed method are shown in Fig. 6.
The zoom-in patches illustrated in Fig. 6 show that the pro-
posed approach achieves results in which the halo artifacts
and the gradient reversals are avoided or alleviated in the
resultant LDR images. Furthermore, the proposed method
preserves details better than WGIF [15], GDGIF [12] and
PGIF [18] and display vivid color (see Fig. 6b–d).

Single image haze removal A haze transmission map was
estimated via the dark channel prior and an effective sin-
gle image dehaze framework was proposed in [8]. In [9], a
refinement of the transmission was presented by simply fil-
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Fig. 5 Image detail enhancement. a Input images. b Enhanced images of GIF. c Results of WGIF. d Enhanced images of GDGIF. e Enhanced
images of PGIF. f Results of the proposed method. The detail layers are boosted by 5 times for all algorithms

Fig. 6 HDR tome mapping via different filters. a–e Results via GIF, WGIF, GDGIF, PGIF and the proposed method, respectively (color figure
online)

tering the raw transmission map under the guidance of the
hazy image. In this example, the dehazing framework in [8]
is applied and the raw transmissionmap is filtered byGIF [9],
WGIF [15], GDGIF [12] and the proposed method, respec-
tively. The dehazed images via different filters are shown in
Fig. 7. It is seen that the proposed method is greatly superior
to GIF, WGIF and GDGIF methods in terms of haze removal
and detail preserving.

Next, the fog-aware density evaluator (FADE), a non-
reference prediction of perceptual fog density proposed in
[2], is employed to evaluate the dehazed image quality. The
fog densities of images in Fig. 7 are listed in Table 1.

A low FADE value indicates a low perceptual fog density.
Experimental results performed on nine fog images tested in
[8] show that the FADE by the proposed WAGIF is 1.3640,
which is the lowest average value among all GIF-based algo-
rithms (GIF: 1.3736, WGIF: 1.4209 and GDGIF: 1.4198).

4 Conclusion

As edges are of critical importance to the visual appearance
of images, one significant work in image processing is to
achieve edge-preserving image filtering. In this paper, the
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Fig. 7 Haze removal via different filters. a Input images. b–d Results via GIF, WGIF and GDGIF, respectively. e Result via the proposed method

Table 1 Fog densities of the images in Fig. 7

Input GIF WGIF GDGIF Proposed

Top 1.5569 1.2697 1.2911 1.2854 1.2554

Bottom 3.1724 1.6006 1.6476 1.6417 1.5954

aggregation step of GIF [9] is analyzed and a novel weighted
aggregating guided image filtering, i.e.,WAGIF, is proposed.
Different from the aggregation which is applied by GIF [9]
and its variants [12,15], predictions of the interested pixel are
aggregated by weighting instead of averaging. Moreover, the
weight of each prediction is specified according to the esti-
mation confidence in the corresponding patch. The proposed
weighted aggregation contributes GIF-based algorithms in
two aspects: improving edge-preserving effect significantly
and smoothing flat areas finely and coarsely. Experiments
performed on image detail enhancement, HDR tone map-
ping and single image haze removal show that the proposed
method achieves excellent visual quality in comparison with
state-of-the-art algorithms.

Limitation With a small scaling parameter (η), over-
sharpening sometimes exists in filtered images and gradient
reversal artifacts arise. In the example shown in Fig. 5, incon-
spicuous gradient reversals can be found somewhere near
the edges of petals and these gradient reversals will be more
obvious when η is set to a smaller value.
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