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Abstract

The pixel-wise code exposure (PCE) camera is a compressive sensing camera that has several advantages, such as low
power consumption and high compression ratio. Moreover, one notable advantage is the capability to control individual pixel
exposure time. Conventional approaches of using PCE cameras involve a time-consuming and lossy process to reconstruct
the original frames and then use those frames for target tracking and classification. Otherwise, conventional approaches will
fail if compressive measurements are used. In this paper, we present a deep learning approach that directly performs target
tracking and classification in the compressive measurement domain without any frame reconstruction. Our approach has two
parts: tracking and classification. The tracking has been done via detection using You Only Look Once (YOLO), and the
classification is achieved using residual network (ResNet). Extensive simulations using short-wave infrared (SWIR) videos
demonstrated the efficacy of our proposed approach.

Keywords Compressive measurement - Pixel-wise code exposure (PCE) camera - Multi-target tracking and classification -

SWIR

1 Introduction

Target tracking using radar [1, 2], optical [3—10], and infrared
sensors [11] has found widespread usage in many applica-
tions. In the above applications, the sensors are normally in
their original format. In the past decade, compressive sensing
has gained popularity in various applications. Compressive
measurements [12] are normally collected by multiplying the
original vectorized image with a Gaussian random matrix.
Each measurement contains a scalar value, and the measure-
ment is repeated M times where M is much fewer than N (the
number of pixels). To track a target using compressive mea-
surements, it is normally done by reconstructing the image
scene and then conventional trackers are then applied.
Recently, a new compressive sensing device known as
the pixel-wise code exposure (PCE) camera was proposed
[13]. A hardware prototype was developed, and performance
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in terms of power consumption and compression ratio was
demonstrated. In [13], the original frames were reconstructed
using L1 [14] or Lo [15-17] sparsity-based algorithms. One
problem with the reconstruction-based approach is that it is
extremely time-consuming to reconstruct the original frames,
and hence, this may prohibit real-time applications. More-
over, information may be lost in the reconstruction process
[18]. For target tracking and classification applications, it
will be ideal if one can carry out target tracking and clas-
sification directly in the compressive measurement domain.
Although there are some tracking papers [19] in the liter-
ature that appear to be using compressive measurements,
they are actually still using the original video frames for
tracking. A target tracking algorithm that truly uses compres-
sive measurement directly is the paper [20], which uses the
subsampling operator to generate the compressive measure-
ments. ResNet was used for both tracking and classification.
One limitation is that the initial target bounding boxes are
still needed.

In this paper, we propose a target tracking and classifi-
cation approach in the compressive measurement domain.
First, a YOLO tracker is used for target tracking, which is
done by object detection. The training of YOLO tracker is
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very simple, which requires image frames with known target
locations. Although YOLO can also perform classification,
the performance is not good as we have very limited number
of video frames for training. So, in the second step of target
classification, we decided to use ResNet for classification.
That is, the object locations detected by YOLO are fed into
the ResNet for classification. We chose ResNet because it
allows us to perform customized training by augmenting the
data from the limited video frames. Our proposed approach
was demonstrated using two short-wave infrared (SWIR)
videos. The tracking and classification results are reason-
able. This is a big improvement over conventional trackers
[4, 5], which do not work well in the compressive measure-
ment domain.

There are two key contributions of our paper. First, we
are the first ones to apply latest deep learning techniques to
target tracking and classification directly in the compressive
measurement domain, which does not require any time-
consuming image reconstruction. This will allow fast and
near real-time target tracking using compressive measure-
ments. Actually, real-time experiments have been carried out
and we will report the results in another paper. Second, we
improved the target classification performance with a cus-
tomized ResNet, which yielded much better performance
than that of the built-in classifier in YOLO.

This paper is organized as follows. In Sect. 2, we describe
some background materials, including the PCE camera,
YOLO, and ResNet. In Sect. 3, we summarize the track-
ing and classification results using SWIR videos. Finally, we
conclude our paper with some remarks for future research.

2 Background
2.1 PCE imaging and coded aperture

In this paper, we employ a sensing scheme based on PCE, also
known as coded aperture (CA) video frames, as described in
[13]. Figure 1 illustrates the differences between a conven-
tional video sensing scheme and PCE, where random spatial
pixel activation is combined with fixed temporal exposure
duration. First, conventional cameras capture frames at cer-
tain frame rates, such as 30 frames per second. In contrast,
the PCE camera captures a compressed frame called motion
coded image over a fixed period of time (7',). For example,
a user can compress 30 conventional frames into a single
motion coded frame. This will yield significant data com-
pression ratio. Second, the PCE camera allows a user to
use different exposure times for different pixel locations. For
low lighting regions, more exposure times can be used and
for strong light areas, short exposure can be exerted. This
will allow high dynamic range. Moreover, power can also
be saved via low sampling rate in the data acquisition pro-
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Fig.1 a Conventional camera vs. pixel-wise coded exposure (PCE)
compressed image/video sensor [13]; b object tracking and recogni-
tion directly using motion coded images

cess. As shown in Fig. 1, one conventional approach to using
the motion coded images is to apply sparse reconstruction to
reconstruct the original frames and this process may be very
time-consuming.

Suppose the video scene is contained in a data cube X €
RM*NXT wwhere M x N is the image size and T is the number
of frames. A sensing data cube is defined by S € RM*NxT
which contains the exposure times for pixel located at (m, n,
t). The value of S(m,n,t) is 1 for frames t € < [tstart, tenq]
and O otherwise. [fsiart, fend] denotes the start and end frame
numbers for a particular pixel.

The measured coded aperture image Y €
obtained by

RM><N is

T
Y(m.n) =Y S(m,n.t)-X(m,n, 1) (1

=1

The original video scene X € RM*NXT can be recon-
structed via sparsity methods (L1 or Ly). Details can be found
in [13].

Instead of doing sparse reconstruction on PCE images or
frames, our scheme directly acts on the PCE or coded aperture
images, which contain raw sensing measurements without
the need for any reconstruction effort. Utilizing raw mea-
surements has several challenges. First, moving targets may
be smeared if the exposure times are long. Second, there are
also missing pixels in the raw measurements because not all
pixels are activated during the data collection process. Third,
there are much fewer frames in the raw video because many
original frames are compressed into a single coded frame.

In this study, we have focused our effort into simulating
EXACTLY the measurements that should be produced by
the PCE-based compressive sensing (CS) sensor. We then
proceed to show that detecting, tracking, and even classifying
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moving objects of interest in the scene is entirely feasible
with a minor sacrifice in discrimination accuracy. We carried
out multiple experiments with three diverse sensing models:
PCE/CA full, PCE/CA 50%, and PCE/CA 25%.

The PCE full model (PCE full or CA full) is quite simi-
lar to a conventional video sensor: every pixel in the spatial
scene is exposed for exactly the same duration of one sec-
ond. Obviously, all activities within that 1-second window
are captured in our PCE image/frame. However, motion is
expected to be blurred significantly. This simple model still
produces a compression ratio of 30:1. However, there is not
much saving in sensing power since all pixels are exposed at
all times.

Next, we set the sensing model labeled as PCE 50% or CA
50% using the following set of parameters. For each frame,
there are roughly 1.85% pixels being activated. The exposure
time is Te = 133.3 ms. Therefore, each exposed pixel stays
continuously active for 4-frame duration. In short, we output
ONE coded aperture image for every group of 30 frames,
resulting in a temporal sensing ratio of 1 frame per second
(fps) or equivalently 30:1 compression ratio in terms of frame
rate. In every frame, a new set of pixels that have not been
activated yet would be selected for activation. Once activated,
each pixel would have exactly the same exposure duration.
This scheme results in 50% of the pixels locations being
captured in various time-stamps within one sensing period
(1 s), resulting in a single coded aperture image or PCE frame
with 50% activated pixels for every 30 conventional video
frames. The PCE 50% Model yields a data saving ratio of
31—0 X % = 61_0 and a power saving ratio of 61—0 x4 = 11—5

For the PCE 25% or CA 25% model, we further decrease
the percentage of pixels activated per frame so that the final
output PCE frame contains only 25% of randomly activated
pixel locations. The exposure duration is still set at the same
conventional 4-frame duration. A simple way to generate
PCE 25% data is to randomly ignored half of the measure-
ments collected from the PCE 50% Model. The PCE 25%
model yields a data saving ratio of % X % = 1;—0 and a
power saving ratio of ﬁ X 4 = %. Note that we can easily
reduce the sensing power by limit ourselves to much shorter
exposure duration. This might be advantageous for tracking
fast-moving objects at the expense of noisier measurements
at low-light conditions.

Table 1 summarizes the comparison between the three
sensing models.

A small portion of the sensing mask in 3-dimensional spa-
tiotemporal space for the PCE 50% model is shown in Fig. 2.
Colored dots denote nonzero entries (activated pixels being
exposed), whereas white part of the spatiotemporal cube is
all zero (these pixels are staying dormant). The horizontal
axis is the time domain, and the reader is reminded that each

Table 1 Comparison in data compression ratio and power saving ratio
between three sensing models

PCE full/CA PCE 50%/CA PCE 25%/CA
full 50% 25%
Data saving 30:1 60:1 120:1
ratio
Power Saving 1:1 15:1 30:1

ratio

Fig.2 Example of part of sensing mask. Colored dots denote nonzero
entries (activated pixels), whereas white part of the cube is all zero
(dormant pixels)

exposed pixel stays active for an equivalent duration of 4
continuous frames.

2.2 YOLO tracker

We used the so-called tracking by detection approach. In the
target tracking literature, there are several ways to tracking.
Some trackers such as STAPLE [4] or GMM [5] require an
operator to put a bounding box on a specific target, and then,
the trackers will try to track this initial target in subsequent
frames. The limitation of this type of trackers is that they can
track one target at a time. Another limitation is that they can-
not track multiple targets simultaneously. Other trackers such
as YOLO and Faster R-CNN do not require initial bounding
boxes and can simultaneously detect objects. We can call the
second type of trackers: tracking by detection. That is, based
on detection results, we determine the vehicle locations in all
the frames.

The YOLO tracker [21] is fast and has similar performance
to the Faster R-CNN [22]. The input image is resized to 448 x
448. Figure 3 shows the architecture of YOLO version 1.
There are 24 convolutional layers and 2 fully connected lay-
ers. The outputis 7 x 7 x 30. We have used YOLOV2 because
it is more accurate than YOLO version 1. The training of
YOLO is quite simple. Images with ground-truth target loca-
tions are needed. The bounding box for each vehicle was
manually determined using tools in MATLAB. For YOLO,
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Fig. 3 24 convolutional layers followed by 2 fully connected layers for
YOLO version 1 [21]

the last layer of the deep learning model was re-trained. We
did not change any of the activation functions. YOLO took
approximately 2000 epochs to train.

YOLO also comes with a classification module. However,
based on our evaluations, the classification accuracy using
YOLO is not good as can be seen in Sect. 3. This is perhaps
due to a lack of training data.

2.3 ResNet classifier

As mentioned earlier, YOLO’s built-in classifier did not
perform well, which is probably because we have limited
training data. Moreover, we think that, although YOLO is
good for object detection, its built-in classifier is probably
more suitable for inter-class (humans, vehicles, bikes, etc.)
discrimination and not good for intra-class (Frontier vs. Ram)
discrimination. The ResNet-18 model is an 18-layer con-
volutional neural network (CNN) that has the advantage of
avoiding performance saturation and/or degradation when
training deeper layers, which is a common problem among
other CNN architectures. The ResNet-18 model avoids the
performance saturation by implementing an identity short-
cut connection, which skips one or more layers and learns
the residual mapping of the layer rather than the original
mapping. Figure 4 shows the architecture of an 18-layer
ResNet.

It is necessary to explain the relationship between YOLO
and ResNet. YOLO was used to determine where, in each
frame, the trucks were located. YOLO generated bound-
ing boxes for those trucks and that data were used to crop
the trucks from the image. The cropped trucks would be
fed into the ResNet-18 for classification, and classification
results were generated. To be more specific, ResNet-18 is
used directly after bounding box information is obtained from
YOLO.

Training of ResNet requires target patches. The targets
are cropped from training videos. Mirror images are then
created. We then perform data augmentation using scaling
(larger and smaller), rotation (every 45 degrees), and illumi-
nation (brighter and dimmer) to create more training data. For
each cropped target, we are able to create a data set with 64
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more images. For ResNet, the last layer of the deep learning
model was re-trained. The ResNet model was trained until
the validation score plateaued.

3 Tracking and classification results using
SWIR videos

This study focuses on the case of tracking and classification
using a combination of YOLO and ResNet for coded aperture
cameras. There are three cases. PCE full refers the compres-
sion of 30 frames to 1 with no missing pixels. PCE 50 is the
case where we compress 30 frames to 1 and at the same time,
only 50% of pixels are activated for a length of 4/30 s. PCE
25 is similar to PCE 50 except that only 25% of the pixels
are activated for 4/30 s.

We have two SWIR videos. Each one has close to 3000
frames. Each frame has a dimension of 512 by 640. One video
(Video 4) starts with vehicles (Ram, Frontier, and Silverado)
leaving a parking lot and moves on to a remote location.
Another video (Video 5) is just the opposite. The two videos
are difficult for tracking and classification because 1) the
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camera moves to follow the targets; 2) the target sizes change;
3) the target orientations also vary significantly; 4) the illu-
minations in different videos are also different.

3.1 Tracking results
3.1.1 Conventional tracker results

We used the following metrics for evaluating the YOLO
tracker performance:

e Center location error (CLE) 1t is the error between the
center of the bounding box and the ground-truth bounding
box.

e Distance precision (DP) It is the percentage of frames
where the centroids of detected bounding boxes are within
20 pixels of the centroid of ground-truth bounding boxes.

e EinGT 1t is the percentage of the frames where the
centroids of the detected bounding boxes are inside the
ground-truth bounding boxes.

e Number of frames with detection This is the total number
of frames that have detection.

e Mean average precision (mAP) Following the definition
in [24], it is the mean precision for all frames.

o Frames per second (FPS) It is the total number of frames
divided by the total execution time. We used a PC with
Intel i7-4790 and a GeForce GTX Titan GPU.

We first present some tracking results using a conventional
tracker known as STAPLE [4]. STAPLE requires the target
location to be known in the first frame. After that, STAPLE
learns the target model online and tracks the target. How-
ever, in all three cases (PCE full, PCE 50, and PCE 25) as
shown in Fig. 5, STAPLE was not able to track any targets in
subsequent frames. This shows the difficulty of target track-
ing using PCE cameras. In order to compare with the YOLO
tracker results later, we include Tables 2 and 3, which con-
tain various tracking metrics for the STAPLE tracker. We
have the following observations from the two tables. First,
DP, EinGT, and mAP drop with higher compression rates for
Video 5 and those metrics also have low scores for Video 4.
Second, the CLE values are very large as compared to those
YOLO results in Tables 4 and 5. For instance, some CLE
values are 152, 299, etc., which mean the bounding boxes
are mostly outside the frames and tracking performance is
very poor. Third, the FPS numbers are almost the same.

3.1.2 YOLO results: train using video 4 and test using video
5

Table 4 shows the tracking results for PCE full, PCE 50,
and PCE 25, respectively. In each table, the last column
is the number of frames with detection. The trend is that

(b) PCE 50

(c) PCE 25

Fig.5 STAPLE tracking results for the PCE full case. Frames: 10, 30,
50, 70, 90, 110 are shown here. Video 4

when image compression increases, the detection perfor-
mance drops accordingly. This can be corroborated in the
snapshots shown in Fig. 6 where we can see that some tar-
gets do not have bounding boxes around them in the high
compression cases. The FPS value for PCE full is 18.43, but
drops to low values for high compression cases. The reason
is because there are more missing pixels in PCE 50 and PCE
25 and YOLO needs more time to generate decisions when
there are missing pixels in the images.

3.1.3 YOLO results: train using video 5 and test using video
4

Table 5 shows the tracking results for PCE full, PCE 50,

and PCE 25, respectively. The trend is that when the image
compression increases, the performance drops accordingly.

@ Springer
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Table 2 STAPLE tracking metrics for PCE full, PCE 50, and PCE 25.
Video 5

Table4 YOLO tracking metrics for PCE full, PCE 50, and PCE 25.
Train using Video 4 and test using Video 5

CLE DP EinGT  mAP  FPS
(a) PCE full
Ram 59.30 048 037 0.63 8.07
Frontier 82.87 054 027 0.61 8.14
Silverado 92.09 040 025 0.58 7.98
Average 78.09 047 030 0.61 8.06
(b) PCE 50
Ram 106.71 030  0.10 0.34 7.82
Frontier 84.38 033  0.08 0.38 7.80
Silverado  232.63 0.12 004 0.11 7.94
Average 141.24 025  0.07 0.28 7.85
(c) PCE 25
Ram 121.58 029  0.06 0.27 7.76
Frontier 132.63 0.18  0.10 0.24 7.98
Silverado  202.98 013  0.12 0.12 7.90
Average 152.40 020  0.09 0.21 7.88

Table 3 STAPLE tracking metrics for PCE full, PCE 50, and PCE 25.
Video 4

CLE DP EinGT mAP FPS Frames with
detection

(a) PCE full
Ram 559 1 1 0.71 18.43  62/89
Frontier 577 1 1 0.73 18.43  75/89
Silverado 4.89 1 1 0.71 18.43  55/89
Average 542 1 1 0.72 1843 64/89

(b) PCE 50
Ram 6.13 098 1 0.63 547 62/89
Frontier 707 1 1 0.57 547  72/89
Silverado 5.82 1 1 0.58 547 53/89
Average 634 099 1 0.59 547 62/89

(c) PCE 25
Ram 6.68 098 1 0.73 591 51/89
Frontier 728 098 1 0.59 591 63/89
Silverado 6.69 1 0.93 0.5 591 28/89
Average 6.88 0.99 0.98 0.61 591 47/89

Table 5 Tracking metrics for PCE full. Train using Video 5 and test
using Video 4

CLE DP EinGT mAP FPS
(a) PCE full
Ram 1053.50 0.09 0.05 0.13 7.75
Frontier 774.61 0.15 0.11 0.25 7.80
Silverado 276.41 0.09 0.04 0.12 8.01
Average 701.51 0.11 0.07 0.17 7.85
(b) PCE 50
Ram 348.70 0.08 0.08 0.12 7.29
Frontier 330.72 0.12 0.04 0.13 7.32
Silverado 218.43 0.09 0.03 0.12 7.49
Average 299.28 0.10 0.05 0.12 7.37
(c) PCE 25
Ram 330.83 0.08 0.03 0.12 7.35
Frontier 228.76 0.13 0.06 0.16 7.47
Silverado 204.16 0.09 0.03 0.10 7.28
Average 254.58 0.10 0.04 0.13 7.37

For instance, the averaged mAP values drop from 0.79 in
the PCE full case to 0.57 in the PCE 25 case. This can be
confirmed in the snapshots shown in Fig. 7 where we can see
that some targets do not have bounding boxes around them
in the high compression cases.

It should be noted that the YOLO results such as CLE
values are much better than those STAPLE results shown in
Tables 2 and 3.

@ Springer

CLE DP EinGT mAP FPS Frames with
detection
(a) PCE full
Ram 5 1 1 0.71  34.17 90/110
Frontier 5 1 1 0.8 34.17 101/110
Silverado 5.01 1 1 0.86  34.17 57/110
Average 5.00 1 1 0.79  34.17 83/110
(b) PCE 50
Ram 586 1 1 0.57 8.62 93/110
Frontier 569 1 1 0.69 8.62 102/110
Silverado 5.09 1 1 0.76 8.62 54/110
Average 555 1 1 0.67 8.62 83/110
(c) PCE 25
Ram 7.2 097 1 0.51 9.07 79/110
Frontier 6.28 1 1 0.61 9.07 94/110
Silverado 532 1 1 0.59 9.07 44/110
Average 627 099 1 0.57 9.07 72/110

3.2 Classification results

Here, we want to compare two classifiers: YOLO and ResNet.
It should be noted that classification is performed only when
there are good detection results from the YOLO tracker. For
some frames in the PCE 50 and PCE 25, there may not be
positive detection results and, for those frames, we do not
generate any classification results.
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(a) PCE full

(b) PCE 50

(¢) PCE 25

Fig.6 Tracking results for frames 1, 16, 31, 45, 60, and 89. PCE full
case. Train using Video 4 and test using Video 5

3.2.1 Training using video 4 and testing using video 5

Tables 6, 7, and 8 show the classification results using YOLO
and ResNet. In each table, the second to fourth columns
contain the confusion matrix and the last column is the
classification rate. The first observation is that the ResNet
performance is better than that of YOLO in most cases.
The second observation is that the classification performance
deteriorates with high missing rates. The third observation is
that Ram and Silverado have lower classification rates. This
is because Ram and Silverado have similar appearances. A
fourth observation is that the results in Table 8 appear to
be better than other cases. This may be misleading, as the
classification is done only for frames with good detection.

«

(a) PCE full

(¢) PCE 25

Fig.7 Tracking results for frames 1, 16, 31, 45, 60, and 89. PCE full
case. Train using Video 5 and test using Video 4

3.2.2 Training using video 5 and testing using video 4

The observations are similar to the earlier case as shown
in Tables 9, 10, 11. That is, ResNet is better than YOLO
and classification performance drops with high compression
rates.

3.3 Discussions

If one is interested in only target tracking, then, even for the
PCE 25 camera (120 times compression), the YOLO tracker
can achieve 53% (47/89) and 65% (72/110) of correct detec-
tion for Train 4 Test 5 (Table 4c) and Train 5 Test 4 cases
(Table 5c¢), respectively. This is a decent result.

However, if one is more interested in target classification,
then PCE 25 is not good enough even using ResNet because

@ Springer
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Table 6 Classification results for PCE full case. Video 4 for training
and Video 5 for testing

Table 8 Classification results for PCE 25 case. Video 4 for training and
Video 5 for testing

Ram Frontier Silverado Classification Ram Frontier Silverado Classification
accuracy accuracy
(a) YOLO classifier outputs (a) YOLO classifier outputs
Ram 14 2 45 0.2295 Ram 7 9 35 0.1373
Frontier 13 60 2 0.8 Frontier 20 35 0.5645
Silverado 53 0 0.0364 Silverado 20 4 3 0.1111
Average classification 0.3553 Average classification 0.2710
accuracy accuracy
(b) ResNet classifier outputs (b) ResNet classifier outputs
Ram 38 16 8 0.6129 Ram 15 1 35 0.2941
Frontier 7 68 0 0.9067 Frontier 22 27 14 0.4286
Silverado 12 8 35 0.6364 Silverado 10 1 17 0.6071
Average classification 0.7187 Average classification 0.4433
accuracy accuracy

Table 7 Classification results for PCE 50 case. Video 4 for training and
Video 5 for testing

Table 9 Classification results for PCE 25 case. Video 5 for training and
Video 4 for testing

Ram Frontier Silverado Classification Ram Frontier Silverado Classification
accuracy accuracy
(a) YOLO classifier outputs (a) YOLO classifier outputs
Ram 11 1 50 0.1774 Ram 11 25 42 0.141
Frontier 14 47 8 0.6812 Frontier 34 56 0 0.6222
Silverado 43 2 4 0.0816 Silverado 32 0 12 0.2727
Average classification 0.3134 Average classification 0.3453
accuracy accuracy
(b) ResNet classifier outputs (b) ResNet classifier outputs
Ram 16 2 44 0.2581 Ram 17 28 34 0.2152
Frontier 21 36 15 0.5 Frontier 15 67 12 0.7128
Silverado 8 1 44 0.8302 Silverado 19 7 18 0.4091
Average classification 0.5294 Average classification 0.4457
accuracy accuracy

the average classification accuracies are 44% for Train 4 Test
5 (Table 8b) and Train 5 Test 4 (Table 9b) cases. We will need
to use PCE full (30 to 1 compression), which can give 71%
(Table 6b) and 54% (Table 10b) of classification accuracy for
Train 4 Test 5 and Train 5 Test 4 cases, respectively.

4 Conclusions

In this paper, we present a high-performance approach to
target tracking and classification directly in the compressive
sensing domain. To the best of our knowledge, this is the first
work in this area. Skipping the time-consuming reconstruc-
tion step will allow us to perform real-time target tracking and
classification. The proposed approach is based on a combi-
nation of two deep learning schemes: YOLO for tracking and
ResNet for classification. The proposed approach is suitable
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Table 10 Classification results for PCE full case. Video 5 for training
and Video 4 for testing

Ram Frontier Silverado Classification
accuracy
(a) YOLO classifier outputs
Ram 16 56 18 0.1778
Frontier 1 99 0 0.99
Silverado 43 0 14 0.2456
Average classification 0.4711
accuracy
(b) ResNet classifier outputs
Ram 32 25 33 0.3556
Frontier 4 78 19 0.7723
Silverado 22 7 28 0.4912
Average classification 0.5397
accuracy
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Table 11 Classification results for PCE 50 case. Video 5 for training
and Video 4 for testing

Ram Frontier Silverado Classification
accuracy
(a) YOLO classifier outputs
Ram 20 29 41 0.2222
Frontier 21 76 0 0.7835
Silverado 41 0 13 0.2407
Average classification 0.4155
accuracy
(b) ResNet classifier outputs
Ram 26 27 40 0.2796
Frontier 17 75 10 0.7353
Silverado 15 6 33 0.6111
Average classification 0.5420
accuracy

for applications where limited training data are available.
Experiments using SWIR videos clearly demonstrated the
performance.

One potential direction is to integrate our proposed
approach with real hardware to perform real-time target
tracking and classification directly in the compressive sens-
ing domain.

Acknowledgements This research was supported by the US Air Force
under contract FA8651-17-C-0017. The views, opinions, and/or find-
ings expressed are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense
or the US Government. DISTRIBUTION STATEMENT A. Approved
for public release; distribution is unlimited.

References

1. Zhao, Z., Chen, H., Chen, G., Kwan, C., Li, X. R.: Comparison of
several ballistic target tracking filters. In: Proceedings of American
Control Conference, pp. 2197-2202 (2006)

2. Zhao, Z., Chen, H., Chen, G., Kwan, C., Li, X. R.: IMM-LMMSE
filtering algorithm for ballistic target tracking with unknown bal-
listic coefficient. In: Proceedings of SPIE, Volume 6236, Signal
and Data Processing of Small Targets (2006)

3. Zhou, J., Kwan, C.: Anomaly detection in low quality traffic mon-
itoring videos using optical flow. In: Proceedings of SPIE 10649,
Pattern Recognition and Tracking XXIX (2018)

4. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.: Sta-
ple: complementary learners for real-time tracking. In: Conference
on Computer Vision and Pattern Recognition (2016)

5. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture mod-
els for real-time tracking. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. 2, 2246-2252 (1999)

6. Kwan, C., Zhou, J., Wang, Z., Li, B.: Efficient anomaly detection
algorithms for summarizing low quality videos. In: Proceedings
of SPIE 10649, Pattern Recognition and Tracking XXIX, vol.
1064906 (2018)

7. Kwan, C., Yin, J., Zhou, J.: The development of a video browsing
and video summary review tool. In: Proceedings of SPIE 10649,
Pattern Recognition and Tracking XXIX, vol. 1064907 (2018)

. Kandylakis, Z., et al.: Multimodal data fusion for effective surveil-
lance of critical infrastructure. In: ISPRS-International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, pp. 87-93 (2017)

9. Berg, A.: Detection and Tracking in Thermal Infrared Imagery.
Linkoping University Electronic Press, Diss (2016)

10. Zhou, J., Kwan, C.: Tracking of multiple pixel targets using multi-
ple cameras. In: 15th International Symposium on Neural Networks
(2018)

11. Kwan, C., Chou, B., Kwan, L. M.: A comparative study of conven-
tional and deep learning target tracking algorithms for low quality
videos. In: 15th International Symposium on Neural Networks
(2018)

12. Candes, E.J., Wakin, M.B.: An introduction to compressive sam-
pling. IEEE Signal Proc. Mag. 25, 21-30 (2008)

13. Zhang, J., Xiong, T., Tran, T., Chin, S., Etienne-Cummings, R.:
Compact all-CMOS spatio-temporal compressive sensing video
camera with pixel-wise coded exposure. Opt. Express 24(8),
9013-9024 (2016)

14. Yang, J., Zhang, Y.: Alternating direction algorithms for /-
problems in compressive sensing. SIAM J. Sci. Comput. 33,
250-278 (2011)

15. Tropp, J.A.: Greed is good: algorithmic results for sparse approxi-
mation. IEEE Trans. Inf. Theory 50(10), 2231-2242 (2004)

16. Dao, M., Kwan, C., Koperski, K., Marchisio, G.: A joint sparsity
approach to tunnel activity monitoring using high resolution satel-
lite images. In: IEEE Ubiquitous Computing, Electronics & Mobile
Communication Conference, pp. 322-328, New York City (2017)

17. Zhou, J., Ayhan, B., Kwan, C., Tran, T.. ATR performance
improvement using images with corrupted or missing pixels. In:
Proceedings of SPIE 10649, Pattern Recognition and Tracking
XXIX, vol. 106490E (2018)

18. Applied Research LLC, Phase 1 Final report, August 2016

19. Yang,M.H.,Zhang, K., Zhang, L.: Real-time compressive tracking.
In: European Conference on Computer Vision (2012)

20. Kwan, C., Chou, B., Echavarren, A., Budavari, B., Li, J., Tran,
T.: Compressive vehicle tracking using deep learning. In: IEEE
Ubiquitous Computing, Electronics & Mobile Communication
Conference, New York City (2018)

21. Redmon, J., Farhadi, A.: YOLOvV3: An Incremental Improvement
(2018). arXiv:1804.02767

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-
time object detection with region proposal networks. In: Advances
in Neural Information Processing Systems (2015)

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Conference on Computer Vision and Pattern
Recognition (2016)

24. Definition of mAP, https://medium.com/@jonathan_hui/map-
mean-average-precision-for-object-detection-45¢121a31173.
Accessed 10 Jan 2019

(o]

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


http://arxiv.org/abs/1804.02767
https://medium.com/%40jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

	Target tracking and classification using compressive sensing camera for SWIR videos
	Abstract
	1 Introduction
	2 Background
	2.1 PCE imaging and coded aperture
	2.2 YOLO tracker
	2.3 ResNet classifier

	3 Tracking and classification results using SWIR videos
	3.1 Tracking results
	3.1.1 Conventional tracker results
	3.1.2 YOLO results: train using video 4 and test using video 5
	3.1.3 YOLO results: train using video 5 and test using video 4

	3.2 Classification results
	3.2.1 Training using video 4 and testing using video 5
	3.2.2 Training using video 5 and testing using video 4

	3.3 Discussions

	4 Conclusions
	Acknowledgements
	References




