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Abstract

Most of the computer vision applications for human activity recognition exploit the fact that body features calculated from
a 3D skeleton increase robustness across persons and can lead to higher performance. However, their success in activity
recognition, including falls, depends on the correspondence between the human activities and the used joint/part features. To
provide for this correspondence, we experimentally evaluate in this paper skeleton features-based fall detection by comparing
fall detection performance for different combinations of skeleton features used in previous related works. We determine
the skeleton features that best distinguish fall from non-fall frames, and the best performing classifier. In this endeavor, we
followed the classical five steps of supervised machine learning: (1) we collected a learning data composed of 42 fall and 37
non-fall videos from FallFree; (2) we extracted and (3) preprocessed the skeleton data of the training set; (4) we extracted
each possible skeleton feature; finally (5) we evaluated all extracted and selected features using two main experiments; one
of them based on neighborhood component analysis (NCA). In this evaluation, we show that fall detection based on skeleton
features has very encouraging accuracy that varies depending on the used features. More specifically, we recommend the
following features: 12 features that resulted from NCA experiment, original and normalized distance from Kinect, and the
seven features of the upper body part. These features ranked 1st, 2nd, 4th, and 8th on 22 feature sets, with accuracies 99.5%,
99.4%, 97.8%, and 94.5%, respectively. In addition, random forest is the best performing classifier.

Keywords Fall detection - Skeleton features - Feature selection - Kinect v2 - Neighborhood component feature selection

1 Introduction

Falls represent a major cause of morbidity and mortality
among the elderly. In fact, statistics show that falls are the
primary reason for injury-related death for seniors aged 79
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or more, and the second leading cause of injury-related,
unintentional deaths for all ages. These facts prompted the
development of effective fall detection (FD) systems as a crit-
ical support means that would significantly reduce medical
care costs associated with falls [1]. A FD system is an assis-
tive device whose primary objective is to alert when a fall
event has occurred. It is included in the core building blocks
of systems under the umbrella of automatic human activity
recognition (HAR), an important area in computer vision and
pattern recognition research and applications.

Most of the computer vision applications for HAR rec-
ognize human activities through skeleton tracking by repre-
senting body parts as joints. They exploit the fact that body
features calculated from a 3D skeleton increase robustness
across persons and can lead to higher performance [2]. How-
ever, their success in human activity recognition, including
falls, depends on the correspondence between the human
activities and the used joint/part features. To provide for
this correspondence, in this paper, we focus on skeleton
features-based methods to detect the fall. We experimentally
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investigate which skeleton features best distinguish fall from
non-fall frames, and which classifier produces the best per-
formance.

More specifically, we investigate in this work the 25 skele-
ton joints among those offered by the recent version of
Kinect v2 (SDK 2.0) [3]. In addition, we preprocess the
body joints by two methods (original and normalization) to
overcome the skeleton position, shape, and size. From the
preprocessed skeletons, we gather all possible skeleton fea-
tures (22 feature sets calculated and selected from 11 basic
feature sets) that can be obtained from the Kinect v2 [4—
8] and selected using the neighborhood component analysis
(NCA). In addition, to assess experimentally the performance
of the gathered features, we used the FallFree fall detection
dataset [9] to conduct two main experiments where we used
79 scenarios/videos covering 42 fall scenarios/videos and 37
non-fall scenarios/videos. Furthermore, to identify the best
performing classifier, we applied four supervised learning
techniques: C4.5, random forest (RF), artificial neural net-
works (ANNs), and support vector machine (SVM).

Based on our herein presented experiments, we show fall
detection based on the skeleton features has very encour-
aging accuracy that varies depending on the used features.
In particular, we suggested the following features: 12 fea-
tures that resulted from NCA experiment which ranked 1st
features with 99.5% accuracy, original distance from Kinect
which ranked 2nd features with 99.4% accuracy, normalized
distance from Kinect which ranked 4th features with 97.8%
accuracy, and the seven features of the upper body part pro-
posed by Alzahrani et al. [8] which ranked 8th features with
94.5% accuracy. In addition, random forest is the best per-
forming classifier.

The remainder of this paper is organized as follows: In
Sect. 2, we overview works on Kinect-based fall detec-
tion using skeleton streams. In Sect. 3, we present the five
stages of the evaluation framework, covering dataset collec-
tion, skeleton data extraction, skeleton preprocessing, feature
extraction, and performance analysis (experiments evalua-
tion). Finally, Sect. 4 summarizes the presented work and
highlights its extensions.

2 Related works

Many vision-based approaches adopted in recent studies [4—
7] use skeleton joints from Kinect to detect different fall
scenarios. Kawatsu et al. [4] used the positions of all the
20 joints offered by Kinect v1 to calculate the floor plane
equation and average velocity to detect falls. Using all joints,
they can distinguish between falls and slowly laying down on
the floor. Unlike [4], Lee and Lee [5] use only the hip center
joint in their system to distinguish between fall and non-fall
scenarios. If falls are detected, their system will notify health
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care services or the victim’s caregivers to provide help. They
track the hip center joint whose position and velocity are
used to detect three fall scenarios: fall in open space from
walking, standing, or lying in bed. Their system achieved
a 90% accuracy rate. Also focusing on a subset of joints
produced by Kinect v1, Le and Morel [6] use the distance
and velocity features of both the head and spine to detect the
following four fall scenarios (fall back, front, right, and left)
and three non-fall scenarios (walk, pick an object, sit down
the bed). First, they compute the room floor plane using the
Kinect’s floor plane equation. Second, they extract the joints
coordinates and convert them to floor coordinates. Then, they
calculate the distance from the floor and velocity features.
After that, they classify the frames using the SVM. In this
work, they detect a fall in a duration of time, and they get a
98.4% accuracy rate.

In the meantime, Kwolek and Kepski [7] added other sen-
sors to Kinect which is a wearable smart device containing
accelerometer and gyroscope sensors and was worn near the
pelvis region. They use Kinect v1 to reduce the number of
false alarms and employ it whenever it is only possible. A
triaxial accelerometer is used to indicate the potential fall
and motion of the monitored person. If the measured accel-
eration is higher than an assumed threshold value, the system
extracts the person, calculates the features, and then executes
the SVM-based classifier to authenticate the fall alarm. The
system acquires depth images using the OpenNI library. It
achieved a 98.33% accuracy rate when using both accelerom-
eter and depth data, and 90% accuracy and 80% specificity
when using depth only, which is the worst result compared
to other techniques.

Overall, the above works used either a fixed set or all
of the skeleton joints produced by Kinect. None of them
tried to determine the subset of joints that is most effec-
tive in detecting various types of fall scenarios. In addition,
only Maldonado et al. [10] tested some features that can be
extracted from depth data (not skeleton data). In this paper,
we will investigate the 25 skeleton joints among those offered
by Kinect v2 (SDK 2.0) [3] as well as their features to identify
those that most efficiently can detect various fall scenarios.
Toward this end, we elaborated the evaluation framework
shown in Fig. 1.

3 Evaluation framework

To identify the subset of Kinect v2 produced joints and
their features that can be used efficiently in a FD method
for various fall types, we built our evaluation framework in
five stages following a typical machine learning process:
(1) Find a suitable dataset that contains skeleton streams
recorded using Kinect. For this purpose, we choose to use
the FallFree fall detection dataset [9] because it covers all
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Fig.1 Evaluation framework for elaborating a skeleton-based fall detection method

fall scenarios along with various non-fall scenarios; (2) For
the dataset fixed in stage 1, extract the skeleton informa-
tion that contains the 3D coordinates of the 25 joints of the
human skeleton, the floor plane equation of the room, and
the frames’ timestamp; (3) Make two copies of the skeleton
joints coordinates computed in stage 2; one copy is used as
it is (original) and the second is preprocessed by normal-
ization; (4) From each skeleton in the stage 3, compute all
feature used in previous works [4-8] to distinguish fall from
non-fall; (5) Experimentally evaluate the skeleton features
using four supervised learning techniques: C4.5, random for-
est (RF) decision trees, artificial neural networks (ANNSs),
and support vector machine (SVM) [11].

3.1 Fall dataset collection

From the FallFree dataset [9], we used 42 true/positive fall
videos and 37 non-fall videos. The true/positive fall videos
contain: 25 forward falls, 5 backward falls, and 12 side-
ways falls. The sideways falls cover 6 lateral falls to the
right and 6 lateral falls to the left. The non-fall videos con-
tain 23 pseudo/negative falls videos (syncope or the previous
falls with recovery) and 14 activities of daily living (ADL)
such as sitting down, standing up, lying down, walking a few
meters, catching something on the floor, and wearing shoes.
Only the skeleton streams from these videos are used in our
evaluation process. Figure 2 illustrates samples from Fall-
Free dataset: (a) four postures of person before any action,
(b) the postures after falling occurs, and (c) postures of the
person when performing a non-fall action.

3.2 Skeleton data extraction
From the dataset fixed in the previous stage, we first develop

an extraction software that extract the skeleton data, prepro-
cess it, and then extract the skeleton features. The extracted

(@) postures Before Action (€) Postures After Non-fall Action

Neutral
To lie down on the bed
then to rise | ol

Hk

Walk a few meters

If standing 4 If Sitting &
Fall with recovery

Syncope

* Tosit down or to stand up

Standing

Standing to sitting

Sitting.

il il e

(b) Postures After Fall

Backward fall
Ending
sitting.

Ending
lying

+ Tobend down, catch
something on the floor

Fig.2 Samples from FallFree dataset: a four postures of person before
any action, b the postures after falling occurs, and ¢ postures of the
person when performing a non-fall action

Forward fall
With Ending  Endingin
On the forwardarm Lying the lateral  the lateral
prmgmqn flat  right position left position

Ending in

skeleton data/properties from the skeleton steams are as fol-
lows:

— Body (joints) 3D coordinates

Each skeleton frame contains 3D position data for human
skeletons that are visible in the depth sensor. The posi-
tion of each of the skeleton joints is stored as (x, y, z)
coordinates [12]. The (0, 0, 0) point is the center position
of the IR sensor on Kinect. Every other point is calcu-
lated in terms of the position of the sensor [13]. Three
axes thus define the coordinate system, with one unit of
these axes equals to one meter. That is, each point in the
space (including the skeleton joints) has three values (X,
Y, and Z) [13]. X being the position in the horizontal axis,
it grows to the sensor’s left; Y being the position in the
vertical axis, it grows up (note that this direction is based
on the sensor’s tilt); and Z being the position in the depth
axis, it grows out in the direction the sensor is facing.
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— Floor clip plane equation
Each skeleton frame also contains a floor-clipping-
plane vector, which contains the coefficients of an esti-
mated floor-plane equation. The skeleton tracking system
updates this estimate for each frame and uses it as a clip-
ping plane for removing the background and segmenting
players. In addition to joint information, the equation of
the floor plane (in the same coordinate system as the
joints) is acquired from the Kinect SDK. This provides
the plane information in the form of the A, B, C, and D
parameters defined in [12]. This equation is normalized
so that the explanation of D is the height of the camera
from the floor, in meters (the distance from the plane to
the origin). Note that the floor may not always be visible
or detectable. In this case, the floor clipping plane is a
zero vector [12].
— The frame’s relative time (timestamp)

Kinect provides approximately 30 frames per second of
data. From each frame, we use the timestamp (in mil-
liseconds) which gets the timestamp of the body frame.

3.3 Skeleton preprocessing and feature extraction

Different users have different shapes and sizes that may not
be relevant to the action performed. In addition, users may
stand at any distance from the Kinect, which effects the cap-
tured skeleton size: If they are close to Kinect, their skeletons
appear bigger, whereas if they are far from it, their skeletons
appear small. Therefore, besides the original skeleton data,
we need a normalized version of it.

Normalization compensates for anthropometric differ-
ences, by imposing the same limbs (skeleton segments)
lengths for poses obtained from all users. Thus, a normal-
ized skeleton is a skeleton of a fixed size and it has fixed
distances between joints [ 14]. To normalize the skeleton, the
torso-centered method used by Rhemyst and Rymix in their
project [15] is used in this study. This method uses the refer-
ence of the left shoulder and right shoulder joints to normalize
all the joints coordinates of the skeleton (cf. Fig. 3a, the skele-
tons before normalization are drawn in blue and gray colors
and the normalized skeleton in red).

We performed normalization on the (X, Y) of each joint
while fixing the Z value of each joint of the skeleton as 1m.
The skeleton normalization bypasses two main problems that
affect the FD performance: the size dependence on the user’s
distance from Kinect (the skeleton will have a fixed size inde-
pendently of this distance); and the differences in sizes of the
users (their skeleton will have the same size).

In this study, we investigate the 11 basic sets of features
which were used in previous works and are shown in Table 1.
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features (7F) in [8]

3.4 Experimental evaluation

The last stage in our evaluation framework provides answers
to our main research question:

— Whatare the best performing feature sets for the detection
of various types of fall?

— What is the most appropriate classifier for these feature
sets?

In this section, all the feature sets from Table 1 were inves-
tigated in two experiments as follows:

In Experiment 1: All the feature sets from 1 to 10 were
calculated twice from the original and normalized skeletons
which results in 20 feature sets in addition to the 11th feature
set. And this makes us end with 21 feature sets to experiment.
Each feature set of them was separately investigated in sepa-
rated experiment until we obtain the most effective features
by comparing their classification results.

In Experiment 2: All the 80 unique skeleton features from
Table 1 were calculated as one original feature set contain: 25
velocities, 25 distances from the floor, 25 distances from the
Kinect, joints average velocity, the three coordinates of the
spine-base position (x, y, z), and the distance of the person’s
center from the floor. After that, we obtain the most effective
features using NCA Feature Selection for Classification.

Finally, we discuss the results of our experiments to
answer the previous questions.

3.4.1 Experiments settings

In this experiment, the following steps are implemented:

In Step 1, from the 79 videos that we took from the FallFree
dataset, we take 4960 frames containing 2480 fall frames and
2480 non-fall frames. These frames cover all the scenarios
of fall and non-fall in dataset.
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Table 1 The 11 basic sets of

Features ref.
skeleton features

Feature set

Skeleton

Kawatsu et al. [4] 1
2
3
Lee and Lee [5] 4
5
6
Le and Morel [6] 7
Kwolek and Kepski [7] 8
9
Alzahrani et al. [8] 10
11

The 25 joint velocities in the direction normal to the floor plane
The joints average velocity over all joints and many frames

The 25 joint distances from the floor

The hip (spine-base) distance from the floor

The hip (spine-base) position (x, y, z)

The hip (spine-base) velocity

The head and spine-mid velocities and distances from the floor

The distance of the person’s center from the floor

The distance of the spine-mid (as the person’s center) from the floor
The 25 joints distances from the Kinect

The seven relevant features (7F)

In Step 2, each frame was classified into two classes: 1 for
fall and O for non-fall. The first class (1 = fall) labeled the
frames that belongs to fall videos from the start of fall, while
the second class (0 = non-fall) labeled the frames that belong
to the non-fall videos.

In Step 3, from each frame, we extract the skeleton data
of the users and take a copy of the original (O) joints posi-
tions as it is and construct a second normalized (N) copy, as
explained in Sect. 3.3.

In Step 4, we extract the skeleton features for the
two experiments 1 and 2 presented in Sect. 3.3, includ-
ing the 11th feature set from every two copies of data
(O and N) for Experiment 1, and the 80 unique skele-
ton features as one original feature set for Experiment
2.

In Step 5, we prepare the learning set by splitting
the frames into 70% for training (3472 training frames,
divided into 1763 frames in each class) and 30% for test-
ing (1488 testing frames, divided into 744 frames in each
class). We insure to make a balance between the number of
frames in the two classes to prevent the effect of accuracy
results.

In Step 6, for Experiment 1, we use four of the most com-
mon and classical supervised learning techniques to build
prediction models. These algorithms are C4.5, RF, ANNs,
and SVM. Both training data and learning techniques are
used to train and generate the classifiers (prediction mod-
els). And based on the classification results, we choose
the most effective features from the first experiment. For
Experiment 2, we use the NCA feature selection for clas-
sification to select the most effective features. After that,
we test them using the previous supervised learning tech-
niques.

In Step 7, we assess the performance of the gener-
ated detection models on the testing data through the
sensitivity (SE), specificity (SP), and accuracy (ACC) [7]
rates.

3.4.2 Experiment results

In this section, we present the results of the two Experiments
1 and 2 in detail.

Experiment 1 Results. Experiment 1 includes 21 sub-
experiments testing the 11 feature sets. The detail of the
obtained results is presented in Table 2 (the best accuracy
resulted of each feature set is shown in bold font). In Exper-
iment 1.1 (Ex 1.1) using the original 25 joint velocities, we
calculate the velocity of each 25 joints in the direction nor-
mal to the floor plane as in [4]. The best accuracy of this
experiment is 78.8% using RF classifier. In Experiment 1.2
(Ex 1.2) using the 25 joint velocities with normalization, by
applying skeleton normalization and then extracting features
from Ex 1.1, we obtain 78.8% as the highest accuracy using
RF classifier. In Experiment 1.3 (Ex 1.3) using the original
joints average velocity, the velocities from Ex 1.1 are aver-
aged over all joints and many frames to calculate the average
velocity as in work [4]. The obtained accuracy is 91.3% using
C4.5 classifier. In Experiment 1.4 (Ex 1.4) using the joints
average velocity with normalization, we first normalized the
skeleton and then extract the average velocity from Ex 1.3.
These features produced the highest accuracy of 71.8% with
the C4.5 classifier. In Experiment 1.5 (Ex 1.5) using the orig-
inal 25 joint distances from the floor, these features were used
by work [4]. They use only a single frame to take the joints
positions, so they can calculate the distance from the floor
for each joint. These features produced the highest accuracy
of 98.1% with the RF classifier. In Experiment 1.6 (Ex 1.6)
using the 25 joint distances from the floor with normalization,
the features from the previous Ex 1.5 were used, but after we
normalized the skeleton. These normalized features give the
same accuracy of the original features with 98.1% accuracy
by RF classifier. In Experiment 1.7 (Ex 1.7) using the original
hip (spine-base) distance from the floor, the hip center joint
was used by [5] to calculate different features. The hip center
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Table 2 Experimental results of the 21 skeleton feature sets

Ref. Ex# Sk #F C45 RF ANNSs SVM
SE Sp ACC SE SP ACC SE Sp ACC SE Sp ACC
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
[4] 1.1 0} 25 73 713 722 75 82.8 78.8 58.1 81.1 69.2 53.8 86.5 70.2
12 N 25  68.6 794 739 78.9 76.7 788 49 80.3  64.1 70.8 70.1  70.5
1.3 0} 1 88.5 943 913 86.7 88.8  87.7 85.7 96 90.7 86.2 96 90.9
14 N 1 68 75.8 718 63.9 639 639 0 100 50 44.3 919 673
1.5 0} 25 949 96.8 95.8 96.6 99.6  98.1 92.8 96.7  94.7 80.5 97.5 80.5
1.6 N 25 96 935 948 98.3 979 98.1 97.1 95.1 96.2 87.8 932 904
[5] 1.7 O 1 73.3 99.9  86.2 79.6 839 81.7 74.7 96 85 74.7 96.5 853
1.8 N 1 46.2 847 649 62.5 622 624 342 949 63.6 339 95.6  63.7
19 O 3 95.1 96.5 958 96.2 99.2  97.6 84.9 83.1 84 74.6 91.7 829
1.10 N 3 90.2 81.3 859 91.4 935 924 68.5 925 80.1 71 922 813
.11 O 1 32.7 942 624 54.9 589 569 31.8 89.6 59.7 379 90.8  63.5
1.12 N 1 63.8 572 60.6 55.5 53.8 54.6 0 100 50 54.9 70.8  62.6
[6] 13 O 2 93.1 947 939 93.2 96.5 94.8 91.7 943 929 88.9 954 921
1.14 N 2 84.1 88.8 86.4 87.1 91.8 894 55.7 97.1 757 65.5 858 753
[7] .15 O 1 81.6 96.1 88.6 84.4 80.7  82.6 78.1 97.1 873 78.6 969 875
1.16 N 1 59.8 94 76.3 71.6 69.3  70.5 62.5 91.5 176.5 61.3 922 763
1.17 O 1 80.6 949 875 81.6 814 815 75 99 86.6 75.3 98.1 86.3
1.18 N 1 70.8 85 71.7 69.5 67.8 68.7 51.6 946 724 539 943 735
[8] 1.19 O 25 953 96.1 95.7 99.3 994 994 94.8 964  95.6 74.2 90.6  82.1
120 N 25 943 95.1 947 97.4 982 978 80.5 96.5 88.2 84.5 94 89.1
121 O&N 7 91.8 91.3 915 93.1 96 94.5 72.3 957 83.6 48.3 985 726
This paper 2 0} 12 99.6 99.2 994 99.3 99.7  99.5 99.1 100 99.5 95.7 99.9 977

Bold font represent the best accuracy resulted of each experiment (feature set). e.g: EX 1.1 has 78.7 as the best accuracy

jointin Kinect vl matches the spine-base in Kinect v2. So, we
instead used spine-base distance from the floor. This feature
gives 86.2% accuracy by the C4.5 classifier. In Experiment
1.8 (Ex 1.8) using the hip (spine-base) distance from the
floor with normalization, the same spine-base distance from
the floor was used in this experiment but after we normalized
its coordinates. This feature obtained 64.9% accuracy by the
C4.5 classifier. In Experiment 1.9 (Ex 1.9) using the origi-
nal hip (spine-base) position, this feature was used by work
[5]. Since the position of each joint is represented by three
coordinates values (X, Y, Z), we have three features. These
original coordinates have 97.6% accuracy using RF classifier.
In Experiment 1.10 (Ex 1.10) using the hip (spine-base) posi-
tion with normalization, we normalized the positions of the
hip (spine-base) coordinates from Ex 1.9. It gives us 92.4%
accuracy using RF classifier. In Experiment 1.11 (Ex 1.11)
using the original hip (spine-base) velocity, this feature was
used as a vertical velocity of the hip by the work [5]. Using
the hip (spine-base) velocity only gives us 63.5% accuracy by
SVM classifier. In Experiment 1.12 (Ex 1.12) using the hip
(spine-base) velocity with normalization, we normalized the
hip (spine-base) before calculating the velocity. We obtained

@ Springer

62.6% accuracy using SVM classifier. In Experiment 1.13
(Ex 1.13) using the original head and spine-mid velocities
and distances from the floor, these features were used by Le
and Morel [6]. This combination of features gives us 94.8%
accuracy by RF classifier. In Experiment 1.14 (Ex 1.14) using
the head and spine-mid velocities and distances from the
floor with normalization, using the normalized combination
of features in Ex 1.13, we obtain 89.4% accuracy using RF
classifier. In Experiment 1.15 (Ex 1.15) using the original
distance of the person’s center to the floor, this feature was
extracted in work [7]. We calculate the center point between
spine-mid and spine-base joints, and then calculate the dis-
tance of this center point to the floor. The highest accuracy
is 88.6% using C4.5 classifier. In Experiment 1.16 (Ex 1.16)
using the distance of the person’s center to the floor with
normalization, the center point used in Ex 1.15 was normal-
ized first and then its distance to the floor is calculated. This
experiment gives 76.5% as the highest accuracy using ANNs
classifier. In Experiment 1.17 (Ex 1.17) using the original dis-
tance of the spine-mid (as the person’s center) to the floor,
the person’s center in work [7] was considered as spine-mid
and spine-base in Experiments 1.17 and 1.11, respectively.
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Table 3 Common 12 features resulting from five runs of NCA feature selection
Feature index Feature name Feature weight

I'st run 2nd run 3rd run 4th run Sth run
1 HeadDistanceFromKinect 0.7605 0.6075 0.1248 0.3022 0.0423
2 AnkleLeftDistanceFromKinect 1.0878 0.5108 1.1278 0.7655 0.8224
7 FootRightDistanceFromKinect 1.0369 1.5346 1.3562 1.487 1.2052
12 HipLeftDistanceFromKinect 0.3623 0.1041 0.0786 0.6193 0.326
19 SpineBaseDistanceFromKinect 0.3292 0.1813 0.1282 0.5817 0.4741
26 HeadDistanceFromTheFloor 0.8923 0.8126 0.6968 0.2363 0.746
38 HipRightDistanceFromTheFloor 1.067 0.6141 1.0981 1.3342 0.7306
76 AverageVelocity 14214 1.7427 1.4074 2.0686 1.5814
77 DistanceOfPersonCenterToTheFloor 1.3805 1.4088 1.8253 1.8955 1.2107
78 SpineBase-X 1.6818 1.7792 1.6581 2.1562 1.6362
79 SpineBase-Y 1.2366 1.4914 1.231 1.4858 1.3296
80 SpineBase-Z 0.7142 1.5169 1.0297 0.8303 1.0048

The highest accuracy of the spine-mid when considered as
the center point is 87.5% with the C4.5 classifier. In Experi-
ment 1.18 (Ex 1.18) using the distance of the spine-mid (as
the person’s center) to the floor with normalization, here the
spine-mid will be normalized before calculating the distance
to the floor. This experiment gives 77.7% as the highest accu-
racy with the C4.5 classifier. In Experiment 1.19 (Ex 1.19)
using the original 25 joints distances from the Kinect (O-
DfK) proposed in [8], the liner distances from the joints to
the Kinect were calculated in this experiment. They produced
the highest accuracy of 99.4% using RF. This is in fact the best
result in all these sub-experiments. In Experiment 1.20 (Ex
1.20) using the 25 joints distances from the Kinect with nor-
malization (N-DfK) proposed in [8], Ex 1.19 features were
used but after we normalized the skeleton. These normalized
features give 97.8% as the highest accuracy rate with RF. In
Experiment 1.21 (Ex 1.21) using the seven relevant features
(7F) in [8], in this experiment, from the original data, the
extracted features are: right shoulder distance, right hand,
and right thumb velocities. From the normalized data, the
extracted features are left hand, left shoulder, left thumb, and
right thumb distances (cf. Fig. 3b). This experiment gives
94.5% as the highest accuracy rate with RF.

Experiment 2 Results. Experiment 2 determines the most
effective features by using nearest neighbor-based feature
weighting algorithm (NCA). It learns a feature weighting
vector by maximizing the expected leave-one-out classifica-
tion accuracy with a regularization term where Lambda (A)
is a regularization parameter which can be tuned via cross-
validation [16]. Tuning means finding the value that produces
the minimum classification loss.

In this experiment, the most effective features of the 80
unique skeleton features are selected based on their weights

where the feature’s weight represents how much each feature
influence in a classification problem. We run the algorithms
many time but we present the results of only five runs because
the NCA algorithm is based on the best A value computed
from five cross-validation and each run gives different five-
folds so different A values. So, based on the best A value,
we calculate the feature weights to select the most effective
features.

From the results of five runs of NCA feature selection, we
select the common 12 features as the most effective features
illustrated in Table 3. And then, we assess their performance
using the previously supervised learning techniques as shown
in Table 2. These 12 features have 99.5% accuracy using RF
or ANNS classifiers.

3.4.3 Experiment discussion

From these two experiments and as shown in Table 2, we
can conclude that: (1) the skeleton features-based FD gives
very encouraging results and (2) some features give better
FD performance/accuracy than others.

In Table 4, we rank the skeleton features sets based on
their FD performance (only the best 10 feature sets presented
because the lack of space). As shown, the proposed feature
sets in Alzahrani et al. work [8] are as follows: O-DfK, N-
DfK, and 7F, as 2, 4, and 8 from 22 ranks, with accuracies:
99.4%, 97.8%, and 94.5%, respectively, where the results of
NCA experiment ranked 1st with slightly increased accuracy
of 99.5%.

Furthermore, for each learning algorithm/classifier, we
calculate its gain and loss times. The gain represents how
many experiments the classifier wins better FD performance.
The loss represents how many experiments the classifier loses
for another classifier by not giving the best results. Based on
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Table 4 Ranking the best 10 skeleton feature sets based on their FD performance

Rank Ex # Features sets Performance (%)
1 2 Common 12 features from NCA 99.5
2 1.19 Original distances from Kinect 99.4
3 1.5 Original distances from floor 98.1
4 1.20 Normalized distances from Kinect 97.8
5 1.6 Normalized distances from floor 98.1
6 1.9 Original spine-base position 97.6
7 1.13 Original head and spine-mid distances from floor and velocity 94.8
8 1.21 Velocities and Distances from Kinect 94.5
9 1.10 Normalized spine-base position 924
10 1.3 Original average velocity 91.3

Bold font represent the feature sets from our previously published work [8] and this work and there best resulted accuracies

the obtained results: C4.5 (gain =7, loss = 15); RF (gain =12,
loss = 10); ANNSs (gain = 2, loss = 20); and SVM (gain =2,
loss = 20), it shows that the RF classifier is the best perform-
ing classifier because it gives the higher wins with 12 gains
and lower losses with 10 losses.

From these experiments, we conclude that adding some
of the original distances from Kinect features with some of
the features from previous works increases the classification
accuracy and best distinguish fall from non-fall frames, and
RF as the best performing classifier. In addition, using the
NCA for skeleton feature selection is an efficient way to
select the most effective features.

4 Conclusion

In this paper, we proposed an evaluation framework to answer
two research questions: Among the various skeleton-based
features, which subset best distinguishes various types of fall
from non-fall scenarios? and which classifier has the best
accuracy with this subset of features? We used the proposed
framework to assess 12 basic sets of skeleton features that
were used previously to detect the fall through two experi-
ments. In addition, we used scenarios from the challenging
FallFree dataset [9].

Our quantitative experimental results highlight that, in
general, using skeleton features for fall detection gives very
encouraging results. In addition, when comparing the pro-
posed skeleton features by Alzahrani et al. work [8] with
features from previous works [4,5,7], O-DfK, N-DfK, and
7F were ranked as 2nd, 4th, and 8th from 22 ranks, giving
accuracy rates of 99.4%, 97.8%, and 94.5%, respectively.
Furthermore, from the conducted experiments, we can con-
clude that adding some of the original distances from Kinect
features with some of the features from previous works
increases the classification accuracy, increases the rank to
1, and best distinguishes fall from non-fall frames, and RF
as the best performing classifier.

@ Springer

In addition, using the NCA for skeleton feature selection
is an efficient way to select the most effective features.

In our future works, we will focus on applying the pro-
posed features in a real-time FD experiments to detect falls
from frame sequences (not frame-by-frame) in order to
increase the experiments efficiency and accuracy. Also, this
work is extended for users that do not rely on a cane to study
the robustness of the proposed features and the RF classifier.
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