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Abstract
The accurate segmentation of plaque in intravascular optical coherence tomography (IV-OCT) image plays an important role
in coronary atherosclerotic heart disease (CAD) diagnosis. To effectively provide information of coronary artery stenosis, we
propose a novel hybrid framework which includes the faster R-CNN, fourth-order partial differential equation and global-
local active contour model (FPDE-GLACM). This framework can efficiently detect and segment the plaque area in Speckle
noise-contaminated IV-OCT images. We first detect plaque area by faster R-CNN and set bounding-box as the initial contour
for active contour model. And then weminimize the joint energy functional of PDE-GLACM part to achieve the segmentation
and denoising of IV-OCT images by gradient descent and finite difference scheme. Specifically, by using the Gaussian image
minus original image to get the edge guide image, GLACM part obtains accurate plaque segmentation results. We perform
experiments on 5000 IV-OCT images and set clinical manual segmentation results as ground truth. As expected, the results
illustrate that the proposed FPDE-GLACM can provide better performance on plaque detection and segmentation. And these
results may assist doctor in CAD diagnosis and treatment.

Keywords Plaque segmentation · Intravascular optical coherence tomography image · Faster R-CNN · Fourth-order partial
differential equation · Active contour model

1 Introduction

Coronary atherosclerotic heart disease (CAD) [1,2] is one of
the leading health problems in the world. It has characteris-
tics of high morbidity, mortality and patients number. Acute
coronary syndrome (ACS) is the most dangerous symptoms
in CAD. And vulnerable plaque rupture is the main cause
of ACS, which will lead to vessel blockage, myocardial
ischemia and even necrosis. InCADdiagnosis, a good plaque
detection and segmentation result of intravascular optical
coherence tomography (IV-OCT) images can provide effec-
tive information of coronary artery stenosis and lesions for
doctors. Therefore, it has great significance to propose an
accurate plaque detection and segmentation approach.

In recent years, many researches have done the classifi-
cation and segmentation of the vessel lumen and plaque in
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IV-OCT images. They are presented in Table 1. In terms
of the plaque segmentation, Athanasiou et al. [12] proposed
a fully automated segmentation method based on K-means
clustering. In terms of plaque classification, Athanasiou et al.
[10] introduced the random forest (RF) to classify the plaque.
And Gessert et al. [11] proposed deep learning based method
for the classification of Cartesian and polar coordinate IV-
OCT images. In Xu et al. [7,8] article, they employed the
deep feature and support vector machine (SVM) to classify
IV-OCT images. But reference [12] faced the problems of
poor segmentation accuracy, and they [7,10] need relatively
large dataset to improve accuracy. This is mainly because the
uncertainty of plaque position, size, and shape in IV-OCT
images.

To solve the above problems, we introduce the convolu-
tional neural networks (CNN), which has been widely used
in the detection and classification of various images and has
achieved surprisingly good results. From the first application
ofCNN in object detection field byR-CNN [13], to the reduc-
tion of repeated computation by fast R-CNN, to the further
improvement of real-time performance of target detection
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Table 1 The comparison of
IV-OCT-related works in terms
of Jaccard similarity (JS) and
accuracy

References Methods Metrics

Cheimariotis et al.’s [3] Vessel lumen segmentation JS = 0.844

Zahnd et al.’s [4] Vessel lumen segmentation JS = 0.832

Xu et al.’s [5] Vessel lumen segmentation JS = 0.844

Miyagawa et al.’s [6] Vessel lumen segmentation JS = 0.808

Xu et al.’s [7] Plaque classification Accuracy = 0.819

Xu’s [9] Plaque classification Accuracy = 0.763

Cao’s [8] Plaque classification Accuracy = 0.843

Athanasiou et al.’s [10] Plaque classification Accuracy = 0.856

Gessert et al.’s [11] Plaque segmentation JS = 0.817

Athanasiou et al.’s [12] Plaque segmentation JS = 0.814

algorithm by faster R-CNN [14], many improvements have
been proposed to enhance the accuracy of faster R-CNN.
For example, In [15], Sun et al. improved faster R-CNN
framework for object detection, which includes the feature
concatenation, hard negativemining,multi-scale training and
model pre-training. Therefore, we consider the application of
faster R-CNN-based method to detect and locate the plaque
of IV-OCT images.

We know that the active contour model (ACM) has been
proven to be a successful application on both nature and
medical images, but it is rarely applied to plaque segmen-
tation of IV-OCT images. At present, many improvement
have been proposed to solve some limitations of the Chan–
Vese (CV) [16] and local binary fitting (LBF) models [17].
In [18], Zhao et al. proposed an improved ACM in a varia-
tional level set function, which integrated the local and global
intensity information of image effectively. In [19], Song et
al. introduced a novel framework that employed color and
texture features to delineate megakaryocytic nuclei and uses
a novel dual-channel ACM to delineate its boundary. Munir
et al. [20] proposed that the image convolved by a variable
kernel into an energy formulation, where width of the kernel
varies in each iteration. It solves the problem of detecting
objects having intensity differences inside them. All these
approaches improve the segmentation accuracy on images
with weak edges and inhomogeneities by combining CV and
LBF models, but they are more or less susceptible to ini-
tial parameters and computational complexity and sensitive
to noise. Because IV-OCT image contains a large amount
of Speckle noise, those methods cannot be directly used for
plaque segmentation of IV-OCT images.

In addition, we need to improve the adaptability of ACM
to Speckle noise. Recently, the effective denoising methods
are fourth-order partial differential equation (PDE)-based
methods. In [21], Srivastava et al. presented a fourth-order
PDE-based nonlinear filter adapted to Speckle noise with
Rayleigh distribution in IV-OCT images. And in [22], Kumar
et al. also proposed a hybrid approachwhich contain the PDE

and fuzzy c-means (FCM) for Poisson noise removal and
microbiopsy images segmentation. Moreover, PDE-based
method and ACM are also implemented by minimizing the
energy functional. Therefore, we take account into a new
way to combine the energy function of PDE and ACM, OCT
image with high level Speckle noise can be segmented.

In this paper, we propose a hybrid framework for plaque
detection and segmentation in IV-OCT images based on
faster R-CNN, fourth-order PDE and global-local ACM
(FPDE-GLACM). Our framework employs faster R-CNN to
detect the plaque location. And then PDE-GLACM is used
to segment the plaque. The proposed approach is able to
implement plaque segmentation and Speckle noise removal
in a single process. Extensive experiments demonstrate that
the proposed method has better comprehensive performance
compared with other existing methods.

The rest of this paper is organized as follows. Section 2
introduces the proposed FPDE-GLACMfor plaque detection
and segmentation. And in Sect. 3, we present and discuss the
experimental results of our approach comparison with other
exciting methods. Finally, we draw conclusions in Sect. 4.

2 Proposedmethod

In this section, we introduce an automatic hybrid framework
for plaque detection and segmentation in IV-OCT images.
The plaque detection steps are introduced in Sect. 2.1.
The contour initialization is presented in Sect. 2.2. And in
Sect. 2.3, we exhibit the details of plaque segmentation.

2.1 The plaque detection

In image object detection, the advantages of deep learning
methods have been proved. For one thing, we perform data
augmentation to enrich training set, specifically in image
rotate, flip and add noise. And for another, we choose faster
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Fig. 1 The structure of faster R-CNN

R-CNN-basedmethod to achieveplaquedetection in IV-OCT
images.

Faster R-CNN consists of three parts: the feature extrac-
tion, the region proposal, the object classification and refine-
ment. The overall structure is shown in Fig. 1.

In the first part, we introduce some typical network struc-
ture of feature extraction, which are VGG [23], GoogLeNet
[24], and ResNets [25]. Considering the second part, i.e.,
the region proposal networks (RPN) which outputs a series
of candidate regions. And traditional faster R-CNN used
9 anchors, which sometimes leads to fail recall for some
irregular-shape plaques in IV-OCT images. Therefore, we
introduce four scales and three aspect ratios, yielding k = 12
anchors at each sliding position [15]. By default, refer-
ence frame length and width are (64, 64), (32
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mance of above network structures combined with 9 and 12
anchors is discussed. And Sect. 3 lists corresponding eval-
uation results. From these results, we employ ResNets101
with 12 anchors as the best model for our faster R-CNN.
Finally, the third part uses existing branches for classification
and bounding-box regression to obtain plaque area detection
result in IV-OCT images.

2.2 Selection of initial contour

The detection box of plaque areas was obtained by IV-OCT
sequence images after using faster R-CNN. In order to further
segment plaque area accurately, we introduce the initial con-
tour of proposed FPDE-GLACM. For most methods based
on ACM, a good initial contour can improve performance
of segmentation. In addition, the detection box provided by
faster R-CNN can effectively provide the plaque location,
size and shape. It can solve the difficulty of initial contour
setting due to the uncertainty of above plaque conditions.
Therefore, we come up with a good choice that using faster
R-CNN to provide the initial contour for PDE-GLACM. An
initial contour example is shown in Fig. 2.

Fig. 2 The example of initial contour (in green) and ground truth (in
red) (color figure online)

2.3 The proposed FPDE-GLACmodel

Most ACM-based methods are sensitive to noise, and IV-
OCT images contain a large amount of Speckle noise. The
fourth-order PDE-based method can remove noise through
minimizing the objective function. Similarly, theACM-based
method also segments image by minimizing the energy
functional. Therefore, we propose a hybrid segmentation
model based on fourth-order PDE combined with global-
local ACM, whose name is PDE-GLACM. It can segment
plaque area more accurately for IV-OCT images with high-
level Speckle noise. And its introduction is as follows.

Figure 3 shows the whole plaque segmentation process
of proposed PDE-GLACM. To be specific, first of all, the
detection result obtained by faster R-CNN is used as ini-
tial contour of PDE-GLACM. Then, we get an anisotropic
diffusion image by minimizing the objective function and
take it as input of Gaussian function to generate the Gaus-
sian image. Afterward, we subtract the Gaussian image from
the anisotropic diffusion image to produce the edge guide
image.Moreover, we obtain the evolution image byminimiz-
ing the energy functional. Finally, for the energy functional
convergence, the segmentation result is received. Instead,
the evolution image is sent to PDE-GLACM to get a new
anisotropic diffusion image and we will continue the above
steps until it convergence.
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Fig. 3 The workflow of proposed FPDE-GLAC

In the first stage, we exhibit the fourth-order PDE part.
It can better preserve the edge information while remov-
ing noise. IV-OCT image contains a lot of Speckle noise,
and these noise follow Rayleigh distribution [21,22], it can
describe as:

P(I |I0) = πu

2I 20
exp

(
−πu2

4I 20

)
, (1)

where I0 is original image and I is the restored image. And
the maximum likelihood estimate of I0 can be obtained by
minimizing (1)

L1(I |I0) = ln p(I |I0) = ln

(
π I

2I 20

)
− π I 2

4I 20
. (2)

Then the objective function of fourth-order PDE can be
defined as

E(I ) =
∫

Ω

[
L1(I |I0) + λζ(||∇2 I ||)

]
dΩ. (3)

To remove Speckle noise in IV-OCT images, the Euler–
Lagrange equation and gradient decent is used to minimize
the objective function (3), and it can be rewritten as

∂ I

∂t
= π I 2 − 2I 20

2I 20 I
− λ∇2

[
ξ(||∇2 I ||)∇2 I

]
, (4)

where diffusion coefficient ξ is defined by

ξ(||∇2 I ||) = 1

1 +
( ||∇2 I ||

K

)2 , (5)

where K is given by [21]

K = 1.4826median[||∇ I ||−median(||∇ I ||)]. (6)

In the second stage, we propose the GLACM part which
considers both local and global information of IV-OCT
images to segment plaque area precisely. Then, we define
the energy functional of GLACM as follows

E = ωEg + (1 − ω)E l + μEp + νE r, (7)

where Eg is global energy item, E l is local energy item, Ep

is regularization item, E r is length constraint item, and ω,
1− ω, μ, ν are their parameters, respectively. The proposed
global energy item Eg in our model is given by

Eg = λ1

∫
Cin |P I (x) − g1(x)|2dx

+ λ2

∫
Cout |P I (x) − g2(x)|2dx

, (8)

where g1 and g2 are the average intensities of P I (x) inside
and outside of the contour C .

The edge guide image P I (x) is obtained by subtracting
the anisotropic diffusion image from original image after
Gaussian transformation. That is why P I (x) can clearly dis-
play plaque edge information and increase the difference
between plaque and non-plaque. Using P I (x) instead of
original image in CV model to drive the evolution contour
C can effectively improve the segmentation effect of plaque
area and avoid error segmentation. It can be defined as fol-
lows

P I (x) = P(x) − I (x), (9)
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where P(x) is Gaussian function.

P (x) = 1√
2πσ

exp

(
− (I (x) − M)2

2σ 2

)
, (10)

where I (x) is original gray image, M and σ are the mean
and the standard deviation of pixel intensity within initial
evolution contour C .

Since plaque area can reach 60–70% in initial area, the
intensity mean and standard deviation of initial area are close
to the intensity distribution of plaque area. Therefore, it is
concluded that the larger the Gaussian value of the pixel
indicates it’s intensity close to the mean, which increases the
possibility of being a plaque. Then, we subtract the Gaussian
image from the anisotropic diffusion image to obtain the edge
guide image, which has clearer plaque edge information and
increases difference between plaque and non-plaques and use
it as the input image to make the FPDE-GLACMmore easily
and accurately adhere to plaque boundaries.

The proposed local energy item E l in our model is defined
as follows: LBF model only uses original image and ignores
image edge information. Thus, LBF model may cause the
problem of edge leakage especially plaque segmentation in
IV-OCT images. The local part of GLACM uses edge guide
image instead of the original image.

E l = λ1

∫ ∫
CinG ∗ |P I (x) − f1|2dxdy

+ λ2

∫ ∫
Cout G ∗ |P I (x) − f2|2dxdy

, (11)

where f1 and f2 are two smooth functions to approximate the
neighborhood intensity of pixel x . G is the Gaussian kernel.

To improve segmentation efficiency of this model and
avoid complicated level set re-initialization process, the reg-
ularization item Ep is added to the energy functional. Its
expression is

Ep =
∫

1

2
(|∇ϕ(x) − 1|2)dx . (12)

In addition, to ensure the smoothness of evolution con-
tour, we also add the length constraint item E r in the energy
functional that is expressed as

E r =
∫

|∇H(ϕ(x))|dx . (13)

To better solve the proposed energy functional (7), we
introduce the regularized Heaviside function and Dirac func-
tion:

H(x) = 1

2

[
1 + 2

π
arctan

( x
ε

)]
, (14)

δ(x) = H ′(x) = 1

π

ε

ε2 + x2
. (15)

Then, we use level set function ϕ(x) instead of evolution
curve C , by combining (14) and (15), the energy functional
(7) can be rewritten as follows

EGLAC = μ

∫
1

2
(|∇ϕ(x) − 1|2)dx + ν

∫
|∇H(ϕ(x))|dx

+ω

{
λ1

∫
|P I (x) − g1|2H(ϕ(x))dx

+λ2

∫
|P I (x) − g2|2(1 − H(ϕ(x)))dx

}

+(1 − ω)

{
λ1

∫ ∫
G ∗ |P I (x) − f1|2H(ϕ(x))dxdy

+λ2

∫ ∫
G ∗ |P I (x) − f2|2(1 − H(ϕ(x)))dxdy

}
(16)

Using the variation method, expressions of gi and fi can
be obtained by

g1 =
∫
P I (x)H(ϕ(x))dx∫

H(ϕ(x))dx
, (17)

g2 =
∫
P I (x)(1 − H(ϕ(x)))dx∫

(1 − H(ϕ(x)))dx
, (18)

f1 = G ∗ [P I (x)H(ϕ(x))]
G ∗ H(ϕ(x))

, (19)

f2 = G ∗ [P I (x)(1 − H(ϕ(x)))]
G ∗ (1 − H(ϕ(x)))

. (20)

According to the Euler–Lagrange equation and gradient
descent method, the evolution function of level set function
ϕ(x) can be obtained as follows

∂ϕ

∂t
= μ

(
∇2ϕ − div

( ∇ϕ

|∇ϕ|
))

+ νδ(ϕ)div

( ∇ϕ

|∇ϕ|
)

+ δ(ϕ)(e1 + e2).

(21)

The expressions of e1 and e2 are

e1 = ω1

[
−λ1|P I (x) − g1|2 + λ2|P I (x) − g2|2

]
, (22)

e2 = ω2

[
−λ1

∫ ∫
G ∗ |P I (x) − f1|2dxdy

+λ2

∫ ∫
G ∗ |P I (x) − f2|2dxdy

]
. (23)
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The solution of evolution function (21) can be achieved
by finite difference method

ϕn+1
i j − ϕn

i j

Δt
= μ

(
∇2ϕn

i j − div

( ∇ϕn
i j

|∇ϕn
i j |

))

+ νδ
(
ϕn
i j

)
div

( ∇ϕn
i j

|∇ϕn
i j |

)
+ δ(ϕn

i j )(e1 + e2).

(24)

Finally, the expression of proposed FPDE-GLACM is
defined as follows

∂ Ii j
∂t

= I n+1
i j − I ni j

Δt

=
{

π I 2i j − 2I 20
2I 20 Ii j

− λ∇2
[
ξ(||∇2 Ii j ||)∇2 Ii j

]

+ argmin EGLAC
}

(25)

And (25) can be rewritten as

I n+1
i j = I ni j

+Δt

{
π I 2i j − 2I 20
2I 20 Ii j

− λ · ∇2[ξ(||∇2
i j Ii j ||)]∇2

i j Ii j

+ argmin EGLAC
}

(26)

3 Experiments

In this section, to demonstrate the effectiveness of the pro-
posed FPDE-GLACM, we use both synthetic images and
IV-OCT images to evaluate its performance through exten-
sive experiments. The experimental data include synthetic
image and 5000 IV-OCT images which contain training
dataset (4000) and testing dataset (1000). The size of IV-OCT
image is 300×300 pixels. These images were collected by a
C7 model IV-OCT scanner (St. Jude Medical, USA), which
was provided by the department of cardiology at Peking
Union Medical College Hospital, China. And the experi-
mental environment is Intel Core i7-8750H CPU, NVIDIA
GeForce GTX 1070 GPU, 16.00 GB DDR4 memory, Win-
dows 10 operating system, Python 3.6.1, and MATLAB
2018a software.

3.1 Evaluation of plaque detection

In this section, selection of CNN model is discussed, and
accuracy of performance of faster R-CNN is evaluated. The
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Fig. 4 Accuracy of VGG, GoogLeNet, ResNet50, ResNet101, and
ResNet152 with 9 and 12 anchors, respectively

accuracy can calculate the proportion of correctly classifica-
tion, which is defined as

Accuracy = TP + TN

TP + TN + FP + FN
, (27)

whereTP, TN, FP, andFNare the true positive, true negatives,
false positive, and false negatives, respectively.

The performance of applying VGG, GoogLeNet, and
ResNet to faster R-CNNwas compared and shown the results
in Fig. 4. It can be found that ResNet has the highest accu-
racy. Hence, we choose ResNet in feature extraction. Then,
we test three well-known structures of ResNet which namely
ResNet50, ResNet101, and ResNet152 and compared their
accuracy when choosing 9 anchors and 12 anchors respec-
tively. As also shown in Fig. 4, the ResNet101 combined
with 12 anchors is the best choice. Therefore, we use the
ResNet101 combined with 12 anchors to construct faster
R-CNN and use it to implement the plaque detection for
IV-OCT images.

3.2 The segmentation evaluation

To more accurately and objectively evaluate the proposed
framework performance, we select synthetic images and IV-
OCT images for experiments and use manual segmentation
results of doctors as ground truth and two metrics as the
evaluation standard, which are Jaccard similarity (JS) and
Dice similarity coefficient (DICE). To test the segmentation
accuracy of the proposed FPDE-GLACM and other exist-
ing methods, the JS is introduced to evaluate the similarity
between algorithm segmentation results and ground truth,
which is represented by

JS = |A ∩ B|
|A ∪ B| , (28)
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where A is the algorithm segmentation result and B is ground
truth.

Then, we also use the DICE to quantitatively evaluate the
above methods performance and the DICE is defined by

DICE = 2 |A ∩ B|
|A| + |B| , (29)

where A is the algorithm segmentation result and B is ground
truth. Similarly, the closer the values to 1 of JS and DICE
mean the better segmentation effects are achieved.

3.2.1 Experiment with synthetic images

To test the performance of proposed FPDE-GLACM in syn-
thetic images with different level Speckle noise, we compare
it with improved active contourmodel (IACM) [18] and dual-
channel active contour (DCAC) model [19]. The results are
shown inFig. 5. For above approaches, the same iterations are
used. Note that FPDE-GLACM provides better performance
than IACM and DCAC, mainly because the energy func-
tional of FPDE-GLACM fuse the objective function based
on Rayleigh distribution and fourth-order PDE to avoid noise
interference and employ edge guide image to retain the edge
information of synthetic images.

To test the performance of a model only visual compar-
ison is not enough and the segmentation results need to
be evaluated by JS and DICE. The results are shown in
Fig. 6. It is obvious that FPDE-GLACM is used to seg-
ment synthetic images with different levels Speckle noise
with high precision. Besides, with the increase in noise, the
segmentation precision of each algorithm decreases, espe-
cially IACM, which is sensitive to Speckle noise. Therefore,
we can conclude that the FPDE-GLACM can achieve better
segmentation results compared to above-mentioned methods
for synthetic images with different levels of Speckle noise.

3.2.2 Experiment with IV-OCT images

In the experiment with IV-OCT images, we compared the
performance between the proposed method and some classi-
cal methods such as the regional growth (RG) [26], graph
cut (GC) [27], random walk (RW) [28], local binary fit-
ting (LBF) model [17], and some advanced methods such as
improved active contour model (IACM) [18], dual-channel
active contour (DCAC) model [19] combined with the faster
R-CNN. In the following, we call them CNN-RG, CNN-
GC, CNN-RW, CNN-LBF, CNN-IACM, and CNN-DCAC,
respectively. The corresponding results are shown in Fig. 7.
It is found that CNN-RG segment almost areas with high
intensity and sensitive to noise, so it cannot effectively seg-
ment plaque of IV-OCT images. CNN-GC andCNN-RWcan
roughly segment plaque area, but their accuracy is relatively

Fig. 5 Segmentation comparison, from the first to last rows are IACM,
DCAC, and FPDE-GLACM with 0%, 1%, 2%, and 3% Speckle noise,
respectively
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Fig. 6 JS and DICE of synthetic image

unsatisfied. Because CNN-LBF is sensitive to noise, it has
the worst segmentation results among the above four ACM-
based methods. CNN-IACM and CNN-DCAC can obtain
relatively better segmentation results at most plaque edge,
but there have some over-segmentation near plaque edge
between vessel lumen. From visual effect, it can be observed
that the proposed FPDE-GLACM has the highest accuracy
in plaque segmentation of IV-OCT images.

In order to quantitatively evaluate the performance of
above seven methods, mean and variance value of JS and
DICE are illustrated in Table 2. We observe that the pro-
posed FPDE-GLACM attains better performance than other
six methods. The JS and DICE of our method reach 0.851 ±
0.042 and 0.876 ± 0.043, respectively.
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Fig. 7 Segmentation results for IV-OCT images. From the first to the
last row are ground truth, CNN-RG, CNN-GC, CNN-RW, CNN-LBF,
CNN-IACM, CNN-DCAC, and FPDE-GLACM, respectively

Table 2 JS and DICE obtained by seven methods

Methods JS DICE

CNN-RG 0.348 ± 0.092 0.403 ± 0.107

CNN-GC 0.520 ± 0.061 0.554 ± 0.082

CNN-RW 0.618 ± 0.054 0.659 ± 0.051

CNN-LBF 0.615 ± 0.062 0.621 ± 0.059

CNN-IACM 0.742 ± 0.058 0.803 ± 0.034

CNN-DCAC 0.721 ± 0.051 0.744 ± 0.043

FPDE-GLACM 0.851 ± 0.042 0.876 ± 0.043

4 Conclusions

In this paper, we propose a hybrid framework based on
the faster R-CNN and PDE-GLACM. The framework first
detects plaque area in IV-OCT images by using faster R-
CNN. Secondly, we use the detection box as the initial
contour of PDE-GLACM. And then, to effectively remove
Speckle noise, we combine the Rayleigh distribution with
fourth-order PDE and add its objective function to the energy
functional of proposed GLACM which considers global and
local information of image. It can effectively overcome the
influence of Speckle noise and realize the segmentation of
plaque area in IV-OCT images. The proposed framework
obtains accurate detection and segmentation result compared
with other existingmethods, and these resultsmay assist doc-
tor in diagnosis and treatment of CAD. In further research,
we will concentrate on improving this framework for com-
putational complexity.
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