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Abstract
Recently, convolutional neural network (CNN)-based methods have achieved impressive performance on image denoising.
Notably, CNN with deeper and thinner structures is more flexible to extract the image details. However, direct stacking
some existing networks is difficult to achieve satisfactory denoising performance. In this paper, we propose a novel deep
residual convolutional neural network (DRCNN) for image denoising. The main structure of DRCNN is the residual block
that consists of two convolutional layers, and there are skip connections between these two convolutional layers without the
batch normalization operation. The skip connection not only directly transfers the input image information to the hidden layer
but also reduces the path length of gradient transfer, making the gradient transfer in a short path and alleviating the vanishing-
gradient problem. DRCNN is compared with several state-of-the-art algorithms, and the experimental results demonstrated
its denoising effectiveness.
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1 Introduction

Image denoising aims to recover a clean image from a noisy
observation. It is a fundamental research topic in the fields
of image processing and computer vision because it benefits
many high-level applications, such as bioinformatics [14,19,
25], image encryption [13,15,18], texture classification [16,
26], and many others [30–34]. According to the generation
mechanism, there are different kinds of image noise, such
as additive white Gaussian noise (AWGN), impulse noise,
salt and pepper noise, and Poisson noise. In this work, our
attention is focused on removing the AWGN because it is the
most commonnoise that corrupts images in practice. Let u(x)
be a clean (noise-free) image. The noised image is generated
as follows:
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v(x) = u(x) + n(x), (1)

where v(x) is the noised version of u(x) and n(x) is the noise
added to v(x). In this situation, n(x) follows the Gaussian
distribution, namely n(x) ∼ N (μ, σ 2). μ and σ 2 represent
the mean and variance of the noise.

In the last two decades, numerous and diverse image
denoising algorithms have been developed from various
perspectives, such as image filtering, shrinkage of coeffi-
cients, sparse representation of a learned dictionary, and
non-local self-similarity statistics. Representation methods
include bilateral filtering [29], non-local means (NLM) [2],
block matching and 3D filtering (BM3D) [4], K-SVD [6],
higher-order singular value decomposition (HOSVD) [22],
and weighted nuclear norm minimization (WNNM) [7].
To further improve the performance of the aforementioned
approaches, the authors in [23] proposed a scheme called cas-
cade of shrinkage fields (CSF) for image denoising, which
was a kind of unified randomfieldmodel. Recently, Chen and
Pock [3] developed a trainable nonlinear reaction diffusion
(TNRD) model. CSF and TNRD employ a large amount of
prior knowledge of images and then use the forward prop-
agation to optimize the network. Although CSF and TNRD
are able to reduce the computational efficiency and improve
the quality of denoising, they need to train a specific model
to determine the characteristic noise, which is not universally
suitable for image denoising.
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Fig. 1 The main architecture of the proposed DRCNN network. Learning potential clean images by residual learning

Inspired by the excellent success of deep learning mod-
els in diverse vision applications, especially image super-
resolution, an increasing number of researchers have attem-
pted to employ the deep learning techniques for image
denoising. Themultilayer perceptron (MLP) [8] and the stack
denoising auto-encoder (SDA) convolutional neural net-
work [27] are the first two denoising algorithms to use deep
learning techniques, and they have achieved performance
comparable to that of the representativeBM3D.However, the
layer number of MLP and SDA networks is shallow because
of the gradient vanishing over the depth network, which lim-
its their performance. Mao et al. [20] proposed a very deep
convolutional encoder–decoder network for image restora-
tion. By skip connecting the encoding layer and the decoding
layer, the number of network layers reached to 30, and
the proposed network achieved satisfactory performance in
both image denoising and super-resolution. Recently, a novel
method named DnCNN was proposed for image denoising;
this method contains 17 convolutional layers and takes into
account the residual learning technique [28]. DnCNN not
only converges quickly but also significantly improves the
performance of previous algorithms.

AlthoughDnCNNhas achieved impressive denoising per-
formance, the layer number of DnCNN is still not deep
enough. A deeper network is possible to achieve better per-
formance. In order to improve the denoising capacity, we
must deepen the network. However, the gradient will vanish
as the neural network deepens. It is necessary to introduce
other techniques to avoid the conflict between deep layers
and gradient vanishing.

In order to alleviate the gradient vanishing caused by
deepening the network depth, we propose a novel image
denoising method named deep residual convolutional neu-
tral network (DRCNN), which is based on the DnCNN and
the ResNet [9] architecture. We first optimize it by ana-
lyzing and removing unnecessary modules to simplify the
network architecture and then use skip connections and resid-
ual learning strategies to alleviate the gradient vanishing and

Fig. 2 Comparison of different core structures. a Ours, b ResNet, and
c DnCNN

accelerate the convergence of the network. The proposed
method has been evaluated on publicly available benchmark
datasets [21] and outperforms the current state-of-the-art
approaches.

Themain contributions of this work can be summarized as
follows. First, we design a deep residual convolution neural
network that uses skip connections between the convolution
layers to form a residual block, which can then alleviate the
problem of the gradient vanishing and network performance
degradation due to the excessive depth of the network layer.
Second, we introduce the residual learning and simplify the
network structure by removing the BN [10] layer. The net-
work can converge very quickly when the number of network
layers is very deep. In addition, this enhances the denois-
ing performance in PSNR value and also has a good visual
effect.

The rest of this paper is organized as follows. Section
2 provides some related works. Section 3 introduces the
proposed method in detail. Several experimental results are
presented in Sect. 4. Section 5 finally gives the conclusion.
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Fig. 3 Twelve widely used testing images

2 Related work

In this section, we briefly introduce two related techniques
that are used in the proposed method.

2.1 Skip connection

The receptive field is the size of the unit extracted from
the original input image. The deeper the network and the
larger the receptive field, the better the effect of image feature
extraction is. As the number of network layers increases, it
becomes easier for the gradient to vanish while training the
convolution neural network, resulting in network degrada-
tion.

To alleviate the gradient vanishing, Srivastava et al. [24]
put forward the skip connection method. The i layer is con-
nected directly to the i + n(n > 1) layer and is applied to
the high-speed network (highway networks). By skip con-
nection, the number of highway network layers is more than
100 layers, and there is no network degradation. He et al. [9]
proposed a residual network (ResNet), in which the fitted
mapping, H(x), is expressed as H(x) = F(x) + x , where
F(x) is called the residual mapping and x is the input signal.
By skip connection, the learning of H(x) is transformed into
F(x) learning. The authors proved that F(x) is more easy to
learn than H(x).

2.2 Residual learning

Direct fitting of clean pictures sets up lowly when setting the
learning rate, which then leads to an excessive convergence
time or difficulties in converging. VDSR [11] proposes a
residual learning strategy, which defines a residual image as
r = y − x , in which it is quicker to fit the r than to fit
the x , and the learning rate is 1000 times that of SRCNN [5],
which greatly accelerates the convergence and performs well
on the super-resolution. DnCNN also uses a residual learning
strategy to directly fit noise pictures, and achieves very good
denoising effects.

Fig. 4 Twelve example images from the BSD68 data set

Fig. 5 a is the loss curve of DnCNN-17, DnCNN-22, and DnCNN-40.
b is the loss curve of DRCNN–withBN-40 and DnCNN-40. The results
are evaluated on the BSD68 dataset, when the noise level is 25

3 Proposedmethod

This section presents the proposed DRCNN in detail, includ-
ing the network structure and the training procedure of
DRCNN.

3.1 Network structure

For image denoising, we use a very deep residual convolu-
tional neural network inspired by ResNet. The configuration
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Fig. 6 The loss curve of DRCNN–withBN and DRCNN–withoutBN
(ours). The results are evaluated on the BSD68 dataset, When the noise
level is 25

is outlined in Fig. 1. DRCNN is mainly composed of three
parts and has 40 convolutional layers. The first part is mainly
to learn the features of the noise image. It consists of a con-
volutional layer and a rectified linear unit (ReLU) activation
layer, inwhich the convolution layer has 64 filters with a filter
size of 3×3. The second part ismade up of 19 residual blocks,
each of which consists of two convolutional layers, and each
convolutional layer has a ReLU layer for nonlinear mapping.
Each convolutional layer is composed of 64 × 3 × 3 filters.
The third part is made up of a convolutional layer, which is a
clean image for processing output, consisting of a 3×3 filter.
If the output image is a color image, the number of filters is
3.

The input information will transfer many convolutional
layers. As the information transmission path becomes longer,
it is easy to cause the gradient vanishing/explosion. In the
image denoising, the input image is very similar to the out-
put image, so the difference between the input and output
images is very small or 0 [11]. Fitting these values is easier
to converge than the direct fit of the clean image. By sub-
tracting the noisy image from the predicted noise image, we
can obtain the predicted clean image.

The main structure of our network is the residual block.
Residual networks exhibit excellent performance in com-
puter vision problems, and our network structure is similar
to ResNet. What is different is that we have removed the
BN layer of each layer and simplified the neural network.
The main component of the residual block is formed by two
convolutional layers that are skip connected. Each convo-
lutional layer directly carries out nonlinear mapping with a
ReLU layer.We compare the difference between our residual
blocks and DnCNN and ResNet core structures, as shown in
Fig. 2.

Fig. 7 The loss curves of DnCNN and DRCNN. The results are evalu-
ated on the BSD68 dataset when the noise level is 50

3.2 Training

After completing the construction of the network, we need
to train it to optimize the parameters in the network. In this
paper, the training optimization method is Adam [12], and
the number of training epochs is 60, where the first 50 epochs
use a 0.001 learning rate and the second 10 epochs adopt a
learning rate of 0.0001. We denoise at the noise levels of
25, 50, 75, and 100. The input of our DRCNN is a noisy
observation, y = x + b. For DRCNN, the network uses the
true noise image instead of the clean image as the label. In
other words, we train a network to map R(y) = b instead of
F(y) = x . We use the average mean square error (mse) as
the cost function of the network, which can be represented
as follows:

loss(Θ) = 1

N

N∑

i=1

‖R(yi : Θ) − (yi − xi )‖2F , (2)

where Θ represents the trainable parameters to be learned in
DRCNN and (yi , xi ) represents the i th noisy-clean training
image pairs. R denotes the residual mapping to predict the
residual image, and N is the number of total training images.

4 Experiments

In this section, we provide several experimental results to
evaluate the proposed DRCNN. The setting of our experi-
ments is first introduced. The studies of network degradation
and batch normalization are then given. The comparison
results with the state-of-the-art denoising algorithms are pre-
sented last.
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Table 1 Denoising performance
of different algorithms on the
BSD68 dataset in terms of
PSNR

Methods BM3D WNNM EPLL MLP CSF TRND DnCNN-S DRCNN

σ = 25 28.57 28.83 28.68 28.95 28.74 28.92 29.19 29.24

σ = 50 25.62 25.87 25.67 26.03 – 25.97 26.20 26.32

σ = 75 24.21 24.39 24.09 24.57 – – 24.65 24.74

σ = 100 23.24 23.38 23.06 – – – 23.64 23.77

The AGWN intensity σ here is set to 25, 50, 75, and 100, respectively. The best result is highlighted in bold

Table 2 Denoising performance of different algorithms on 12 widely used testing images in terms of PSNR

Methods C.man House Peppers Starfish Monar Airpl Parrot Lena Barbara Boat Man Couple Average

Noise σ = 25

BM3D 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.969

WNNM 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.257

EPLL 29.26 32.17 30.17 28.51 29.39 28.61 28.95 31.73 28.61 29.74 29.66 29.53 29.692

CSF 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.837

TNRD 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.055

DnCNN-S 30.11 33.05 30.87 29.36 30.20 29.22 29.45 32.39 30.00 30.16 30.07 30.02 30.408

DRCNN 30.19 33.18 30.81 29.42 30.38 29.07 29.49 32.50 29.96 30.15 30.05 30.08 30.440

Noise σ = 50

BM3D 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.722

WNNM 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.052

EPLL 26.10 29.12 26.80 25.12 25.94 25.31 25.95 28.68 24.83 26.74 26.79 26.30 26.471

MLP 26.37 29.64 26.68 25.43 26.36 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.783

TNRD 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.812

DnCNN-S 26.98 30.09 27.33 25.66 26.82 25.85 26.44 29.42 26.22 27.11 27.19 26.83 27.160

DRCNN 27.16 30.66 27.59 25.88 27.13 25.92 26.57 29.62 26.54 27.30 27.31 27.09 27.368

Noise σ = 75

BM3D 24.33 27.51 24.73 23.27 23.91 23.47 24.19 27.26 25.12 25.12 25.32 24.7 24.911

WNNM 24.55 28.24 24.92 23.47 24.31 23.74 24.37 27.54 25.81 25.30 25.42 24.86 25.211

EPLL 24.14 26.91 24.52 23.05 23.62 23.46 23.89 26.52 22.97 24.78 25.08 24.44 24.448

MLP 24.58 27.83 24.94 23.42 24.29 24.01 24.52 27.64 23.45 25.37 25.58 25.06 25.058

DnCNN-S 25.28 27.76 25.33 23.53 24.64 24.08 24.70 27.67 24.15 25.49 25.62 25.01 25.272

DRCNN 25.34 28.48 25.53 23.50 24.92 24.13 24.67 27.74 24.06 25.50 25.72 25.20 25.399

Noise σ = 100

BM3D 23.08 25.87 23.39 22.10 22.52 22.11 22.96 25.95 23.62 23.97 24.22 23.51 23.608

WNNM 23.36 26.66 23.45 22.23 22.95 22.55 23.19 26.21 24.37 24.11 24.36 23.56 23.917

EPLL 22.86 25.20 22.86 21.81 22.14 22.18 22.48 25.32 22.17 23.76 23.98 23.34 23.175

DnCNN-S 24.02 26.53 23.95 22.17 23.39 22.99 23.35 26.31 22.93 24.34 24.63 23.88 24.041

DRCNN 24.05 27.15 23.95 22.21 23.30 22.92 23.45 26.52 22.71 24.38 24.74 24.08 24.122

The AGWN intensity σ here is set to 25, 50, 75, and 100, respectively. The best two results are highlighted in bold and italics, respectively

4.1 Experimental setting

As a variant of the CNNs, DRCNN involves a large number
of matrix calculations, resulting in a very high computation
cost. To address this problem, the computation of DRCNN
is performed on the Tesla P100 GPUs. A commonly used
deep learning framework, Tensorflow [1], is utilized here.
Similar to some representative previous works, the BSD400

dataset is selected as the training images. In this work, we
follow the operations used in DnCNN to generate the 40×40
image patches to train DRCNN. It takes approximately 14h
to complete the training procedure of DRCNN.

In our experiments, two sets of images are applied as
test images to study the denoising performance of differ-
ent competing methods. The first set is formed by 12 widely
used images, such as Lena, Cameraman, House, Peppers, and

123



6 Signal, Image and Video Processing (2021) 15:1–8

Fig. 8 Denoising results of the
image from Set12 with a noise
level of 75

Barbara. All these images are shown in Fig. 3. The second
dataset is the BSD68 that contains 68 different images. Fig-
ure 4 shows example images that are randomly selected from
BSD68. It can be seen that all these images in the two sets
include different types of image characteristics, such as tex-
tured and smooth regions; hence, they can be employed to
comprehensively study all competing denoising methods.

In this work, the proposed DRCNN is compared with
the following methods: BM3D, WNNM, EPLL, MLP, CSF,
TNRD, and DnCNN, respectively. The noised images are
generated via Eq. (1), and the noise intensity σ of the AWGN
is set to 25, 50, 75, and 100, as in the previous literature. It
is quite challenging to recover the original noise-free images
as the noise intensity increases to a large value. Similarly, to
quantitatively describe the denoising performance, the com-
monly used peak signal-to-noise ratio (PSNR) is applied
here.

4.2 Study of network degradation

For image denoising, the deeper the network is, the greater
the degradation of the network due to the vanishing of the
gradient, and the worse the performance of the denoising. In
this work, we use a network of different layers of the same
structure. We deepened the number of layers of DnCNN to
22 and 40 and compared them with the DnCNN (17 con-
volutional layers). We selected the BSD400 dataset as the
training set, trained at the noise level of 50, and used Adam
as the optimization method. Referencing the training details

mentioned above, we trained 50 epochs and used BSD400
at a noise level of 25 to train and used BSD68 to evaluate
the denoising performance. The results of the loss curve dur-
ing training are shown in Fig. 5a. From Fig. 5a, we can see
that the average PSNR of DnCNN-17 is the highest. We can
now show that the deeper the network is, the lower the noise
reduction performance.

The skip connection alleviates the network degradation
problem. In the DRCNN network, we propose to add a
BN layer named DRCNN–withBN. The difference between
DRCNN–withBN and DnCNN-40 is that DRCNN–withBN
has a skip connection on the network structure. In this work,
we use DRCNN–withBN and DnCNN-40 to train 50 epochs,
use BSD400 with a noise level of 25 to train, and then use
BSD68 to evaluate the denoising performance. The results
of the loss curve during training are shown in Fig. 5b. From
Fig. 5b, we can see that the average PSNR of DRCNN–
withBN is the higher than that of DnCNN-40. We can now
prove that the skip connection can alleviate the vanishing of
the gradient.

4.3 Study of batch normalization operation

The BN layer can accelerate convergence but also removes
range flexibility from networks by normalizing the fea-
tures [17]. In image denoising, the feature in each layer
is unnecessary to be normalized. On the contrary, the BN
layer will destroy the original image features. Removing
the BN layer can improve the denoising performance. To
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Fig. 9 Denoising results of the
image from Set12 with a noise
level of 100

demonstrate this conclusion, we use DRCNN–withoutBN
(ours) and DRCNN–withBN for testing. The only differ-
ence between the two is whether they have BN structure.
As described in Sect. 3.2, we train for 60 epochs. We
still selected the BSD400 to train at the noise level of 25
and then use the BSD68 dataset to test the PSNR values
obtained by different methods, respectively. The loss curve
is shown in Fig. 6. As seen in Fig. 6, the average PSNR
of DRCNN–withoutBN is higher than that of DRCNN–
withBN. Therefore, BN is not important in denoising, and
sometimes removing the BN layer can improve the denois-
ing performance.

4.4 Comparisons with state-of-the-art methods

The loss curves of DnCNN and DRCNN are shown in Fig. 7.
From Fig. 7, we can see that our DRCNN model con-
verges faster than the DnCNN model, and the final PSNR
is higher. The average PSNR results of different meth-
ods on the BSD68 dataset are shown in Table 1. As one
can see, our DRCNN model can achieve the best PSNR
results over the competing methods at almost every noise
level. Compared to the benchmark BM3D, the PSNR value
of our model is higher by approximately about 0.7 dB
over that of the BM3D model when the noise level is
50.

Table 2 lists the PSNR results of different methods
on the 12 test images shown in Fig. 3. The best PSNR
result for each image with each noise level is highlighted

in bold. It can be seen that the denoising results of our
model are better than that of the comparison method in
almost every image. At low noise levels, our denoising
effect is similar to that of DnCNN-S. However, at high
noise levels, the denoising performance of our model is
notably better than that those of other methods. Figures 8
and 9 illustrate the visual results of different methods. It
can be seen that for BM3D and DnCNN-S lost more tex-
ture details. When magnified, some details also became
blurred.

5 Conclusion

In this work, we presented DRCNN as a novel image denois-
ing method using very deep networks. It is difficult to train
a very deep network because of the slow convergence rate.
Gradient vanishing and explosion are the two largest difficul-
ties in the process of neural network deepening. To address
this limitation, we use the residual learning and skip connec-
tion operations to optimize a very deep network for DRCNN.
By applying the methods introduced in this paper, the neural
network is deepened and the network denoising ability is not
inhibited by network degradation. Based on the experimen-
tal results, we compared the existing denoising algorithms
and demonstrated that the method we proposed is not only
improved on PSNR but also exhibited a very good in visual
performance.
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