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Abstract
No-reference image quality assessment (NR-IQA) uses only the test image for its quality assessment, and as video is essen-
tially comprised of image frames with additional temporal dimension, video quality assessment (VQA) requires a thorough
understanding of image quality assessment metrics and models. Therefore, in order to identify features that deteriorate video
quality, a fundamental analysis of spatial and temporal artifacts with respect to individual video frames needs to be performed.
Existing IQA and VQAmetrics are primarily for capturing few distortions and hence may not be good for all types of images
and videos. In this paper, we propose an NR-IQA model by combining existing three methods (namely NIQE, BRISQUE
and BLIINDS-II) using multi-linear regression. We also present a holistic no-reference video quality assessment (NR-VQA)
model by exploring quantification of certain distortions like ringing, frame difference, blocking, clipping and contrast in video
frames. For the proposed NR-IQA model, the results represent improved performance as compared to the state-of-the-art
methods and it requires very low fraction of samples for training to provide a consistent accuracy over different training-to-
testing ratios. The performance of NR-VQA model is examined using a simple neural network model to attain high value of
goodness of fit.

Keywords No-reference image quality assessment · No-reference video quality assessment · Spatial artifacts · Temporal
artifacts

1 Introduction

Various deformities are present in digital images while going
through processes like acquisition, compression, transmis-
sion, reproduction, etc. These deformities mainly occur due
to limitations of access devices, storage media, processing
technologies and transmission equipment. Image distortions
severely influence the ability of humans to excerpt and under-
stand the information contained in images. Therefore, it
becomes important to identify and measure image distor-
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tions in order to ensure, control and enhance image quality. In
order to achieve the above objectives, many objective image
quality assessment (OIQA) models have been developed and
some of these are of substantial practical significance [1,
2]. Based on the availability of an original reference, image
quality assessment (IQA) methods are categorized as full-
reference (FR), reduced-reference (RR) and no-reference
(NR) IQA methods. Most of the existing approaches fall
under the category of FR-IQA, i.e., a complete reference
image is assumed to be known. However, in many practical
applications, the reference image is not available, making
NR-IQA or ‘blind’ quality assessment approach desirable.
Similarly, in cases when the reference image is only partially
available to evaluate the quality of the distorted image, RR-
IQA approach is adopted. However, FR-IQA and NR-IQA
share the same limitation, i.e., features extraction from ref-
erence image becomes necessary for quality evaluation and
hence adds to processing time [3].

NR-IQA can be divided into two categories, namely
distortion-specific quality assessment and general-purpose

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-019-01543-z&domain=pdf
http://orcid.org/0000-0003-1903-1248


206 Signal, Image and Video Processing (2020) 14:205–213

quality assessment. The former quantifies a specific distor-
tion regardless of other factors and scores a distorted image
accordingly. A number of NR-IQA methods following such
an approach could be listed [4–10]. In a recent proposed
NR-IQA metric [4], 32 natural scene statistics (NSS) fea-
tures of the luminance relative order are initially extracted
and then the quality score is predicted using a support vec-
tor regression. Gu et al. [5] proposed an NR-IQA model
for accessing the perceptual quality of screen content pic-
tures with big data learning. Chen and Bovik developed an
NR-IQA method to quantify blur in an image [6]. Similarly,
Zhu and Milanfar [7] focused on noise, Sazzad et al. [8]
on JPEG2000 distortion, Sheikh et al. [9] on JPEG2000 by
using NSS, Wang et al. [10] on JPEG, etc. Besides many
advantages, distortion-specific approach limits its applicabil-
itywith the fact that the type of distortion present in the image
should be known in advance. Thus, the later approach, i.e.,
general-purpose quality assessment, based on training and
learning is widely adapted for NR-IQA purpose. Examples
include a two-step framework designed for distortion clas-
sification and distortion-specific quality assessment using
several NSS features to implement a simple NR-IQA index
named BIQI [11]. This method was later improved by using
a series of NSS features in the wavelet domain to predict
image quality (DIIVINE index) [12]. Saad et al. [13] pro-
posed another efficient NR-IQAmethod named BLIINDS-II
which extracts NSS features in the block discrete cosine
transform (DCT) domain using a fast single-stage frame-
work. In order to achieve better predictive performance with
low computational complexity, Mittal et al. [14] proposed
the BRISQUE index. Mittal et al. [15] proposed the NIQE
NR-IQA index based on quality-aware collection of sta-
tistical features. The recent research in IQA using deep
neural networks [16, 17] works well for only high train-
ing ratios, i.e., cases when 67% or 80% of the dataset is
used as training samples. These methods, apart from being
computational intensive, exhibit low performance for color
images.

Over the years, research for distortion-specific video qual-
ity assessment techniques has advanced with an aim to
design a universal measure for NR-VQA. Among many
quantified artifacts of compression, blocking is one of the
most common artifacts [18, 19]. A technique for evaluat-
ing jerkiness (also known as strobing [20]) in a video was
given by Ong et al. [21] by finding the absolute frame
differences between adjacent frames in a video. A non-
application-specific NR-VQA model proposed by Keimel
et al. [22] quantifies a multitude of factors to predict the
overall video quality. In a study conducted by Saad et al.
[23], an NR-VQA model based on the principles of natu-
ral video statistics is proposed where motion characteristics
in a video are quantified by extracting block motion esti-
mates anddifference of theDCTcoefficient between adjacent

frames. Li et al. [24] proposed an NR-VQA metric based
on the spatiotemporal natural video statistics in 3D discrete
cosine transform (3D-DCT) domain. The recent work on
VQA using convolutional neural networks (CNNs) [25] uses
only low-performed FR metrics for label generation, and its
performance depends on the chosen threshold value for the
sample distribution.

In this study, we aimed at analyzing the image and video
features that deteriorate the quality of a given image/video.
While research in the field of NR-IQA and NR-VQA has
progressed over the years by analyzing wide range of fea-
tures that deteriorate image/video quality as discussed above,
there still seems a need for developing a more generalized
model for NR-IQA/VQA. Drawbacks that are to be resolved
include accurate quantification of different distortion types
and requirement of a minimum set of features to predict
the perceived image/video quality. In this paper, we propose
a way to analyze spatial artifacts in an image and spatial
and temporal artifacts in a video frame for quantifying the
distortions present in image/video using a generalized met-
ric.

The rest of the paper is organized as follows. Sec-
tion 2 describes the proposed model for NR-IQA. Section 3
explains the specifications and methodology used for the
proposedmodel for NR-VQA. Section 4 describes the exper-
iments performed and presents the results of the performance
of the proposed method. Finally, Sect. 5 concludes the study
and lists some future work.

2 Proposedmodel for no-reference image
quality assessment

For the objective quality analysis of the test images, three
existing NR-IQA methods are combined using multi-linear
regression (MLR). The three methods are identified from
the literature on image quality assessment, which are sig-
nificantly different from each other; else, the distortion
measurement will be redundant as the pooling of data will
become erroneous. Many such models were identified in the
literature; however, only NIQE, BRISQUE and BLIINDS-II
are chosen because of their diverse footprint over quantifying
different distortions.

1. Naturalness image quality evaluator (NIQE): It first
constructs quality-aware collection of features. These
features are computed as per the natural scene statistics
(NSS) model. Comparative study conducted by Mittal
et al. [15] shows that NIQE competes well with some of
the best performingNR-IQA techniques like peak signal-
to-noise ratio (PSNR), structural similarity (SSIM) [26],
BLIINDS-II, DIVINE, BRISQUE, etc., that requires
training on large databases of human opinions of image
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distortion. Mittal et al. [15] conclude that they have suc-
ceeded in creating a first of a kind blind IQA model that
assesses image quality without knowledge of anticipated
distortions or human opinions about them. The quality of
the distorted image is expressed as a simple distancemet-
ric between the model statistics and those of the distorted
image [15].

2. Blind/reference-less image spatial quality evaluator
(BRISQUE): It uses NSS of locally normalized lumi-
nance coefficients to quantify possible losses of ‘nat-
uralness’ in the image. BRISQUE is computationally
less expensive than other blind image quality assess-
ment algorithms because it does not require transforming
the image into other domains. For wide range of trans-
formations, BRISQUE [14] is proven to be statistically
better than some of the FR-IQA methods such as PSNR
and SSIM. Moreover, low computational complexity of
BRISQUEmakes itwell suited for real-time applications.
BRISQUE features are independent of the database and
may also be used for distortion identification in images
[14].

3. Blind image integrity notator using DCT statistics-
II (BLIINDS-II) index: Given certain extracted fea-
tures based on NSS model of image DCT coefficients,
BLIINDS-II approach uses Bayesian inference model
to assess image quality score. Some features that are
indicative of perceptual quality are then formed by using
estimated parameters of the model. Hence, BLIINDS-II
adopts a simple probabilistic model for score prediction
and requires minimum training. Given the extracted fea-
tures from a distorted test image, the quality score that
maximizes the probability of the empirically determined
inference model is chosen as the predicted quality score
of that image [13].

In the current work, multi-linear regression model is used
to predict a single response variable Y which linearly
depends upon three predictor variables (NIQE, BRISQUE
and BLIINDS-II scores). Performance comparison of the
three methods is made by evaluating the overall correlation
with differentialmean opinion score (DMOS). The combined
model for blind estimation of image quality performs better
than BRISQUE,which individually has the best performance
among the threemodels. (The results are discussed inSect. 4.)

3 Proposedmodel for no-reference video
quality assessment

Original no-reference or blind video quality estimation
remains to be the most researched field among all media
quality estimation fields. There are presently no perceptual
models of video distortion that may apply to the no-reference

cases. However, a promising approach should consist of
identifying the minimum set of features which influence
the quality in most situations and examine their ability to
predict perceived quality. The main problem is that certain
algorithms look out for certain specific distortions only and
with each additional distortion to monitor, the computational
complexity goes up. Moreover, some distortions are content
dependent, and this makes it difficult to come up with a gen-
eral algorithm for NR-VQA.

Though it is difficult to assess the quality of a video with-
out the availability of reference data, its applications have
tremendous importance in the market. The most important
application is to design flexible real-time control systems
to monitor and deliver high-quality streams to consumers.
Reliable metrics are important for enabling transparent and
competitive ratings of quality of service (QoS), which would
benefit both the consumers and the producers.

Therefore, in this study, to inspect some of the above-
related issues, we have explored the quantification of certain
distortions and identified a way to estimate these distortions
more accurately to provide a robust NR-VQA model.

3.1 Ringing in a frame

The ringing effect is noticeable as simmers and ripples
extending outwards from the edge up to the blocks which
form the boundary along the edge.

There exist many methods of measuring ringing in an
image; however, almost all methods transform the domain
of the image. Fourier transform is popular among such trans-
formations for transforming an image from spatial domain to
the frequency domain. This is usually done to findwhich spa-
tial frequencies are observable and which might be masked.
Fourier transform therefore is the bottleneck to the compu-
tational complexity of all algorithms that measure ringing in
an image. This is acceptable as far as it is limited for qual-
ity analysis to calibrate image compression algorithms or an
image processing tool, but for large image volume or live
video streams this becomes impractical. Keeping this con-
straint in mind, a method is designed for estimating ringing
in an image without undergoing any actual transformation.

In this proposed method for identifying ringing effect in
a frame, high-contrast boundaries are identified by thresh-
olding the image with a suitable luminance threshold to
generate a binary image. It is at these high-contrast edges
that we need to identify ‘splatter,’ i.e., isolated pixels or
groups of pixels that differ widely in their luminance to
their surrounding pixel’s luminance. For the finalmetric, only
those regions are considered whose variance is greater than
a certain threshold, calculated by averaging the variance in
relatively smoother (low contrast) areas. The performance
of the algorithm depends significantly on identifying smooth
areas in the image.
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3.2 Frame difference (1F)

Frame difference is a (very) rough estimate of the activity
in the video. Faster temporal changes in pixel values lead to
greater frame difference. However, it is video dependent and
can vary drastically from one video to another. The LIVE
database (discussed in Sect. 4) had no videos with scene
change. All video contents refer to either panning of a natural
scene or observing a smooth moving object.

Using frame difference as-it-is is a bad idea because it is
highly video content dependent. However, a beneficial result
of this experiment is the determination of �F as a strong
metric for estimating scene changes on a large-scale video.
Moreover, while using psycho-visual experiments, higher
threshold of scene changes per second or per minute beyond
which the quality of video deteriorates could also be esti-
mated.

3.3 Blocking effect quantization

Blocking effect is the most popular video artifact. It is also
among the simpler artifacts to be observed as its location is
fixed in the spatial domain. Blocking is inherent in all lossy
compression algorithms that use DCT. Wavelet transform is
independent of this artifact, making JPEG2000 a better for-
mat quality-wise; however, it too suffers from ringing effect.

In order to quantify the blocking effect in an image or
frame of a video, we first use an edge detection algorithm
(sobel edge detection) to identify the perceptually sensitive
areas. A single-degree differential is applied on the image
in both horizontal and vertical dimensions. Depending on
the block dimensions (4 or 8), we create a mask to high-
light all differences at block boundaries. This makes the
method computationally less intensive than actually parsing
all block edges by looping. The boundary distortions are then
enhanced by squaring, and root of the sums of these horizon-
tal and vertical squared images is taken to obtain the final
image. All block boundary pixel luminosities are then added
to get an estimate of the blocking effect.

We consider two different block sizes for our experiment,
4×4 and 8×8. The block size 8×8 is used inMPEG-2 com-
pressedvideos and that iswhere the blocking effect is located;
however, in the case of H.264 compressed MPEG-2/AVC
videos, it supports multiple block sizes, 4×4 being among
the popular ones. Though we observed that both have a high
correlation (>90%) among them,we include both block sizes
for completeness sake and to bring generality to our model.

3.4 Clipping

Clipping is the truncation in the number of bits of the lumi-
nance or chrominance components of the image values. It
results in abrupt cutting of peak values at the top and bot-

tom of the dynamic range, which leads to aliasing artifacts
caused by the high frequencies at those discontinuities. The
sharpness enhancing technique known as peaking can lead to
clipping. In peaking, edges are enhanced by adding positive
and negative overshoots to it, but if these values are beyond
the limits of the dynamic range [(0.255) for 8 bit precision],
then saturation occurs and pixels are clipped.

Clipping can be represented as the percentage of pixels
having boundary values, e.g., either 0 or 255 for 8-bit preci-
sion. However, care must be taken at the margins where in
some videos a blank line is introduced due to coding error.
To take care of this, few pixels from the margin (say 3, reduc-
ing the image size by 6 in both directions) are ignored while
quantifying clipping for a video frame.

3.5 Contrast

Contrast sensitivity,which largely depends upon the dynamic
range of the luminance signal, is the ability to distinguish
objects from the background. The perception of contrast is
subjective because it dependsuponother factors including the
mental reference image of the objects and sometimes colors.

The following procedure is followed for contrast quantifi-
cation:

1. Luminance histogram for the given image/video frame is
computed.

2. The luminance histogram is then divided into half (verti-
cally) so that luminosities less than half of the maximum
luminosity lie on the one side of the histogram.

3. Difference between the cumulative luminance of each
part is calculated and normalized by dividing the value
with the average luminance of the image.

The features identified by this work are limited but diverse
enough to provide an overall quality assessment of the video.
Most generic algorithms quantify blocking effect to get an
accuracyof around80%[for example generalizedblock-edge
impairment metric (GBIM) [27] which does not scale too
well with videos].

In this study, four features are dedicated for estimating the
quality of the video in spatial domain. Metrics to calculate
the ringing effect in an image and the frame difference were
explored but not considered as they did not scale too well
in the case of videos. Therefore, the four features selected
are: Blocking4 (blocking with block size 4×4), Blocking8
(blocking with block size 8×8), Clipping and Contrast.

Additionally two features are dedicated for estimating the
quality of video in the temporal profile. Earlier in this paper
(Sect. 3.2), an argument is presented regarding the unsuitabil-
ity of inter-frame difference quantification for video quality
estimation as it is heavily dependent upon video content
and as LIVE video quality database (discussed in Sect. 4)

123



Signal, Image and Video Processing (2020) 14:205–213 209

Table 1 MLR model for video quality assessment

Training ratio Maximum
correlation

Minimum
correlation

Average
correlation

0.5 0.4847 0.1733 0.26906

0.66 0.6299 0.2369 0.27458

0.75 0.6299 0.2369 0.28884

0.8 0.6707 0.2369 0.29423

Parameters: Training 70% w: weights
b : biasTesting 15%

Validation 15%

nodes in hidden Layer - 15

CLIPPING

CONTRAST

BLOCK4

BLOCK8

Clipping Index

Clipping stdDev

Contrast stdDev

Contrast Index
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Fig. 1 No-reference video quality assessment model

restricts us to estimate quality of only smooth motion videos;
therefore, the two features used for quantifying temporal dis-
tortion are: Clipping Standard Deviation [28] (observed as
glaring/anti-aliasing in a video) and Contrast Standard Devi-
ation [29] (observed as flickering in video).

If these features are treated independent of interactions
among themselves, and a MLR model is developed to pre-
dict collective DMOS, the results are rather dismal even for
training ratio 0.8 as shown in Table 1. The MLR analysis
results are ineffectual, and this is intuitive as we have no
knowledge of their interactions and is rather impractical to
model such a scenario usingMLR. So to fit such data, we use
a neural network (NN) model [30] with one middle hidden
layer of 15 units. The NN model is represented in Fig. 1.

4 Experimental setup and results

LIVE Image and Video Quality Assessment database details
which are given in [31, 32], respectively, are used for the
experiments. In LIVE Image Quality Assessment database
[31], 29 high-resolution and high-quality color images are
used as reference images. These images are distorted using
five types of distortions; each type is provided separately
and independent of each other: bit errors in JPEG2000
bit-streams (fast fading distortion) (FF)—145 images, Gaus-
sian blur distortion (GB)—145 images, JPEG2000 com-
pressed images (J2)—175 images, JPEG compressed images
(J)—169 images, and white noise distortion (WN)—145
images. DMOS values for each of the 779 images are
provided in MATLAB-compatible.mat files, and the value
ranges between 0 and 100, where 0 indicates the bad quality
and 100 indicates the good quality.

The LIVE Video Quality Assessment database [32] uses
ten uncompressed high-quality videos [Blue sky (bs),Mobile
and Calendar (mc), Pedestrian Area (pa), Par Run (pr),
Riverbed (rb), Rush Hour (rh), SunFlower (sf), Shields (sh),
Station (st) and Tractor (tr)] as reference videos with a wide
variety of content. These reference videos were downsam-
pled using various techniques to obtain the distorted videos in
this database. A set of 150 distorted videos are created from
these reference videos (15 distorted videos per reference)
using four different distortion types: MPEG-2 compression,
H.264 compression, simulated transmission of H.264 com-
pressed bit-streams through error-prone IP networks and
simulated transmission of H.264 compressed bit-streams
through error-prone wireless networks. The mean and vari-
ance of the DMOS obtained from the subjective evaluations,
alongwith the reference and distorted videos, aremade avail-
able as part of the database. The DMOS scores for the LIVE
Video Quality Assessment database lie in the [30, 82] range.

4.1 No-reference image quality assessment

In our experiments, it is found that NIQE performs well with
most type of distortions but performs poorly for JPEG com-
pression artifacts and white noise, which reduces its overall
accuracy. Table 2 represents the results of its accuracy over
five distortions of LIVE Image Quality Assessment database
in terms of average DMOS correlation. Figure 2 represents
six scatter plots of NIQE against five types of distortions
respectively, with one additional plot for all distortion types.
Figure 2a–c exhibits good performance of NIQEwith FF, GB
and J2 distortions, while from Fig. 2d–f we observe that the
poor performance ofNIQEwith J andWNdistortion destroys
its overall estimation effort, leading to low overall accuracy
of NIQE (0.541 DMOS correlation for all distortions).

Table 3 represents the results for BRISQUE accuracy
for five distortion types. Figure 3 shows two scatter plots
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Fig. 2 Scatter plot for NIQE and DMOS for different distortions

Table 2 NIQE and DMOS correlation

Distortion FF GB J2 J WN All

DMOS correlation 0.868 0.923 0.890 0.725 0.858 0.541

Table 3 BRISQUE and DMOS correlation

Distortion FF GB J2 J WN All

DMOS correlation 0.935 0.968 0.931 0.897 0.991 0.910

determining the performance of BRISQUE with WN and all
distortion types. In contrast to NIQE’s poor performance on
WN distortion, BRISQUE does exceptionally well (Fig. 3a).

It is also observed that compared to the other two blind
models, BLIINDS-II is significantly slower, on the account
of DCT transformations done by the algorithm. It is there-
fore not suitable for real-time streaming images. However,
unlike the other two blind models, it provides information
about DCT coefficients, which is ignored by faster algo-
rithms. Table 4 and Fig. 4 signify overall good performance
of BLIINDS-II for all distortion types.

The most noticeable result of our effort is a guaranteed
lowest performance of no less than 89.5% (for high train-
ing ratio of 80% (Table 5) minimum correlation accounts
to 0.8956, i.e., 89.5%). The average correlation coefficient
of 91.6% is marginally better as it is 0.6% more than the
best performing model (BRISQUE) (Table 3). Moreover, the
standard deviation is also low (<0.75%, Table 5) compared
to other models discussed so far in this study.

Fig. 3 Scatter plot for BRISQUE and DMOS for WN and all distortion
types
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Table 4 BLIINDS-II and DMOS correlation

Distortion FF GB J2 J WN All

DMOS correlation 0.844 0.899 0.902 0.898 0.965 0.866

Fig. 4 Scatter plot for BLIINDS-II and DMOS for all distortion types

Table 5 Performance of the proposed NR-IQA model

Training ratio 0.5 0.66 0.75 0.8

Maximum correlation 0.9261 0.9291 0.9307 0.9351

Minimum correlation 0.9052 0.9018 0.9007 0.8956

Average correlation 0.9160 0.9164 0.9165 0.9160

Standard deviation 0.0048 0.0055 0.0063 0.0075

Fig. 5 Scatter plot for subjective and predicted DMOS for one iteration

Since iteration is done over 30 times, the scatter plot
shown in Fig. 5 is a sample taken from one of those iter-
ations (for arbitrarily chosen training ratio of 0.66) and it
shows good correlation between the predictive and subjec-
tive DMOS values. The average correlation coefficient of
91.6% is marginally better, 0.6%, than the best performing
metric (BRISQUE) (Table 3), 5% better than BLIINDS-II
(Table 4) and 37.6% better than NIQE (Table 2) metrics.

What makes the combined model better than the other
models is its requirement of very low fraction of samples for
training to provide a consistent accuracy over many different
training-to-testing ratios. Another advantage of the proposed
NR-IQA model is that its performance is more or less same

(row labeled ‘Average Correlation’ in Table 5) irrespective of
the training ratio as long as the training ratio is 0.5 or above.

The marginal improvement in the proposed model with
respect to BRISQUENR-IQAmetric and very high improve-
ment forNIQE are attributed to nonlinear nature of the scatter
plots shown in Fig. 2a–f, and the wide dispersion of the scat-
ter plot is shown in Fig. 3b.

4.2 No-reference video quality assessment

Sixmetrics (Blocking4, Blocking8, Clipping, Clipping Stan-
dard Deviation, Contrast and Contrast Standard Deviation)
are fed to the NNmodel with six nodes in the input layer and
15 nodes in the hidden layer. 70% data are used for training
and 15% data are used for validation and testing each. The
feed-forward network as implemented inMATLABNN tool-
box [27] with the default tan-sigmoid transfer function in the
hidden layer and linear transfer function in the output layer
is used. The network uses the default Levenberg–Marquardt
algorithm [33] for training.

Figure 6 represents the corresponding graphs for a trial
got from running the NN model for the proposed NR-
VQA model. The regression plots represent the relationship
between the Output (Y ) (NN output) and the Target (T ) value
(desired output). The dashed line in the plots symbolizes the
desired outcome (target value), and the solid line symbol-
izes the best fit linear regression line between the Output (Y )
and the Target (T ). For goodness-of-fit value R, if R � 1, an
exact linear relationship exists between the Output (Y ) and
the Target (T ). If R� 0, no linear relationship exists between
the Output (Y ) and the Target (T ). The plots are shown for
goodness of fit for training, validation and testing stage. It
reports R � 0.9639 for training, R � 0.7672 for validation,
R � 0.3383 for testing, and R � 0.8785 for all samples of
dataset.

The result of theNNfitting is a goodness of fitR� 0.8785,
a surprisingly good accuracy taking into account the lim-
ited number of features available to the model. Various other
metrics for video quality assessment struggle to perform uni-
formly for all types of distortions, and probably our database
too suffers from loss of generality.

We conclude this experiment’s high accuracy in terms of
goodness of fit, but the NR-VQAmodel still requires a wider
selection of database videos to check its generality.

5 Conclusion and future work

For image NR-QA, we select three diverse NR-IQA mod-
els, namely NIQE, BRISQUE and BLIINDS-II, and perform
multi-linear regressionon their results to comeupwith a com-
bined estimation of quality. The combined model for blind
estimation of image quality performs better than BRISQUE,

123



212 Signal, Image and Video Processing (2020) 14:205–213

Fig. 6 Results for a single training test case with 15 nodes in the hidden
layer of the neural network. 70% data are used for training and 15% for
testing and validation each

which individually has the best performance among the three
models. Even a low fraction of samples for training provide
a consistent accuracy over many different training-to-testing
ratios; this makes the proposed model to execute better.

For video NR-QA, quantification for certain distortions
present in video frames, namely ringing, frame difference,
blocking, clipping and contrast, is examined. A neural net-
work with one middle hidden layer of 15 units is used for
fitting appropriate metrics that quantify these distortions in
a video. Even though accuracy is attained in terms of good-
ness of fit R � 0.8785, the generality of the model, however,
remains a drawback due to lack of availability of features that
could fairly determine effects like ringing, freeze frame, etc.

Therefore, future work involves identifying more promi-
nent and easily recognized features that affect image/video
quality assessment and also determining amore efficient way
of quantifying the perceived image/video quality. The pro-
posed NR-VQA model can be improved by adding features
that could be used for detecting and quantifying effects like
ringing, freeze frame, etc., in video frames. Also, in the cur-
rent scenario, until a nonlinear model is decided upon, neural
networks serve perfectly in fitting the distortion quantifying
features.
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