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Abstract
This paper proposes a method for generating inter-frame video images based on spatial continuity generative adversarial
networks (SC-GANs) to smooth the playing of low-frame rate videos and to clarify blurry image edges caused by the use
of traditional methods to improve the video frame rate. Firstly, the auto-encoder is used as a discriminator and Wasserstein
distance is applied to represent the difference between the loss distribution of the real sample and the generated sample, instead
of the typical method of generative adversarial networks to directly match data distribution. Secondly, the hyperparameter
between generator and discriminator is used to stabilize the training process, which effectively prevents the model from
collapsing. Finally, taking advantage of the spatial continuity of the image features of continuous video frames, an optimal
value between two consecutive frames is found by Adam and then mapped to the image space to generate inter-frame images.
In order to illustrate the authenticity of the generated inter-frame images, PSNR and SSIM are adopted to evaluate the inter-
frame images, and the results show that the generated inter-frame images have a high degree of authenticity. The feasibility
and validity of the proposed method based on SC-GAN are also verified.

Keywords GAN · Adversarial training · Spatial continuity · Adam · Inter-frame image generation

1 Introduction

The technology to improve the frame rate of video is gen-
erally called motion estimate [1]/motion compensation [2]
(ME/MC), and its basic idea is inserting a generated image
frame between two consecutive frames in the video sequence
to increase frame rate. There are two methods to improve
frame rate, namely non-motion compensation algorithm and
motion compensation algorithm [3], and non-motion com-
pensation algorithm generally is realized as frame repetition
and frame averaging [4, 5]. Featured with lower complexity,
non-motion compensation algorithm is easy to integrate into
the product, but that does not work well in non-stationary
video sources. Block matching algorithm is utilized for
ME/MC [6] technology in the motion estimation to obtain
motion vector (MV) [7] which is calculated as ‘motion com-
pensation frame.’ Themotion compensation frame is inserted
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into two consecutive frames to improve the video frame rate.
ME/MC technology eliminates jitter and smear and enhances
clarity in video playing, but will cause the vagueness in the
image edge inmovement. Therefore, on the premise of ensur-
ing image clarity, improving the frame rate of video has
become an urgent problem.

Great progresses have been made for inter-frame image
generation in the field of deep learning. In [8], Guo proposed
the image generation model, which can predict the future
frames according to the past frames and the current frames
in the video. [9] proposed a method to generate an optimal
low dynamic range image based on neural network.Hou et al.
[10] based on convolution neural network, proposed a self-
learning method to enhance frame rate. Gucan et al. [11]
proposed a deep convolution neural network, which learns
the motion of objects in video by convolution network to
generate the middle frame of the video. Although these stud-
ies have contributed to the generation of inter-frame images,
the quality and authenticity of the generated images are not
ideal.

As a new image generation algorithm, generative adver-
sarial networks (GANs) are able to generate face images [12],
digital images, and other objects, translate text into image,
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complete semantic annotation, and generate high-resolution
images from low resolution images [13]. However, GAN
has been less researched on inter-frame image generation
at present. The most typical one among those researches,
proposed by Mathieu et al., is a deep multi-scale video pre-
diction method which is beyond the mean square error and
can predict the next frame of the video [14]. It is the first
application of the antagonistic idea in GAN into the field of
video research, which makes GAN play an important role in
the video research and promotes the development of GAN
in the field of video research. However, the poor quality of
predicted frames generated in the experiment often leads to
distortion or blurring of moving objects.

In order to solve these problems, this paper proposes a new
method to improve the frame rate based on GAN, that is, to
generate inter-frame images based on SC-GAN. Inter-frame
images, which are generated by trained SC-GAN model, are
inserted into the corresponding two frames to improve the
frame rate. It provides a new method to improve the frame
rate of video.

2 Basic principle of GAN

GAN, whose basic idea originates from ‘zero-sum game’ in
game theory, consists of a generator and a discriminator [15].
Both the generator and the discriminator use the neural net-
work [16]. A random noise signal z is input into the generator
to produce G(z). The discriminator takes the real data x and
the generated sample data G(z) as inputs, and the output is
the probability of the discriminator treatingG(z) as real data.
This probability is used to judge the quality of the generated
model.

(1)

min
G

max
D

V (D,G) � Ex∼Pdata(x)[log D(x)]

+ Ez∼Pz (z)[log(1 − D(G(z)))]

GAN model optimization is a ‘minimax game’ process,
and Eq. (1) indicates its objective function [17]. The discrim-
inator aims at maximizing the D-value between D(x) and
D(G(x)), that is, maximizing the log D(x), to distinguish
between the sample data and real data during the training.
The generator tries to deceive the discriminator as far as
possible andminimize the log(1−D(G(x))),which is tomax-
imize the loss of the discriminator. The generator implicitly
defines a data distribution Pg, and the real-data distribution
is defined as Prd. After the adversarial training of the dis-
criminator and the generator, the optimal result is that the
discriminator cannot distinguish whether the sample is a real
sample or a generated, that is Pg �Prd � 0.5. At this point,
it can be considered that the generator has learned the data
distribution of the real sample.

Discriminator

generated 
sample G(z)noise z

result
Enc Dec

real sample x

Generator

Loss

Fig. 1 Image generation model of SC-GAN

3 Inter-frame image generation

Based on the improved GAN model, an auto-encoder, first
proposed in EBGAN [18], is used as a discriminator in this
paper. While typical GANs try to match data distributions
directly, this paper aims to match auto-encoder loss distri-
butions using a loss derived from the Wasserstein distance
[19]. The equilibrium term γ is introduced to balance the dis-
criminator and the generator. The dataset used in this paper
consists of continuous video frame images, and the images
are spatially continuous. Therefore, the generated model can
generate inter-frame images with the input of two continuous
frames images.

3.1 Model frame

Figure 1 shows our image generation model based on the
typical GANmodel. We use the auto-encoder which consists
of encoder and decoder as a discriminator. Encoder con-
verts the input signal into the encoded signal through the
encoding function, and decoder converts the encoded sig-
nal into the output signal through the decoding function. An
auto-encoder is a neural network that reproduces the input
signal as much as possible. To accomplish this reproduction,
the auto-encoder must capture the most important features
that represent the input signal. The generator input is n-
dimensional random noise z, and then, the generator maps
z to the image space to get the generated sample G(z). The
real samples x are input into the discriminator, and the image
features are acquired through encoder subsampling. Then,
the image features are mapped into image space through
decoder’s up-sampling process, and the distribution of the
generated sample data is reconstructed, and the reconstructed
loss function is obtained. The reconstructed loss distribution
belongs to the same distribution as the real sample data dis-
tribution. By optimizing the distance between the two loss
distributions, the generationmodel is optimized. In the exper-
iment of inter-frame image generation, due to the spatial
continuity between consecutive video frames, we use Adam
to find an optimal data distribution between two consecutive
frames and map it to the image space through the generated
model to get the final inter-frame image. The frame diagram
of the inter-frame image generation is shown in Fig. 2.
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Fig. 2 SC-GAN inter-frame image generation framework

As is shown in Fig. 2, the SC-GAN model uses an auto-
encoder as a discriminator and introduces a hyperparameterγ
to keep the balance between the generator and discriminator.
The real samples x are input to the discriminator to obtain the
reconstructed loss distribution Γ (x), and the random noise z
is input to the generator to generate the data G(z). Then, the
G(z) is input to the discriminator to obtain the reconstructed
loss distribution Γ (G(z)). The parameters of the model are
adjusted tominimize the value of Dw through theWasserstein
distance W (Γ (x), Γ (G(z))) between the two distributions
Γ (x) and Γ (G(z)).

Dw � W (Γ (x), Γ (G(z))) (2)

At the same time, in order to ensure the stability of the
training process and the diversity of the generated samples,
the hyperparameter γ is introduced to balance the generator
and discriminator.

3.2 Wasserstein distance

Wasserstein distance, also known as earth-mover (EM) dis-
tance, between the auto-encoder loss two distributions of real
and generated samples is computed. Wasserstein distance is
defined as:

W (P1, P2) � inf
λ∼∏

(P1,P2)
E(x,y)∼λ[||x − y||] (3)

where
∏
(P1, P2) denotes the set of all joint distributions of

the two distributions λ(x, y) whose marginals are P1 and P2,
and for each joint distribution λ, a pair of samples x and y is
obtained from the sample ofλ(x, y), and thedistancebetween
these two samples is ||x − y||. In the joint distribution of λ,
the expectation for the distance is E(x,y)[||x− y||]. In all joint
distributions, the lower bound of the sample’s expectation on
distance is the Wasserstein distance.

In the training process of the typical GAN model, the
generated data distribution matches the distribution of real
samples directly, so it is difficult to learn all the key features
of the sample data, and convergence speed is relatively slow.
In the SC-GANmodel, the real sample data are reconstructed
by encoder and decoder, and the reconstructed loss distribu-
tion Γ (x) is obtained. If two data distributions are identical,
their loss distributions should also be same. The Wasserstein

distance betweenΓ (x) andΓ (G(z)) can reflect the difference
between the two distributions so that the generatedmodel can
be further optimized through the difference.

3.3 Hyperparameters �

In this paper, we define two normal distributions η1 �
N (m1, c1) and η2 � N (m2, c2), with the means m1,m2 ∈
Rp, and the covariances c1, c2 ∈ Rp×p. According to
the Wasserstein formula, the squared Wasserstein distance
between the two normal distributions is defined as:

W (η1, η2)
2 � ||m1−m2||22 +trace(c1 +c2−2(c1/22 c1c

1/2
2 )1/2)

(4)

In Eq. (4), trace(•) indicates the trace. In the case of p�1,
Eq. (4) can be simplified to:

W (η1, η2)
2 � ||m1 − m2||22+c1 + c2 − 2(c1c2)

1/2 (5)

Wasserstein distance of the discriminator reconstruction
loss distribution is optimized in order to optimize the model.
Therefore, as long as Eq. (5) satisfies the monotonicity, that

is, c1+c2−2(c1c2)1/2

||m1−m2||22
is constant or monotonically increasing,

the squared Wasserstein distance between two distributions
can be optimized. This can simplify the problem to:

W (η1, η2)
2 ∝ ||m1 − m2||22 (6)

The loss distribution of the generated sample data through
the discriminator is Γ (G(z)). The loss distribution of the real
sample data through the discriminator is Γ (x). And when
the two distributions satisfy m1 � m2 during the training,
the generator and the discriminator are considered to be in
the balanced and stable training status, which is shown in
Eq. (7).

E[Γ (x)] � E[Γ (G(z))] (7)

However, considering the optimization ofWasserstein dis-
tance between the real sample data and the generated sample

data, when m1 � m2,
c1+c2−2(c1c2)

1/2

||m1−m2||22
is close to infinity, and

the model cannot be optimized and even collapses. There-
fore, this paper introduces a hyperparameter γ ∈ [0, 1] to
balance the generator and the discriminator so that one will
not win against the other, making the training process of the
model more stable.

γ E[Γ (x)] � E[Γ (G(z))] (8)

Equation (8) shows how parameter γ balances the gen-
erator and the discriminator during training. In our model,
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Fig. 3 Discriminator model framework of SC-GAN

the discriminator has two functions: It can encode the real
image automatically and distinguish the real image from the
generated sample image. The parameter γ can guarantee the
stability of the training process of the discriminator and the
generator. When the value of γ is low, the discriminator
focuses on the auto-encoding of the real image, and therefore,
diversity of the generated images will be reduced. Since the
model focuses more on the quality of the generated image,
within a certain range, the higher the value of γ is, the better
the generated model is.

3.4 Spatial continuity

The dataset in this paper consists of every frame of video,
which can be considered spatially contiguous. We use the
Adam tofindanoptimal value zr between the twoconsecutive
images to minimize the er value.

er � ||x1r − G(zr )|−|x2r − G(zr )|| (9)

In Eq. (9), x1r and x2r correspond to the previous frame
image and the next frame image, respectively, and zr is
mapped to the image space toobtain the interpolation result of
two consecutive frames. This method realizes the image gen-
eration between the video frames. At the same time, it proves
that the trained generation model does not simply memorize
the image, but actually learns the characteristics and content
of the image during the training process. Image generation
between real images provides a novel way to increase the
frame rate of the video.

In this model, instead of matching the data distribution
of the samples directly in the typical GAN, an auto-encoder
is used as a discriminator, and the samples input is recon-
structed by encoder and decoder to obtain a reconstructed
loss distribution Γ (x). Using the Wasserstein distance to
measure the difference between the two distributions Γ (x)
and Γ (G(z)), the convergence speed is faster and the quality
of the generated image is better than that of the traditional

Upsamp-
ing(s,s),

Conv:
w(k,k)

Upsamp-
ing(s,s),

Conv:
w(k,k)

Upsamp-
ing(s,s),

Conv:
w(k,k)

Upsamp-
ing(s,s),

Conv:
w(k,k)

Output 
Image
w*h*d

Noise z
Dim n

Fully Connected && Reshape

Fig. 4 Generator model framework of SC-GAN

GAN which directly matches the sample data distribution.
The introduction of the hyperparameter γ is to balance the
generator and the discriminator, which effectively solves the
problem that the model in the typical GAN is too free and
uncontrollable, making the training model more stable and
greatly avoiding the model collapse. The features of con-
secutive video frame images are spatially continuous. Adam
is used to find an optimal value between two consecutive
frames, and this value is mapped to the image space to get
the inter-frame images.

3.5 Networkmodel

The frame of discriminator and generator in SC-GANmodel
is shown in Figs. 3 and 4. The process of encoding and decod-
ing in the discriminator is shown in Fig. 3. The input of
encoder is the d-dimensional image of w ∗ h. The size of the
convolution core used in this paper is k ∗ k. Full connection
layer is used in both the output layer of encoder and the input
layer of decoder, where w is the width of the input image,
h is the height of the input images, and s is the number of
sampling steps. In this model, w � 64, h � 64, s � 2,
k � 3. In Fig. 4, the input z of the generator is n-dimensional
uniformly distributed noise, where z ∈ [−1, 1].
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Fig. 5 Comparison of generated results from CelebA

Fig. 6 Comparison of generated results from CartoonFaces

4 Inter-frame image generation

4.1 Model assessment

In this paper, to illustrate the ability of the SC-GAN model,
the quality of the generated model is tested by using the
200k celebrity faces images dataset of CelebA and the 50k
CartoonFaces dataset. These two datasets are images with
different angles, expressions and brightness.

In order to objectively evaluate the generated image, this
paper evaluates the generated model by using the commonly
used evaluation index peak signal-to-noise ratio (PSNR) [20]
and structural similarity index (SSIM) [21]. PSNR is an
objective criterion for evaluating image quality. The PSNR
value of the two images reaches 30 or even 31, which shows
that they are very close and have less distortion. SSIM mea-
sures similarity between two images. The range of SSIM
value is in [0, 1]. When the two images are exactly same, the
SSIM value is 1.

Adam with an initial learning rate in [5 × 10−5, 10−4]
is used in this paper. The resolution of the input images is
64 × 64, while batch_size � 16 and epoch � 300 are set in
the experiment. In these conditions, this paper compares the
quality of different generated models.

Figures 5 and 6 show the random samples generated by
both the CelebA and CartoonFaces datasets based on dif-
ferent generated models. In the same case, our model has
some advantages compared with DCGAN [22] and EBGAN
[18] in terms of image sharpness and diversity, and the visual
effect is smoother and more natural.

Table 1 shows the assessment of the quality of the models
by using PSNR and SSIM. The evaluation results show that
the images generated by our model using different datasets

Table 1 PSNR and SSIM assessment results

Dataset Method PSNR SSIM

CelebA DCGAN [22] 30.01 0.89

EBGAN [18] 31.11 0.90

SC-GAN 32.51 0.92

CartoonFaces DCGAN [22] 31.08 0.91

EBGAN [18] 30.00 0.88

SC-GAN 33.02 0.94
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Fig. 7 Assessment results of different γ values

are better than those byDCGANandEBGAN, and the quality
of our model is also proved to be superior to other models.

4.2 Inter-frame image generation

In this paper, the optimizers of both generator and discrimina-
tor adopt gradient-based optimization algorithm Adam and
the learning rate lr is set in [5 × 10−5, 10−4] to make the
gradient descent method perform better. In order to illustrate
the influence of the hyperparameters on the training process
of the model, and make the selection of parameters more
convincing, using Taiji dataset based on Taiji instructional
video, 11 groups of experiments under the same conditions
were carried out with 0.1 as the step size. The evaluation
results according to PSNR and SSIM were used to get the
broken line diagrams of different γ values, as shown in
Fig. 7.

To display the trend of evaluation resultsmore directly, the
graph uses value of 10 times SSIM to compare. According
to the results of PSNR and SSIM, the γ value of 0.7 is set in
this paper.

In the inter-frame image generation experiment, Taiji
dataset based on Taiji instructional video and Ball dataset
based onAmerican animated video elastic ball are used. Each
dataset contains 50K images with resolutions of 64 × 64.

To illustrate the generative ability of the model, in the
inter-frame image generation experiment, six sets of images
with two consecutive frames of different scenes are selected
arbitrarily from the datasets of Ball and Taiji, and then, these
images are input into the model to get six sets of different
inter-frame images which are numbered InFNo. 1 to InFNo.
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Fig. 8 Inter-frame image generation results of Taiji dataset

Fig. 9 Inter-frame image generation results of Ball dataset

Table 2 Comparison of inter-frame image evaluation results

Frame no. Taiji Ball

PSNR SSIM PSNR SSIM

InFNo. 1 31.64 0.96 29.74 0.88

InFNo. 2 32.04 0.96 30.00 0.88

InFNo. 3 40.72 0.97 30.23 0.88

InFNo. 4 41.38 0.98 30.10 0.90

InFNo. 5 28.83 0.97 31.55 0.88

InFNo. 6 41.04 0.98 29.66 0.85

6. The experimental results of the Taiji dataset and the Ball
dataset experiment are shown in Figs. 8 and 9. The first
row shows the first-frame image; the second row shows the
second-frame image; the third row shows the generated inter-
frame image. To show the quality of the generated image,
PSNR and SSIM are used to evaluate the generated inter-
frame. The evaluation results are shown in Table 2.

In order to illustrate the similarity between the generated
inter-frame image and the real image, the quality verification
experiment of inter-frame generation is carried out. Firstly,
six sets of images with three consecutive frames of differ-
ent angles, scenes and hues are selected arbitrarily from the
dataset. Then, the first frame and the third frame are input
into the model, and the corresponding six sets of inter-frame
images are obtained, which are numbered from InCNo. 1 to

Fig. 10 Input image of Taiji dataset model

Fig. 11 Input image of Ball dataset model

InCNo. 6. This experiment includes a comparison with real
video frames, that is, the generated inter-frame images are
compared with the real second-frame images in six groups,
and evaluated by PSNR and SSIM.

Experimental results of inter-frame image generation on
Taiji and Ball are shown in Figs. 10 and 11. The first and sec-
ond rows are the first-frame image and the third-frame image;
the third and fourth rows are the real second-frame image and
the generated inter-frame image, respectively. The evaluation
results of the inter-frame images generated by Taiji and Ball
datasets are shown in Table 3. In the process of experiment,
the convergence of the model is shown in Fig. 12. (a) is the
convergent trend of the discriminator, and (b) is the conver-
gent trend of the generator.

Compared with other models, the quality of images gener-
ated by GAN model is higher in the verification experiment.
Therefore, this paper uses the same input image for inter-
frame image generation based on GANmodel in the contrast
experiment, and the contrast experiment results are shown in
Figs. 13 and 14.
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Table 3 Comparison of inter-frame image evaluation results

Frame no. Taiji Ball

PSNR SSIM PSNR SSIM

InCNo. 1 33.05 0.97 29.81 0.88

InCNo. 2 33.40 0.96 30.54 0.92

InCNo. 3 34.53 0.96 30.24 0.91

InCNo. 4 36.81 0.97 29.87 0.86

InCNo. 5 31.40 0.97 27.22 0.67

InCNo. 6 35.36 0.97 29.94 0.89

Fig. 12 Convergence trend in training process

Fig. 13 Taiji dataset based on GAN generation results

In Figs. 13 and 14, the first row shows the first-frame
image; the second row shows the second-frame image; the
third row shows the generated inter-frame image; the fourth
row shows the third-frame image. In GAN model, the evalu-
ation results of the inter-frame images generated by Taiji and
Ball datasets are shown in Table 4.

From the results of model quality evaluation experiment,
inter-frame image generation experiment, and the contrast
experiment of GAN model, we can see that the SC-GAN
model can produce higher quality images than the traditional
methods in video-based inter-frame image generation, with-
out the problems of edge blurring caused by the traditional

Fig. 14 Ball dataset based on GAN generation results

Table 4 Comparison of GAN model evaluation results

Frame no. Taiji Ball

PSNR SSIM PSNR SSIM

InCNo. 1 24.44 0.70 22.77 0.63

InCNo. 2 26.64 0.79 24.74 0.68

InCNo. 3 25.84 0.83 25.29 0.74

InCNo. 4 25.46 0.73 24.75 0.65

InCNo. 5 23.75 0.58 23.85 0.63

InCNo. 6 26.37 0.75 25.97 0.77

methods. And the convergence speed is fast, and the image
generation is more efficient. Compared with GAN model,
SC-GAN model proves its good ability of generating inter-
frame images in terms of visual effects and evaluation results.

In each stage of the experiment, several groups of non-
repeated sampling experiments were carried out, and the
quality of the generated results was evaluated by PSNR and
SSIM.Visually, theSC-GANmodel canproducehigher qual-
ity images than othermodels. In the videowith simple scenes,
it is impossible to distinguish the generated image from the
real image, and it will not produce image contour distortion
and image blurring. The quantization results show that the
inter-frame images generated by SC-GAN model have high
authenticity and high structural similarity with real video
frames.

5 Conclusion

In order to solve the problem of low-frame rate video play-
back and edge blurring caused by using traditional methods
when improving the video frame rate, this paper proposes a
video inter-frame image generation method based on space
continuous generation antagonistic network. This method
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trains SC-GANmodel by video-based image dataset and uses
the spatial continuity of the image features to complete the
generation of inter-frame images for low-frame rate video,
and inserts these generated images into two corresponding
frames as a new video frame, so as to improve the frame
rate. This way of improving the frame rate is effective in
both static and dynamic video sources. Under the premise
of guaranteeing the sharpness of the generated image, the
problem of blurring image edges caused by traditional meth-
ods is avoided, and a new method is provided for improving
the video frame rate. Experiments show that, in the selec-
tion of hyperparameter, when the hyperparameter is low, the
generated samples are single and the diversity is obviously
insufficient; as the hyperparameter is gradually increasing,
the generated images are more diverse and clearer. When
the hyperparameter is close to the critical value, the qual-
ity of the generated samples becomes worse and the model
becomes unstable. In terms of results of image generation,
PSNR and SSIM evaluation prove that the inter-frame image
generated by the model has high authenticity, and also verify
the feasibility and validity of the proposed method for video
inter-frame image generation based on SC-GAN.

The model can generate good quality inter-frame images
in relatively simple video and has good applicability in ani-
mation and simple comic video. But for complex scene
datasets, the training needsmore time, and the network struc-
ture is more complex. This is where the method needs to be
improved. It is also the content of our next research.
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