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Abstract
Spectral unmixing is an important data processing task that is commonly applied to hyperspectral imaging data. It uses a set of
spectral pixels, i.e., multichannel data, to separate each spectral pixel, amulticomponent signal comprised of a linearmixture of
pure spectral signatures, into its individual spectral signatures commonly known as endmembers. When no prior information
about the required endmembers is available, the resulting unsupervised unmixing problem will be underdetermined, and
additional constraints become necessary. A recent approach to solving this problem required that these endmembers be
sparse in some dictionary. Sparse signal recovery is commonly solved using a basis pursuit optimization algorithm that
requires specifying a data-dependent regularization parameter. Least angle regression (LARS) is a very efficient method to
simultaneously solve the basis pursuit optimization problem for all relevant regularization parameter values. However, despite
this efficiency of LARS, it has not been applied to the spectral unmixing problem before. This is likely because the application
of LARS to large multichannel data could be very challenging in practice, due to the need for generation and storage of
extremely large arrays (~1010 bytes in a relatively small area of spectral unmixing problem). In this paper, we extend the
standard LARS algorithm, using Kronecker products, to make it suitable for practical and efficient recovery of sparse signals
from large multichannel data, i.e., without the need to construct or process very large arrays, or the need for trial and error to
determine the regularization parameter value. We then apply this new Kronecker LARS (K-LARS) algorithm to successfully
achieve spectral unmixing of both synthetic and AVIRIS hyperspectral imaging data. We also compare our results to ones
obtained using an earlier basis pursuit-based spectral unmixing algorithm, generalized morphological component analysis
(GMCA). We show that these two results are similar, albeit our results were obtained without trial and error, or arbitrary
choices, in specifying the regularization parameter. More important, our K-LARS algorithm could be a very valuable research
tool to the signal processing community, where it could be used to solve sparse least squares problems involving large
multichannel data.

Keywords Kronecker least angle regression · Multichannel signal recovery · Hyperspectral imaging · Spectral unmixing ·
Kronecker products

1 Introduction

Hyperspectral imaging (HSI) acquires images using hun-
dreds of contiguous narrow electromagnetic wavelength
bands that result in spectral pixels that represent spectral sig-
natures of materials in a scene [1]. As every material has
its own spectral signature that is different from other mate-
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rials, HSI could be used to discriminate between different
materials that are present in an acquired scene. That is why
HSI has been used in a wide variety of civilian, environmen-
tal and military applications [2, 3]. Most digital processing
algorithms applied toHSI data include spectral unmixing [4],
anomaly detection [3], spectra classification [5] and material
identification [6]. Spectral unmixing, i.e., the separation of
a spectral pixel into its individual pure spectral signatures,
commonly referred to as endmembers, has been an important
data processing task from the earliest days of hyperspectral
imaging.

This is because hyperspectral cameras typically have low
spatial resolutions and image acquisition usually takes place
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from very far distances, e.g., in the case of satellite imaging.
Therefore, an acquired spectral pixel is usually comprised
of a linear mixture of endmembers that exist in the imaged
region corresponding to it. The proportion of each endmem-
ber in this linear mixture is called its abundance. Spectral
unmixing of a group of spectral pixels involves determining
the endmembers, in addition to their abundances, that are
available in each spectral pixel.

An overview of approaches to linear spectral unmixing in
HSI is given in [4]. These approaches could be categorized
into four broad categories. First, geometrical approaches that
exploit the fact that acquired spectral pixels must lie in a
linear simplex formed by the available endmembers [7]. Sec-
ond, statistical approaches, e.g., Bayesian techniques that use
probabilistic datamodels, utilize prior distributions to impose
model constraints and estimate parameters of posterior prob-
ability distributions [8, 9]. Third, spatial–spectral contextual
approaches that exploit both spatial and spectral features
available in HSI data through computing spatial correlations
between different spectral pixels [10]. Fourth, sparse signal
recovery approaches assume that the unknown endmembers
are sparse in some dictionary, where they could be obtained
using a sparse signal recovery algorithm.

Sparse signal recovery-based spectral unmixing tech-
niques could be implemented in a supervised fashion. This is
done by assuming that each acquired spectral pixel is a linear
combination of a priori known endmembers. These endmem-
bers, i.e., pure spectral signatures, would have been obtained
in a laboratory beforehand using a spectroradiometer. Super-
vised spectral unmixing then aims to find the optimal subset
of endmembers from a very large library that can best fit each
spectral pixel [11, 12].

Also, sparse signal recovery-based spectral unmixing
could be solved using an unsupervised approach, where a
priori knowledge of the endmembers would not be required.
This unsupervised spectral unmixing could be viewed as
a blind source separation (BSS) problem [13], where the
unknown sources are assumed to be sparse signals. Two
commonmathematical formulations of this sparse BSS prob-
lem are sparse nonnegative matrix factorization (S-NMF)
[14–19] and generalized morphological component analy-
sis (GMCA) [20–22]. Both formulations are typically solved
using a coordinate descent optimization approach [23],where
one alternates between estimating endmembers while keep-
ing their abundances constant (endmembers estimation step),
and estimating abundances while keeping endmembers con-
stant (abundances estimation step). Both steps are repeated
till conversion to the sought optimal values of both endmem-
bers and their abundances.

In its endmember estimation step, GMCA solves an
l1-norm minimization problem, i.e., a basis pursuit prob-
lem [24] using thresholding methods [25] to obtain sparse
estimates of the endmembers from the given multichannel

hyperspectral data. Any basis pursuit problem requires spec-
ifying a data-dependent regularization parameter to specify
the relative importance of sparsity levels of unknown vari-
ables and the error in their estimates, also this parameter sets
the threshold value in the GMCA algorithm. Therefore, com-
putationally inefficient trial and error is typically needed to
find a suitable value for this parameter. GMCA, however,
exploits the fact that it solves the basis pursuit problem only
as a step in the larger coordinate descent optimization proce-
dure. In its first iteration of coordinate descent, GMCAsolves
the required basis pursuit problemwith a large initial value of
this regularization parameter (obtained using trial and error),
corresponding to endmemberswith a high level of sparsity. In
its following iterations of coordinate descent, GMCA solves
the required basis pursuit problem with a lower value of this
regularization parameter, thereby increasing details of the
estimated endmembers. However, trial and error is a com-
putationally inefficient manner to choose the initial value of
the regularization parameter, and the arbitrary manner, in
choosing the schedule used to lower its value, is not optimal
and could affect convergence and spectral unmixing results
obtained using GMCA.

Least angle regression (LARS) could solve the basis
pursuit minimization problem efficiently [26], by simultane-
ously obtaining solutions corresponding to all relevant values
of λ, with a computational complexity comparable to solv-
ing a single unconstrained least squares problem. However,
despite this clear computational advantage of LARS, it has
not been applied to the spectral unmixing problem before.
This is likely the case because the LARS algorithm is not
directly suitable for multichannel and multicomponent HSI
data,where data vectorization [27]wouldbenecessarybefore
its application. Such HSI data vectorization would result in
extremely large matrices (~1010 elements) and vectors that
would be very challenging to store and process using a typical
computer.

In this paper, we exploit the properties of Kronecker prod-
ucts [28] to extend the LARS algorithm to handle large
multichannel and multicomponent data without the need to
construct or process very large arrays. This extension of the
LARSalgorithmwouldmake the application ofLARS toHSI
spectral unmixing practical. Also, this extension of LARS
would be of general importance, where it could be used for
practical and efficient sparse signal recovery from large mul-
tichannel data. We refer to our extended LARS method as
the Kronecker LARS (K-LARS) algorithm.

This paper is arranged as follows: Sect. 2 presents a math-
ematical formulation of the HSI spectral unmixing problem.
Section 3 describes the sparsity-based approach to solve this
problem. Section 4 presents our new K-LARS algorithm. In
Sect. 5, we apply K-LARS to successfully achieve unsuper-
vised spectral unmixing of both synthetic and AVIRIS HSI
data. We also compare our results to ones obtained using an
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earlier basis pursuit-based algorithm (GMCA).We show that
these two results are similar, albeit our results were obtained
without arbitrary choices related to specifying the regular-
ization parameter.

2 Spectral unmixing problem definition

2.1 Linear mixture model (LMM)

A linear mixing model (LMM) is widely used to represent
themixing of spectra in HSI [4]. Any spectral pixel, yi , could
be represented as a superposition of pure endmembers that
are available in the imaged scene,

yi �
M∑

j�1

s j a ji + ei (1)

where s j � [
s j1, . . . s jl . . . , s j L

]T is the absorption spec-
trum of the j th endmember of the available M endmembers
and L is the number of HSI wavelengths. The abundance,
a ji ≥ 0, is the proportion of the j th endmember in the i th
spectral pixel that should be constrained as

M∑

j�1

a ji � 1 (2)

The vector ei represents additive noise. Equation (1) could
be written in matrix form as

Y � SA + E (3)

where Y � [
y1, . . . , yN

]
is an L × N HSI data matrix, N is

the number of spectral pixels, S � [s1, . . . , sM ] is an L × M
matrix whose columns represent the available endmembers,
and A is an M × N matrix that contains all the abundances
of the endmembers in all spectral pixels. The problem of
spectral unmixing is to estimate the endmember matrix S
and the abundance matrix A given the spectral pixels matrix
Y . It could be considered a blind source separation problem
[29].

2.2 Sparsity-constrainedmultichannel data fitting

For the LMM in (3), spectral unmixing could be formulated
as amatrix least squares-basedmultichannel datafittingprob-
lem,

min
S,A

1

2
‖Y − SA‖22 (4)

This problem is equivalent to decomposing themultichan-
nel data matrix Y into the sum of rank-1 matrices. Typically,

such decomposition would not be unique, so additional con-
straints would be needed to obtain a unique solution. In
sparsity-based spectral unmixing, such constraints could be
added as a penalty term on the l1-norm of S

min
S,A

1

2
‖Y − SA‖22 + λ‖S‖1 (5)

2.3 Sparse endmember representation

An endmember, sl , is considered sparse in a dictionary,Φ �[
ϕ1, . . . ,ϕT

]
, if it can be represented as a superposition

sl � Φαl �
T∑

i�1

αl [i]ϕi (6)

where only a small number, compared to the dimension of sl ,
of the coefficients αl [i] are nonzero. This sparsity could be
quantified exactly by the l0-norm of αl , ‖αl‖0 or quantified
approximately by the l1-norm of αl , ‖αl‖1. We note that any
lp-normwith p <1 does not fulfill the triangle inequality, thus
is not strictly a norm [30].

2.4 Representation to promote endmember sparsity

To facilitate solving the minimization problem (5), we could
transform it into a different domain, represented by, e.g., an
L × L dictionary Φ, where the transformed endmembers
α � ΦT S would likely be more sparse. The optimization
problem (5) would then become

min
α,A

1

2
‖β − αA‖22 + λ‖α‖1 (7)

where β � ΦTY is an L × N matrix whose columns repre-
sent coefficients of each transformed pixel yi . After solving
minimization problem (7), the original endmemebers S could
be restored as S � Φ̃α, where Φ̃ represents the dual of dic-
tionary Φ [31].

3 Sparsity-based spectral unmixing

3.1 Solving the spectral unmixing problem

The minimization problem (7) is nonconvex, but it could be
solved using a coordinate descent method [32]. Therefore,
it could be divided into two convex problems, min

α
(·)|A and

min
A

(·)|α , and solved alternately until convergence to opti-

mal values for both α and A. The first of these two convex
problems,

min
α

1

2
‖β − αA‖22 + λ‖α‖1 (8)
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Fig. 1 Typical Pareto curve for an arbitrary vector basis pursuit problem

obtains anoptimal value ofα by solving amatrix least squares
minimization problem with an l1-norm sparsity constraint
on α, i.e., a matrix basis pursuit problem [24]. The second
convex problem

min
A

1

2
‖β − αA‖22 (9)

obtains an optimal value of A by solving a matrix least
squares minimization problem, under the constraints given
by (2) [33].

3.2 Vectorizing of HSI multichannel data

To solve minimization problem (8), one would write the
matrix linear system of equations, β � αA, as a vector linear
system of equations

(
AT ⊗ I L

)
vec(α) � vec(β) (10)

where vec(·) denotes the vectorization of a matrix obtained
by stacking its columns on top of one another,⊗ denotesKro-
necker product, and I L is an L×L identitymatrix. Therefore,
the matrix basis pursuit in (8) could be written in vectorized
form as

min
α

1

2

∥∥∥
(
AT ⊗ I L

)
vec(α) − vec(β)

∥∥∥
2

2
+ λ‖vec(α)‖1 (11)

On the other hand, solvingminimization problem (9) in its
matrix linear systems of equations form is straightforward.

3.3 Choice of regularization parameter � value

Different solutions for the vector basis pursuit problem (11),
corresponding to different values of the regularization param-
eter λ, could be obtained [26]. As shown by the Pareto curve
in Fig. 1, different values of λ quantify the trade-off between
the sparsity level of the unknown endmembers, ‖vec(α)‖1,
and the data fitting error resulting from using their estimates,
1
2

∥∥(
AT ⊗ I L

)
vec(α) − vec(β)

∥∥2
2.

From Fig. 1, we note that when the value of λ is high
(low), and the sparsity of the endmembers would be high
(low), i.e., ‖vec(α)‖1 would be small (large) and the data fit-

ting error, 1
2

∥∥(
AT ⊗ I L

)
vec(α) − vec(β)

∥∥2
2, would be high

(low). Therefore, a traditional way to solve the vector basis
pursuit problem (11) is to solve it many times using different
values of λ, and then pick the solution that would success-
fully solve the spectral unmixing problem. This traditional
way however is not practical as it could be both time and
resource consuming.

3.4 Least angle regression (LARS)

Least angle regression (LARS) is a computationally efficient
method to solve the vector basis pursuit problem (11) for all
important values of the regularization parameter λ [34]. To
avoid rewriting the cumbersomemathematical expressions in
(11), we will explain the basic steps of LARS using a generic
vector basis pursuit problem,

min
x

1

2
‖Hx − b‖22 + λ‖x‖1 (12)

which we will consider in this subsection only.
As the sub-differential of the objective function in (12)

must contain the zero vector, the optimal solution x̃λ must
satisfy the following optimality conditions [35]

HT
I

(
Hx̃λ − b

) � −λz (13)

∥∥∥HT
I c

(
Hx̃λ − b

)∥∥∥∞ ≤ λ (14)

where I denotes an active set, i.e., the indices where x̃λ is
nonzero, I c denotes the corresponding inactive set, z is the
sign sequence of x̃λ on I , and HI is a matrix whose columns
are the columns of H whose indices comprise the active set
I . For a given active set, using (11), x̃λ could be written as

x̃λ �
{(

HT
I H I

)−1(
HT

I b − λz
)
, on I

0, otherwise
(15)

LARS is a homotopy algorithm [36] that obtains an opti-
mal solution x̃λ for every critical value of λ, i.e., values of λ

where elements should be added or removed from the active
set. LARS starts with a very high value of λ, an empty active
set and a zero vector for x̃λ. As λ is decreased, using (15),
the update direction that keeps x̃λ optimal will be

d �
{(

HT
I H I

)−1
z on I

0, otherwise
(16)

Thus, the optimal solution x̃λ is moved in direction d,
until a constraint in either (13) or (14) is violated. In this
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case, either an additional column of H must be added to HI ,
thereby a nonzero valuewould be added to x̃λ, or a column of
H I must be removed, thereby a nonzero value of x̃λ would
be set to zero.

The smallest step size that would violate one of these con-
straints is given by δ∗ � min

(
δ+, δ−)

, where

δ+ � +
min
i∈I c

{
λ − p(i)
1 + q(i)

,−λ + p(i)
1 − q(i)

}
(17)

δ− � +
min
i∈I

{
− x̃λ(i)

d(i)

}
(18)

p � HT
I c

(
Hx̃λ − b

)
and q � HT

I c Hd. We note that min +
denotes the minimum of positive components only.

At every step of this homotopy algorithm, the new critical
value of λ would become λ − δ∗, the new optimal solution
x̃λ would become x̃λ + δ∗d, and both active set I and sign
sequence z would be updated accordingly. This procedure
is repeated until λ has been lowered to a required minimum
value [35].

3.5 Limitations of LARS for HSI largemultichannel
data

In the optimization problem (11), we note that vec(β) has
dimensions (L ∗ N )×1, vec(α)has dimensions (L ∗ M)×1,
and AT ⊗ I L has dimensions (L ∗ N ) × (L ∗ M). There-
fore, even relatively small regions of interest in hyperspectral
data cubes, e.g., N � 75 × 75 spectral pixels, L � 512
wavelengths, and M � 3 endmembers, would result in vec
(β) with dimensions

(
2.88 × 106

) × 1, vec(α) with dimen-
sions

(
1.54 × 103

) × 1 and AT ⊗ I L with dimensions(
2.88 × 106

) × (
1.54 × 103

)
. Such extremely large arrays

(~109 elements) would be very challenging to process and
would require very large computer storage (~1010 bytes).

4 Kronecker least angle regression (K-LARS)

In this section, we use properties of Kronecker products
to extend the standard LARS algorithm to solve the basis
pursuit in (11) without actually constructing, storing or pro-
cessing very large arrays that would typically result from
Kronecker products. This would allow practical and efficient
recovery of sparse multicomponent signals from multichan-
nel data, i.e., without constructing or processing very large
arrays. We call this extension of standard LARS the Kro-
necker LARS (K-LARS) algorithm.

4.1 Steps of our K-LARS algorithm

Initial steps:

• Divide all elements of β by
√
trace

(
βT β

)
. This is equiv-

alent to normalizing vec(β) to have unit l2-norm, i.e.,
‖vec(β)‖2. Subtract the mean of all elements of β from
all the elements of β. A simple post-processing step could
easily offset this normalization and centering of β.

• Normalize all columns of matrix AT to have unit l2-norm.
A simple post-processing step could easily offset this nor-
malization.

• Set all elements of matrix α to zero.
• Define an initial residual matrix R0 and set it equal to β.
• Define an L × M active set matrix Z0, where the indices
of its nonzero elements would specify active columns
selected from

(
AT ⊗ I L

)
, and set all its elements to zero.

• Obtain correlations between all columns of
(
AT ⊗ I L

)

and vec(R0) as C1 � R0AT . Select the column that is
most correlated with the residual R0, i.e.,

(i1, j1) � max
1≤i≤L
1≤ j≤M

|C1(i, j)| (19)

• Generate an L×M maskmatrix,K i, j � (I L):,i ×(IM ) j ,:,
whose elements are all zeros, except a single element of
unit value at (i, j). Therefore, any column of

(
AT ⊗ I L

)

specified by (i, j) would be equal to vec
(
K i, j A

)
.

• Update the active set matrix, Z1 � Z0 + K i1, j1 , to indicate
that the column of

(
AT ⊗ I L

)
specified by (i1, j1) now

belongs to the active set.

For each iteration, t � 1, 2…

• Obtain correlations between all columns of
(
AT ⊗ I L

)

and Rt−1 as C t � Rt−1AT .
• Set λt to the maximum value of |C t (i, j)|.
• Obtain the Gram matrix G of the active columns of(

AT ⊗ I L
)
corresponding to all nonzero entries of Zt

specified by (i, j). Each element G(m, n) is given by the
inner product of the mth and nth active columns specified
by (im, jm) and (in, jn), respectively,

Gt (m, n) � trace

(
AT

(
K im , jm

)T
K in , jn A

)
. (20)

• Obtain a vector, qt , indexed by k where (ik, jk) corre-
sponds to all nonzero elements of Zt , and whose length is
equal to the number of all active columns of

(
AT ⊗ I L

)
.

Its elements are the inner products between these active
columns and vec(Rt ),
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qt (k) � trace

(
AT

(
K ik , jk

)T
Rt

)
.

• Obtain the nonzero elements of the matrix Dt (i, j) that
represents the update direction of the solution α, as the
vector

ut � 1

λt
G−1

t q t . (21)

Using (ik, jk) update the matrix Dt (i, j) accordingly.
• For all (i, j) where Zt (i, j) � 0, i.e., indices of the inac-
tive set, obtain the positive step size δ+t using

δ+t � +
min

{
λt − C t (i, j)

1 − V t (i, j)
,
λt + C t (i, j)

1 + V t (i, j)

}
(22)

where V t � Dt AAT . Set (iadd, jadd) to the indices corre-
sponding to δ+t in (22).

• For all (i, j) where Zt (i, j) � 1, i.e., indices of the active
set, obtain the negative step size δ−

t using

δ−
t � +

min

{
αt−1(i, j)

Dt (i, j)

}
(23)

Set (iremove, jremove) to the indices corresponding to δ−
t in

(23).
• Obtain the step size δ∗

t using

δ∗
t � min

{
δ+t , δ−

t

}
(24)

• Update both solution matrix α and residual matrix using

αt � αt−1 + δ∗
t Dt (25)

Rt � Rt−1 − δ∗
t Dt A (26)

• If δ∗
t � δ+t , set Zt+1 � Zt + K iadd, jadd , to indicate that

the column of
(
AT ⊗ I L

)
specified by (iadd, jadd) now

belongs to the active set.
• Else if δ∗

t � δ−
t , set Zt+1 � Zt − K iremove, jremove , to

indicate that the column of
(
AT ⊗ I L

)
specified by

(iremove, jremove) now belongs to the inactive set.

Continue iterations until all columns of
(
AT ⊗ I L

)
are

included in the active set, all values of the correlation matrix
C become equal, λ reaches its minimumvalue, and all entries
of the active set matrix Z are ones. This is equivalent to
reaching the full least squares solution. However, typically
one would terminate the iterations when the desired sparsity
level is reached or when the norm of the residual becomes
within a prescribed tolerance. The K-LARS algorithm steps
can be summarized in the following steps.

5 Spectral unmixing results

To demonstrate the validity of our K-LARS-based spectral
unmixing method, we applied it on two HSI datasets. The
first is a synthetic dataset with spectral pixels that are linear
mixtures of endmembers, from the ASTER spectral library
[37], with uniformly random abundances. The second is an
actual HSI dataset from NASA’s AVIRIS website [38]. We
also compare our results to ones obtained using GMCA. We
show that these two results are similar, albeit our results were
obtained without arbitrary choices related to specifying the
regularization parameter.

5.1 Preprocessing of HSI multichannel data

Assuming the presence of white noise in the HSI data, then a
data denoising step would be necessary before solving opti-
mization problem (7). This is because white noise could not
be sparsely represented in any dictionary [39]. Therefore,
in this paper, we denoised each raw spectral pixel using
a wavelet (Symmlet) thresholding method with a universal
threshold [40].

As discussed in Sect. 2.4, to promote endmember spar-
sity, we transformed the used HSI datasets to the wavelet
domain, where the transformed endmembers α would likely
be more sparse than in the original measurement domain.
We used the Coiflet 5 wavelet, because both its scaling and
wavelet functions have vanishing moments, thereby signif-
icantly promoting sparsity of piecewise smooth functions,
e.g., endmember spectra.

5.2 Applying K-LARS to HSI spectral unmixing

As discussed in Sect. 3.1, the sparsity-based spectral unmix-
ing problem, problem (7), could be solved by an iterative and
alternate estimation of α, problem (8), and A, problem (9).
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Fig. 2 a–c Exact spectra of grass, concrete, and asphalt, respectively.
d–f Estimated spectra obtained using GMCA-based spectral unmixing
algorithm. g–i Estimated spectra obtained using our K-LARS-based
spectral unmixing algorithm

Initially, α is set to zero and A is set to random abundance
values. At each iteration, we fixed A and estimated α using
our K-LARS algorithm, then we fixed α and estimated A by
solving a simple constrained linear least squares problem.

The sparsity levels of any of the estimates of α are cru-
cial to the accuracy of our final spectral unmixing results.
Therefore, in our first spectral unmixing iteration, we ter-
minated the K-LARS algorithm when the data fitting error
corresponding to the sparse solution was within 0.5% of the
data fitting error corresponding to the full least squares solu-
tion. We then used this sparsity level of α as the K-LARS
termination condition for all subsequent spectral unmixing
iterations.

5.3 Spectral unmixing of synthetic HSI multichannel
data

We generated a synthetic HSI dataset of 3000 spectral pix-
els. These pixels are linear mixtures of the spectra of grass,
concrete and asphalt, obtained from the ASTER spectral
library [36], with uniformly random abundances. Additive
Gaussian noise was added to these spectral pixels to obtain
a signal-to-noise ratio (SNR) of 30 dB. Therefore, in this
dataset, the number of endmembers, M � 3, the num-
ber of spectral pixels, N � 3000 and the number of
wavelengths, L � 491 (0.42–14 µm). Figure 2a–c shows
the spectra of grass, concrete and asphalt, whose differ-
ent linear mixtures make up different spectral pixels in this
dataset.

Figure 2d–f shows the estimated spectra obtained by
applying the GMCA-based spectral unmixing algorithm
to this dataset. To obtain these GMCA-based results,
we used trial and error that consumed more computa-
tional time and effort to obtain both initial and final
values of the regularization parameter, λinitial � 15,
λfinal � 4, and we arbitrarily chose a linear sched-
ule for its reduction with each coordinate descent itera-
tion. The correlation coefficients between the exact spec-
tra of grass, concrete, asphalt and their GMCA-estimated
counterparts are 0.9673, 0.9942 and 0.9583, respec-
tively.

Figure 2g–i shows the estimated spectra obtained
by applying our K-LARS-based spectral unmixing algo-
rithm to this dataset. The correlation coefficients between
the exact spectra of grass, concrete, asphalt and their
K-LARS-estimated counterparts are 0.9970, 0.9993 and
0.9727, respectively. These quantitative results demon-
strate the validity of our new K-LARS algorithm and its
successful application to HSI spectral unmixing. Com-
pared to spectral unmixing results obtained by GMCA,
our results obtained by K-LARS are very close, albeit
they were obtained without any trial and error, or arbi-
trary choices, in specifying the regularization parame-
ter.

5.4 Spectral unmixing of AVIRISHSI multichannel
data

We downloaded an actual HSI dataset called the Mof-
fet Field from NASA’s AVIRIS website [37]. This dataset
is comprised of images obtained using 224 wavelengths
(0.365–2.497 µm). We selected an arbitrary region (70×60
pixels) as our region of interest, and then used Google Maps
to estimate that our selected region had three endmembers:
water, grass and land. Therefore, in the dataset corresponding
to our selected region, the number of endmembers, M � 3,
the number of spectral pixels, N � 4200 and the number of
wavelengths, L � 224.

To validate spectral unmixing results obtained by apply-
ing our K-LARS-based unmixing algorithm to this dataset,
we need to know its ground truth, i.e., spectra of end-
members present in our selected region. For this pur-
pose, we used N-FINDR, a software package that uses
a geometrical approach to find approximately pure spec-
tral pixels, i.e., spectral pixels comprised of a single
endmember only, in the given HSI data. The loca-
tions of these approximately pure spectral pixels in our
selected region obtained by N-FINDR [41] are shown in
Fig. 3.

Figure 4a–c shows the ground truth spectra of the three
endmembers present in our selected region, and whose dif-
ferent linear mixtures make up different spectral pixels in
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Fig. 3 Locations of approximately pure spectral pixels obtained by N-
FINDR

Fig. 4 a–c Ground truth spectra of three endmembers obtained by N-
FINDR. d–f Estimated spectra obtained using GMCA-based spectral
unmixing algorithm.g–iEstimated spectra obtainedusingourK-LARS-
based spectral unmixing algorithm

this dataset. Figure 4d–f shows the estimated spectra of
these three endmembers obtained by applying the GMCA-
based spectral unmixing algorithm to this dataset. To obtain
these GMCA-based results, we used trial and error that
consumed more computational time and effort to obtain
both initial and final values of the regularization parameter,
λinitial � 15, λfinal � 2.8, and we arbitrarily chose a lin-
ear schedule for its reduction with each coordinate descent
iteration. The correlations between the ground truth spectra
and their corresponding estimated endmember spectra are
0.9923, 0.8514 and 0.8607, respectively. Figure 4g–i shows
the estimated spectra of these three endmembers obtained by

applying our K-LARS-based spectral unmixing algorithm to
this dataset. The correlations between the ground truth spec-
tra and their corresponding estimated endmember spectra
are 0.8358, 0.9892 and 0.8878, respectively. These quan-
titative results further demonstrate the validity of our new
K-LARS algorithm and its successful application to HSI
spectral unmixing. Compared to spectral unmixing results
obtained by GMCA, our results obtained by K-LARS are
very close, albeit they were obtained without any trial and
error, or arbitrary choices, in specifying the regularization
parameter.

6 Discussion and conclusions

A recent approach to solve the unsupervised spectral unmix-
ing of HSI data requires that these endmembers be sparse in
some dictionary. This requires the solution of a sparse sig-
nal recovery optimization problem using basis pursuit that
requires the specification of a data-dependent regularization
parameter. LARS is a recent method for sparse signal recov-
ery that efficiently recovers all sparse signals corresponding
to all relevant regularization parameter values. However, the
application of LARS to large multichannel data could be
very challenging in practice, due to the need for gener-
ation and storage of extremely large arrays (~1010 bytes
in a relatively small spectral unmixing problem). In this
paper, we extended the standard LARS algorithm, usingKro-
necker products, to achieve practical and efficient recovery
of sparse multicomponent signals from multichannel data,
i.e., without the need to construct and process very large
arrays or the need for trial and error to specify regularization
parameters. We then applied our new K-LARS algorithm
to successfully achieve unsupervised spectral unmixing of
both synthetic and AVIRIS hyperspectral imaging data. Our
quantitative spectral unmixing results for both synthetic HSI
multichannel data (Sect. 5.3) and AVIRIS HSI multichan-
nel data (Sect. 5.4) demonstrate the validity of our new
K-LARS algorithm and its successful application to HSI
spectral unmixing. Compared to spectral unmixing results
obtained by GMCA, our results obtained by K-LARS are
very close, albeit they were obtained without any trial and
error, or arbitrary choices, in specifying the regularization
parameter. This lack of trial and error that could consume
significant computational time and effort is the main advan-
tage of using K-LARS, instead of GMAC, for sparse spectral
unmixing. More important, our K-LARS algorithm could be
a very valuable research tool to the signal processing com-
munity, where it could be used to solve sparse least squares
problems involving large multichannel data. On the other
hand, K-LARS has a disadvantage of being an intricate algo-
rithm that would require careful programming. As future
work, we are currently generalizing our K-LARS algorithm
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that we introduced in this paper to efficiently represent and
recover multidimensional signals using Kronecker dictionar-
ies.
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