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Abstract
The accuracy of the fibrotic plaque segmentation is vital in identifying the coronary artery stenosis. In this paper, we address
an automated approach (APDE-GMM) for separating the fibrotic plaque area of intravascular optical coherence tomography
(IV-OCT) images. Under this approach, an objective function consisting of a new energy functional with Rayleigh distribution
and the negative log-likelihood function of Gaussian mixture model (GMM) is developed. Also, the study presents an adaptive
diffusivity function where the gradient threshold can be associated to suppress the effect of speckle noise. The parameter
estimation is carried out by the expectation–maximization technology. In addition, this paper derives a fourth-order partial
differential equation (PDE) via Euler–Lagrange equation to obtain the optimal solutions. It has been compared to other
segmentation approaches on synthetic and clinical IV-OCT images. The results demonstrate that APDE-GMM segmentates
more accurately.

Keywords Fibrotic plaque · Optical coherence tomography · Partial differential equation · Gaussian mixture model · Image
segmentation

1 Introduction

Intravascular optical coherence tomography (IV-OCT) image
is an intracoronary detecting technique which has high reso-
lution and low radiation. Perfect segmentation of the fibrotic
plaque area in IV-OCT images can provide useful informa-
tion of coronary artery stenosis. As a result, doctors could get
a more reliable diagnostic of coronary atherosclerotic heart
disease (CAD).

Relevant IV-OCT image segmentationmethods have been
widely reported in recent years. Zahnd et al. [1] segmented
the fibrotic plaque via a front propagation schemewhich runs
in a 4D multi-parametric space to identify the healthy status.
Segmentation IV-OCT using support vector machine (SVM)
was found in the literature [2]. The theory of anisotropic
diffusion was also investigated in IV-OCT image segmen-
tation [3]. Celi et al. modeled fibrotic plaque using Ostu’s
method and mathematical morphology [4]. Recently, convo-
lutional neural networks (CNN), such as ResNet50-V2, have
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been applied successfully to IV-OCT images with plaque
[5]. These methods require a large number of images for
training. In addition, finite mixture model (FMM) technique,
for instance, Gaussian mixture model (GMM), Student’s-t
mixture model (SMM) have been addressed [6–9]. Some
researches [6,10] incorporated pixel position information
intoGMM throughMarkov randomfield (MRF), so that their
methods are highly resistant to noise. Cheriyan et al. [7] com-
bined the independent component analysis (ICA)with GMM
for unsupervised medical image segmentation. Due to the
incorporation of ICA, the computation of their method was
expensive. Although statistical methods have been widely
applied to various image segmentation, no report has been
found on detecting the fibrotic plaque from IV-OCT using
FMM so far.

Due to the clinical IV-OCT images suffering from the
heavy speckle noise, some researches apply partial differ-
ential equation (PDE) on IV-OCT images for denoising
[11–16]. In [11], the fourth-order PDE with a nonlinear
hyperbolic diffusion was used for eliminating the impact
of noise. However, this approach converges slowly. Another
PDE with two-dimension Gaussian filter was introduced in
[12]. The work of [13] introduced an algorithm where a non-
linear hyperbolic diffusion-combined Gaussian kernel was
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utilized for image denoising, but it results in higher calcula-
tion cost. These researches show that the PDE-based denois-
ing method can effectively remove noise while preserving
image edge [14]. Reference [15] reported an improved algo-
rithm using fourth-order PDEwith edge noise interior (ENI).
This method exhibits good robustness to different levels of
speckle noise. But it needs to count the number of homo-
geneous pixels in the neighborhood, which is a hard work.
Recently, Kumar et al. [16] proposed a PDE-based fuzzy c-
mean (FCM) algorithm in order to assist in eliminating the
effect of Poisson noise. Their method helps to get rid of the
block artifact in the process of cell segmentation.

In this paper, we propose a hybrid framework for IV-
OCT image segmentation. Comparing with other existing
algorithms, this framework has the following properties:
(1) this study develops a unsupervised image segmenta-
tion approach where the negative log-likelihood function of
GMM is designed within the framework of a new energy
functional with Rayleigh distribution; (2) the integrand of
the proposed energy functional is divided into two parts:
the likelihood function of Rayleigh distribution and the
adaptive diffusivity function with respect to gradient; (3) it
recommends applying adaptive diffusivity function with the
gradient threshold towithstand the effect of speckle noise; (4)
from the computational perspective, we derive a fourth-order
PDE for iteratively finding the optimal solutions through
Euler–Lagrange equation; (5) The M-step of EM algorithm
is applied to optimize model parameters of GMM.

The rest of the article is organized as follows. A review
of the GMM is introduced in Sect. 2. Section 3 describes
the main concepts of our approach. Section 4 provides more
details about its implementation. The experimental results
could be found in Sect. 5, and conclusions are summarized
in Sect. 6.

2 A review of GMM

In order to label the L pixels of an image into K parts, the
GMMassumes that each observation xi is independent of the
label � j . In this case, the density function of each xi can be
described by

f (xi |�,�) =
K∑

j=1

πi j g(xi |θ j ) (1)

where � = {πi j }, i = (1, 2, . . . , L), j = (1, 2, . . . , K ) is
the set of prior probability, which satisfies the constraints

0 ≤ πi j ≤ 1 and
K∑

j=1

πi j = 1 (2)

and πi j indicates the possibility of the pixel xi belongs to
the j th label. In (1), g(xi |θ j ) denotes the multivariate Gaus-
sian probability density function (PDF) with mean μ j and
covariance Σ j

g(xi |θ j ) = 1

(2π)1/2
1

|Σ j |1/2
exp

{
−1

2
(xi − μ j )

TΣ−1
j (xi−μ j )

}

(3)

where θ j represents the parameter set {μ j ,Σ j }, and |Σ j |
is the determinant of Σ j . Thus, the joint conditional PDF of
observation data X = (x1, x2, . . . , xL) can bemodeled using

P(X |�,�) =
L∏

i=1

f (xi |�,�) =
L∏

i=1

K∑

j=1

πi j g(xi |θ j ) (4)

The parameters associated with the GMM are usually esti-
mated using EM scheme. Therefore, one needs to maximize
the following log-likelihood function of the GMM.

L (X |�,�) = log P(X |�,�)

=
L∑

i=1

log

⎧
⎨

⎩

K∑

j=1

πi j g(xi |θ j )

⎫
⎬

⎭ (5)

3 Proposedmethod

In this section, a hybrid framework is proposed for IV-OCT
image segmentation,which blends the fourth-order nonlinear
PDE and GMM. We start by developing an adaptive speckle
noise filter based on fourth-order PDE.

The speckle noise of IV-OCT images follows the Rayleigh
distribution [17]. This problem is described as

p(u|ū) = πu

2ū2
exp

(
−πu2

4ū2

)
(6)

where u and ū are the restored and observed initial images
with size of m × n, respectively. In this case, the maxi-
mum likelihood estimate of u can be obtained byminimizing
p(u|ū).

L1(u|ū) = ln p(u|ū) = ln(πu/2ū2) − πu2/4ū2 (7)

Based on this, the energy functional is defined as follows

J1 = E(u) =
∫

Ω

[
L1(u|ū) + λϕ(|∇2u|)

]
dΩ (8)
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where λ is a regularization parameter, and ∇2 stands for
Laplacian operator. In Cartesian coordinates

∇2u = ∂2u

∂m2 + ∂2u

∂n2
(9)

This paper would establish a function with respect to the
smoothness of the image as implemented by |∇2u|. Accord-
ing to the physical theory of diffusion, the second term of the
right-hand side of (8) is defined by

ϕ(s) =
∫ s

0
φ(s)tdt (10)

where s = |∇2u|. This study defines an adaptive nonlinear
diffusivity function, given by

φ(s) = 1/
[
1 + (ln[(s/η(u) )3 + 1])2

]
(11)

Generally, the diffusivity function φ(s) is a monotonically
decreasing function, since the idea is to reduce smoothing
at edge where |∇2u| is large. Following this, the gradient
threshold η(u) is defined as

η(u) = α [mean (||∇u||) + med(||∇u||)] + βN (12)

where || · || represents Euclidean distance, mean ||∇u||
denotes the mean value of ||∇u||, and med ||∇u|| stands
for the median value of ||∇u||, β is a regularized parameter,
and N is the number of iterations. In Fig. 1, we exhibit an
experiment to compare the smoothing properties of classical
Y–K diffusivity function [18] to ours. The diffusivity func-
tion of Y–K model is independent to iterations (see Fig. 1a).
Figure 1b depicts the plots of our adaptive diffusivity func-
tion with parameters α = 0.5, β = 0.05. These diffusivity
functions are applied to noisy image that exists because of
the speckle noise (intensity 5%). For fair comparison of the
performance, the iteration number of twomodels is set equal.
As shown in Fig. 1f, the proposed diffusion function achieves
a better result with more noise removal, with our adaptive
diffusivity function, each region could be smoothed well.

When constructing this adaptive diffusivity function, all
the following items should be considered. (i) The diffusiv-
ity function φ(s) follows a downward trend with increasing
of smoothing term |∇2u| (Laplacian of u); (ii) as iteration
increases, the plot of diffusivity function φ(s) moves down;
(iii) at the beginning of iteration, image contained exces-
sive noise, the higher diffusivity ought to be chosen in this
case; (iv) as |∇2u| increases, the impact of parameters N ,
α and β on diffusivity function φ(s) will be weakened,
and φ(s) converges to zero. Again, we observe from Fig. 1
that our adaptive diffusivity function meets all these proper-
ties.
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Fig. 1 Diffusivity function comparison, a diffusivity function of Y–
K model; b proposed diffusivity function with α = 0.5, β = 0.05; c
original image; d noisy image (speckle noise, intensity 5%); e denoising
using Y–K model; f denoising using proposed model

Since logarithm is a monotonically increasing func-
tion, we take the negative logarithm of the likelihood
function as an energy function. By introducing the poste-
rior probability zi j , minimizing the negative log-likelihood
function in (5) leads to minimizing the following expres-
sion

J2 = −
L∑

i=1

K∑

j=1

z(t)i j

{
ln πi j + ln g(xi |θ j )

}
(13)

where the posterior probability zi j at the current iteration
is

z(t)i j = πi j g(xi |θ j )/

K∑

k=1

πik g(xi |θ j ) (14)

Generally, classical GMM cannot deal with noise properly.
It is because GMM does not consider the spatial correla-
tion of pixels. Speckle noise exists elsewhere in real IV-OCT
images, so the fourth-order PDE based on Rayleigh dis-
tribution is introduced here. Finally, the APDE-GMM is
implemented by minimizing the following objective func-
tion:
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Fig. 2 The overall segmentation process using the APDE-GMM

J = J1 + J2 =
∫

Ω

[
L1 (u|ū) + λϕ(|∇2u|)

]
dΩ

−
L∑

i=1

K∑

j=1

z(t)i j

{
ln πi j + ln g(xi |θ j )

}
(15)

where λ is a regularized parameter. As shown in Fig. 2, the
fusion model illustrated here is an iterative strategy. It incor-
porates denoising and segmentation in a single produce.

4 Implementation issues

In the following, we discuss the numerical approximation
of the proposed method. The proposed objective function
J is the linear sum of the energy functional J1 and the
negative log-likelihood function J2. Then, minimizing the
objective function J in (15) is equivalent to minimizing J1
and J2, respectively. In this study, Euler–Lagrange equa-
tion and EM algorithm are, respectively, applied to minimize
energy functional J1 and the negative log-likelihood function
J2. Thus,

J =
∫

Ω

[
L1(umn|ūmn) + λϕ(|∇2umn|)

]
dΩ

−
L∑

i=1

K∑

j=1

z(t)i j

{
ln πi j − 1

2
ln(2π) − 1

2
ln |Σ j |

}

−
L∑

i=1

K∑

j=1

z(t)i j

{
−1

2
(xi − μ j )

TΣ−1
j (xi − μ j )

}

(16)

The efficient implementation of the APDE-GMM depends
on the correct estimation of the parameter umn . According
to variational method, if an optimal estimation of umn exists,
it satisfies the Euler–Lagrange equation. Based on this, from
the objective function (16), we have

πumn − 2ū2mn

2umnū2mn
− λ∇2

[
φ(|∇2umn|)∇2umn

]
= 0 (17)

This PDEmay be solved numerically using a finite difference
scheme. Letting γmn = φ(|∇2umn|)∇2umn , the second term
of left-hand side of (17) becomes

λ∇2
[
φ(|∇2umn|)∇2umn

]

= λ
γm+h,n + γm−h,n + γm,n+h + γm,n−h − 4γmn

h2

(18)

with

γmn = φ

(
um+h,n + um−h,n + um,n+h + um,n−h − 4umn

h2

)

×
(
um+h,n + um−h,n + um,n+h + um,n−h − 4umn

h2

)

(19)

where h is step length. Considering that the problem of || · ||
is Euclidean distance, the function η(u) of (12) becomes

η(u) = α

⎛

⎝mean

⎛

⎝

√
(um+h,n − um−h,n)

2 + (um,n+h − um,n−h)
2

2h

⎞

⎠

+med

⎛

⎝

√
(um+h,n − um−h,n)

2 + (um,n+h − um,n−h)
2

2h

⎞

⎠

⎞

⎠+ βN

(20)

Taking h = 1, we have the numerical approximation about
(17) in the following form

u(t+1)
mn = u(t)

mn − Δt

(
2ū2mn − πu(t)

mn

2u(t)
mnū2mn

+ λ
(
γ

(t)
m+1,n + γ

(t)
m−1,n + γ

(t)
m,n+1 + γ

(t)
m,n−1 − 4γ (t)

mn

))(21)
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where

γmn = φ(um+1,n + um−1,n + um,n+1 + um,n−1 − 4umn)

× (um+1,n + um−1,n + um,n+1 + um,n−1 − 4umn)

(22)

Next, we are going to discuss the optimization of parameters
μ j , Σ j and πi j . The EM technique is utilized to find the
optimal parameters. To satisfy GMM, the observed data x is
L-length 1D umn , here, L = NM . For mean μ j , the optimal
value of it occurs when the partial derivative of objective
function J with respect to μ j is zero

∂ J

∂μ j
= −

L∑

i=1

zi j

[
xi − μ j

Σ j

]
= 0 (23)

Eventually, we get the mean μ j at the (t + 1) iteration step.

μ
(t+1)
j =

L∑

i=1

z(t)i j xi
/ L∑

i=1

z(t)i j (24)

Similarly, the estimation of covariance is worked out via Σ j

which satisfies

∂ J

∂Σ j
=

L∑

i=1

zi j

[∑
j − (xi − μ j )(xi − μ j )

T

2Σ2
j

]
(25)

Then, letting ∂ J /∂Σ j = 0, the update of covariance Σ j at
the (t + 1) iteration is as follows

Σ
(t+1)
j =

L∑

i=1

z(t)i j (xi − μ
(t+1)
j )(xi − μ

(t+1)
j )T /

L∑

i=1

z(t)i j (26)

As for priori probability πi j , we use the Lagrange multiplier
v for each pixel. Calculate the derivative of objective function
J with πi j and set the result to zero.

∂

∂πi j

⎡

⎣J −
L∑

i=1

ν

⎛

⎝
K∑

j=1

πi j − 1

⎞

⎠

⎤

⎦ = − zi j
πi j

− ν (27)

From the above, the estimation of prior πi j is given by

π
(t+1)
i j = z(t)i j /

K∑

k=1

z(t)ik (28)

The computation process of APDE-GMM is summarized as:

1. Initialize: label K , stepΔt , meanμ j , covarianceΣ j , and
prior πi j .

2. Compute the estimated image umn using (21)

3. E-step: Calculate the posterior probability zi j by (14)
4. M-step: Update parameters μ j , Σ j , and πi j using (24),

(26), and (28), respectively.
5. Check the convergence of the objective function J in

terms of (16). If the converging condition is not satisfied,
we need to go back to step 2 and recalculate the value of
objective function J until it converges.

When the objective function J converges, the label � j of
each pixel xi can be obtained by calculating the posterior
probability zi j , and then the image segmentation can be com-
pleted. Each pixel xi satisfies the following conditions:

xi ∈ � j : IF zi j ≥ zik; j, k = (1, 2, . . . , K ) (29)

5 Experiments

In this section, the evaluation of APDE-GMM is conducted
using three synthetic images (256 × 256 pixels) and twenty
IV-OCT images fromnineCADpatients (eightmales and one
female). These IV-OCT images (300×300 pixels) were col-
lected by a C7 model OCT scanner (St. JudeMedical, USA),
which was provided by the Department of Cardiology at
Peking Union Medical College Hospital, China. The plaque
areas of some typical lesion images are manually labeled
by cardiologists in this hospital as the ground truth. With
regard to the experimental environment, the hardware envi-
ronment is 2.30 GHz Intel Core i5-6300HQ CPU, NVIDIA
GeForce GTX 960MGPU, and 8.00 GBDDR4memory, and
the software environment is Windows 10 operating system
and MATLAB 2016a software. For comparison, the follow-
ing several metrics are involved: (a) Misclassification Ratio
(MCR), Jaccard Similarity (JS), Dice Similarity Coefficient
(DISC) and Probabilistic Rand Index (PRI).

MCR calculates the proportion of misclassified pixels in
total pixels, which is defined below:

MCR = number of misclassified pixels

total number of pixels
× 100 (30)

MCR takes its value between 0 and 100, while the closer
the MCR value is to zero, the more the segmentation result
approaches to the ground truth.

DISC provides another similarity measurement of two
sample sets.

DISC = 2TP

2TP + FN + FP
× 100 (31)

where TP is the number of true positives, FN is the number
of false negatives and FP is the number of false positives.
DISC ranges from 0 to 100, while a higher value indicates
better performance.
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JS is a statistic used for testing the similarity. It applies
the overlap degree between the segmentation result and the
actual to evaluate the algorithm performance.

JS =
∣∣Sseg

⋂
Sgt
∣∣

∣∣Sseg
⋃

Sgt
∣∣ (32)

where Sseg and Sgt stand for segmentation result and ground
truth, respectively. JS takes value between 0 and 1, the closer
JS is to 0, the poorer the segmentation result is.

Next, we adopt PRI to compare the similarity of two dif-
ferent ways.

PRI= 1

L(L − 1)

m∑

i=1

n∑

j=1

[
ci j pi j+(1 − ci j )(1−pi j )

]
(33)

where L is the number of observations. If pixel i and j belong
to the same class in evaluated image, the value of ci j is one.
Otherwise, its value is zero. pi j is the ground truth probability
that pixel i and j belong to the same class. PRI value ranges
from 0 to 1, while a smaller value represents a more accurate
segmentation result.

5.1 Effect of parameters˛ andˇ in diffusivity
function

According to (11) and (12), the gradient threshold η(u) is
proportional to diffusivity function φ(s). Therefore, in order
to satisfy the requirement of φ(s), we need to choose the
appropriate parameters α and β for η(u). We first discuss the
influence of two parameters α and β on the η(u). Figure 3
displays the plots of diffusivity function φ(s) with different
values of α and β. When both α and β are smaller, η(u)

will be smaller in the whole iteration. On the contrary, η(u)

will remain larger throughout the iteration. Therefore, from
Fig. 3, it can be seen that the first choice (α = 0.2, β = 0.02)
led to weak smoothing effect on its early iterations among
all the test cases. For the results obtained with the sixth set
(α = 1, β = 0.1), we found the heavy denoising perfor-
mance may be carried out throughout the iteration process.
It is because, in this case, a larger value is assigned to dif-
fusivity function φ(s). Based on the above results, we noted
that the diffusivity function φ(s) might provide a relatively
better denoising properties while we take α from 0.4 to 0.6,
and β set its value in [0.04, 0.06]. This is the reason why
we set parameters α = 0.5 and β = 0.05 in the following
experiments.

5.2 Experiments with synthetic images

To test the behavior of APDE-GMM, the experiment is first
conducted on three synthetic images with different levels of
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Fig. 3 The proposed adaptive diffusivity function, a α = 0.2, β =
0.02; b α = 0.4, β = 0.04; c α = 0.5, β = 0.05; d α = 0.6, β = 0.06;
e α = 0.8, β = 0.08; f α = 1.0, β = 0.1

complexity, which is illustrated in Fig. 4. We would like to
compare the performance with several existing algorithms
based on the model of clustering or FMM. In this regard, this
paper considers the standard GMM [19], FCM [20], SMM
[21], fast and robust spatially constrained Gaussian mixture
model (FRSCGMM) [22] and fourth-order PDE-based fuzzy
c-means (AFPDEFCM) [16]. For all of these approaches, the
same iterations are used. The first row demonstrates origi-
nal images corrupted by speckle noise (intensity 5%). The
proposed APDE-GMM results are compared with those pro-
duced by the above-mentioned algorithms shown in Fig. 4.
All approaches can successfully label these images. How-
ever, we also observe that noise is still in the results obtained
using GMM, SMM and FCM. They might not consider the
spatial relationship between neighboring pixels. FRSCGMM
removes noise effectively, but the visual effect of the edge
seems too smooth. Besides, the segmentation result also indi-
cates that AFPDEFCM is efficient in dealingwith noise. This
could be because of the use ofY–Kdiffusivity function. From
Fig. 4, we can conclude that the APDE-GMM outperforms
the other comparison approaches in the quality of image. It
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Fig. 4 Segmentation results for synthetic images. From the first column to the last is original images, noisy images (speckle noise: intensity 5%),
FCM, GMM, SMM, FRSCGMM, AFPDEFCM, and APDE-GMM, respectively

Table 1 PRI obtained by applying six algorithms, the last column is
mean and standard deviation (mean±SD)

Methods Image 1 Image 2 Image 3 Mean±SD

FCM 0.9677 0.9508 0.9354 0.9513±0.0161

GMM 0.9759 0.9714 0.9381 0.9618±0.0206

SMM 0.9792 0.9724 0.9405 0.9640±0.0207

FRSCGMM 0.9989 0.9825 0.9648 0.9821±0.0171

AFPDEFCM 0.9986 0.9941 0.9816 0.9914±0.0088

APDE-GMM 0.9991 0.9963 0.9847 0.9933±0.0076

Table 2 MCR obtained by applying six algorithms, the last column is
mean and standard deviation (mean±SD)

Methods Image 1 Image 2 Image 3 Mean±SD

FCM 2.6489 7.5363 13.9206 8.0352±5.6523

GMM 1.9516 5.3848 13.5590 6.9651±5.9628

SMM 1.6800 5.0892 12.8605 6.5432±5.7303

FRSCGMM 0.0760 1.4040 4.0505 1.8435±2.0233

AFPDEFCM 0.1068 0.6051 2.3199 1.0106±1.1609

APDE-GMM 0.0732 0.5081 1.3779 0.6530±0.6643

reduces the effect of noise significantly. This may be due to
the application of adaptive diffusion function.

To test the performance of a model, only visual com-
parison is not enough and the segmentation results need to
be evaluated through quantitative metrics. Here, two qual-
ity assessment metrics PRI and MCR are implemented to
evaluate the difference between the ground truth and the seg-
mented results. The results are listed in Tables 1 and 2. One
can discover that PRI stays above 0.9847 to all test images,
which confirm the efficiency of the APDE-GMM. In addi-
tion, FCM, GMM and SMM get the poor results in terms of
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Fig. 5 MCR and PRI obtained by some models under different noise
environment, (left) MCR and PRI (right)

Fig. 6 The APDE-GMM segmentation results, from the first row to the
last is original images, ground truth and segmentation results
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Fig. 7 MCR and PRI obtained by some approaches for twenty IV-OCT
images, (left) MCR and PRI (right)
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Fig. 8 Segmentation results for IV-OCT images. From the first column to the last is original images, ground truth, FCM, GMM, SMM, FRSCGMM,
AFPDEFCM, GMM-SMSI and APDE-GMM, respectively

PRI and MCR. MCR values of our method can remain more
stable and lower than the other methods.

To compare APDE-GMM with the above methods, the
influence of different noise levels on them is discussed. Fig-
ure 5 displays the average MCR and PRI of three images for
all approaches. The intensity of speckle noise ranges from 1
to 9%. It can be found that the AFPDEFCM with Y–K dif-
fusivity function performs better than those of FRSCGMM.
However, the latter ismore robust to speckle noise than FCM,
GMM, and SMM. In addition, as evident from Fig. 5, the
APDE-GMM outperforms other methods with the lowest
MCR. It is due to the fact that this method applies an adaptive
diffusivity function as well as statistics-based GMM, which
is able to model the intensity distribution of an image more
accurately. Hence, based on all results reported by this exper-
iment,we can preliminarily summarize that theAPDE-GMM
achieves better segmentation results.

5.3 Experiments with IV-OCT images

In this subsection, we first conduct the application of the
APDE-GMMon clinical IV-OCT images, and some of corre-
sponding results are given inFig. 6. The images in thefirst and
second rows are original images, and ground truth, respec-
tively. It can be observed that our approach detects accurately
the fibrotic plaque from vessel lumen of coronary artery. This
is due partly to the fact that adaptive diffusivity function pro-
vides better noise removal and edge preservation, so that our
method can overcome the effect of heavy speckle noise on
the results. Besides, to quantitatively assess the performance
of APDE-GMM, this experiment also investigates the per-
formance of GMM with spatial information extracted from
saliencymap (GMM-SMSI) [23], which considers the spatial
relationship between pixels. All these methods are evaluated
on twenty IV-OCT images. The results are depicted in Fig. 7.
We have found that APDE-GMM performs very well for the
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Fig. 9 JS and DISC obtained by some approaches for twenty IV-OCT
images, (left) JS and DISC (right)

fibrotic plaque segmentation. Also, the performance of both
GMM-SMSI and FRSCGMM is better, but not significant,
compared to the SMM and GMM.With respect to MCR and
PRI values, it should be remarked that FCM provides poor
performance.

The last experiment provided here is to demonstrate the
accuracy of the APDE-GMM for various lesion IV-OCT
images, and experiments are carried out on twenty IV-OCT
images using our model compared with other methods. Fig-
ure 8 exhibits a visual comparison of partial segmentation
results. We can observe that our method gives competitive
results for these test images. The results indicate that the
APDE-GMM can maintain a good balance between edge
preservation and image denoising. To further investigate the
advantages of APDE-GMM in detecting fibrotic plaque, this
paper gives quantitative analysis in terms of JS and DISC,
and results are illustrated in Fig. 9. By comparing, the perfor-
mance of our model is still better than other six approaches.

6 Conclusions

This paper presented an unsupervised IV-OCT image seg-
mentation approach based on GMM and the fourth-order
PDE. In this scheme, an adaptive diffusivity function was
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incorporated into PDE, so that our method can effectively
remove high-level speckle noise. The proposedAPDE-GMM
achieved accurate IV-OCT image segmentation compared
with well-known algorithms, and results proved that APDE-
GMM may assist doctor in diagnosis of CAD. Future work
will improve the proposed model in order to separate various
types of plaque better, such as calcified plaque.
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