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Abstract
Automatic tracking of cells is a widely studied problem in various biomedical applications. Although there are numerous
approaches for the video object tracking task in different contexts, the performance of these methods depends on many factors
regarding the specific application they are used for. This paper presents a comparative study that specifically targets cell
tracking problem and compares performance behavior of the recent algorithms. We propose a framework for the performance
evaluation of the tracking algorithms and compare several state-of-the-art object tracking approaches on an extensive time-
lapse inverted microscopy dataset. We report the quantitative evaluations of the algorithms based on success rate and precision
performance metrics.

Keywords Visual object tracking · Cell motility · Tracking benchmark

1 Introduction

Visual object tracking task has been an important part of dif-
ferent application fields such as human–computer interaction
[1,2], autonomous driving [3,4], surveillance systems [5] and
computerized assistance systems in medical image process-
ing [6–9]. Although there are various approaches proposed
for the visual object tracking problem [10], they generally
focus on the applications inmore general contexts. Therefore,
datasets used for performance evaluation of the algorithms
usually contain various objects or environments that can
represent a wide range of scenarios. However, for the cell
tracking task, the problem lies on a more restricted domain.
Therefore, tracking algorithms should be analyzed and com-
pared under a framework that contains related datasets.

Visual object tracking task plays a key role in dynamic
cell behavior studies where the migration analysis of cell
populations has a significant place [11]. Cell migration is
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a fundamental process in regular tissue development and
recovery [12]. Speed, direction and morphological changes
of cells are closely related to the structure of the environment
[13]. In order tomove through extracellular spaces or over the
surfaces of other cells, special mechanisms are employed by
the individual cells [14]. These motility patterns are inves-
tigated using the microscopic image sequences in a wide
range of cell types with different morphological properties.
Some of the applications include red blood cell speed mea-
surement [15], cancer cell tracking [16], Bovine Pulmonary
Artery Endothelial (BPAE) cell motility tracking [17], leuko-
cytes tracking [18,19] and embryo cell tracking [17].

In recent years, different approaches have been pro-
posed for such analyses [20,21]. Benchmarks for comparing
various methods exist for fluorescent microscopy [9,22].
However, very few studies focus on analyzing images taken
by differential interference contrast (DIC), phase contrast
or other label-free microscopies, which are used commonly
for observing living cells [23]. In this study, we use DIC
microscopy images for comparing the cell tracking perfor-
mance of our algorithm with other state-of-the-art trackers.

Label-free microscopic images (especially in DIC
microscopy) are usually have low-contrast gray-scale images
with deformable cell shapes. Due to this property of DIC
microscopy, automatic cell tracking becomes a harder task.
In addition to low contrast, there exist several other chal-
lenges in cell tracking. For example, similar morphological
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structure of the cells makes it difficult to differentiate one
cell from another in dense scenes. Furthermore, shape defor-
mations and random rotations during the cell motion require
adaptive models which are robust to these changes.

In this study, we present a comparative study which eval-
uates the robustness of our algorithm against these specific
challenges in cell tracking scenarios.

In this study, we firstly established ground truth data of
various cell motility image sequences. Then, we generated
the tracking results of several state-of-the-art algorithms that
are published in recent years. The performance of the algo-
rithms is compared based on two differentmetrics that is used
in [10].

The remainder of the paper is organized as follows. We
briefly explain the compared tracking algorithms in Sect. 2.
Then, we present the dataset, experiments and comparison
results in Sect. 3. We conclude with the final remarks in
Sect. 4.

2 Compared algorithms

Object tracking algorithms are typically grouped in twomain
categories: generative and discriminative methods. Genera-
tive methods, as the name suggests, construct an appearance
model for the target and search for the closest match in the
next frames. In general, these approaches are preferred for
their computational efficiency. Discriminative methods, on
the other hand, model the object and background separately
and approach the tracking problem as a classification prob-
lem. In our experiments, we included methods from both
approaches. Most of the algorithms, we used have pub-
licly available codes. For all the methods, we used default
parameters suggested by the authors. Brief summary of the
algorithms is given in the next subsections.

2.1 Co-difference-based object tracking (CODIFF)

In [24], Demir et al. proposed a visual object tracking
algorithm based on co-difference features. Calculation of co-
differencematrix is similar to that of covariancematrixwhich
is used as a descriptor for various vision applications such as
object detection [25], classification [26] and tracking [27].
However, co-difference matrix uses a multiplierless operator
for extracting descriptors in an efficient manner. Calculat-
ing the co-difference of various features such as intensity,
gradients or pixel position provides a compact matrix that
represents the combination of these features.

For a given subwindow R consisting of N pixels, let
(fk)k=1...n be the d-dimensional feature vectors in R. Then,
the covariance matrix of these features for region R is calcu-

lated as follows:

CR = 1

N − 1

N∑

k=1

(fk − µR)(fk − µR)T (1)

where μR is the d-dimensional mean vector of the fea-
tures calculated in region R. Although covariance matrix
provides an intuitive way to fuse information coming from
different features, its computational cost is relatively high
due to multiplications especially for large image patches.
In [28], an efficient algorithm is proposed for calculating
the “covariance-like” descriptors. The main contribution that
boosts the performance is the multiplication-free calculation
of the descriptor. Instead of the multiplications in covariance
method, this implementation employs an operator based on
additions. The new operator is defined for real numbers a
and b as follows:

a ⊕ b =

⎧
⎪⎪⎨

⎪⎪⎩

a + b if a ≥ 0 and b ≥ 0
a − b if a ≤ 0 and b ≥ 0
−a + b if a ≥ 0 and b ≤ 0
−a − b if a ≤ 0 and b ≤ 0

(2)

In [29], it is stated that the co-difference descriptor can be
calculated up to 100 times faster than the covariance matrix
depending on the processor. Using this operator, a new vector
product of two vectors x1 and x2 of size N is given as follows:

< x1, x2 >=
N∑

i=1

x1(i) ⊕ x2(i) (3)

where xk(i) is the i-th entry of the vector xk. Now , we can
define the co-difference matrix for a region R as follows:

Cd = 1

N − 1

N∑

k=1

(fk − µR) ⊕ (fk − µR)T (4)

which is used as the region descriptor for visual tracking
algorithm. In our comparison, we used the feature vector as
follows:

fk = [x(k) y(k) I (k) Ix (k) Iy(k) Ixx (k) Iyy(k)] (5)

where the elements of the feature vector are horizontal and
vertical positions within the region, intensity, gradients in
both directions and second derivative values in both direc-
tions, respectively. As a result, a descriptor of size 7 × 7 is
extracted for any given patch size.

In order to obtain the most similar region to the given
object, the distances between the co-difference matrices cor-
responding to the target object window and the candidate

123



Signal, Image and Video Processing (2019) 13:1063–1070 1065

Fig. 1 Time-lapse inverted microscopy dataset contains image sequences with challenging rotation and deformation scenarios. The shape of a
sample cell is given above for frames with numbers 1, 45, 63, 97, 160, 208 and 230

regions must be computed during object tracking. This can
be done by computing the generalized eigenvalues of the cur-
rentmatrix of the target window and thematrices of the target
window. The generalized eigenvalue-based distance matrix
is given by;

ρ(C1,C2) =
√∑

i

ln2λi (6)

where λi are the generalized eigenvalues of the matrices C1

and C2.
Although the covariance and co-difference matrices do

not lie on the Euclidean space, they can be compared using
the arithmetic subtraction of two matrices and computing
the Euclidean norm of the difference. Since this arithmetic
approach gives comparable results, Euclidean norm-based
comparison is used for reducing the computational cost of
the tracker.

2.2 Discriminative scale space tracker (DSST)

In [30], the MOSSE tracker [31] is extended with a robust
scale estimation. In this method, a one-dimensional discrim-
inative scale filter is used for estimating the target size.
Another contribution of the method is employing a pixel-
dense representation of HOG features in combination with
the intensity features used in the MOSSE tracker for transla-
tion filter (source code available1).

2.3 Fast compressive tracking (FCT)

Zhang et al. used a classification-based approach in com-
pressed domain for object tracking. In this approach, they
firstly extract features from multi-scale image feature space
[32]. Then, using a sparse measurement matrix, they calcu-
late the compressed features that preserve the structure of
image feature space. They use the same measurement matrix
for compressing the foreground and the background samples.
Thus, the tracking task is converted into a binary classifica-
tion problem that will be solved with a naive Bayes classifier

1 DSST Source Code: http://www.cvl.isy.liu.se/en/research/objrec/
visualtracking/scalvistrack/DSST_code.zip.

with online update in the compressed domain (source code
available2).

2.4 Incremental learning for robust visual tracking
(IVT)

In [33], Ross et al. presented a method that uses a low-
dimensional subspace representation of the target object for
tracking purpose. Proposed method employs an incremen-
tal PCA algorithm for adapting the appearance changes by
updating the eigenbasis vectors incrementally (source code
available3).

2.5 Kernelized correlation filter tracker (KCF)

In [34], Henriques et al. used a kernelized correlation filter
that operates on HOG features. The key idea is to use all the
cyclic shift versions of the target patch for training the clas-
sifier, instead of using dense sliding windows. Each training
sample is assignedwith a score generated by aGaussian func-
tion depending on the shift amount. Using the advantages of
circulant structure, the classifier is trained in Fourier domain
efficiently (source code available4).

2.6 L1 tracker using accelerated proximal gradient
approach (L1APG)

Bao et al. employed the idea ofmodeling the target by using a
sparse approximation over a template set [35]. In thismethod,
they solve an �1 norm related minimization for many times
to achieve the sparse representation. Although this approach
was used for object tracking successfully in the past, the
main drawback was the demanding computational power
requirement. In contrast to other �1 trackers, Bao uses a
fast numerical solver that has a guaranteed quadratic con-
vergence. Moreover, they claim that the tracking accuracy
is also improved by including an �2 norm regularization on

2 FCTSourceCode: http://www4.comp.polyu.edu.hk/~cslzhang/FCT/
FCT.htm.
3 IVT Source Code: http://www.cs.toronto.edu/~dross/ivt/.
4 KCF Source Code: https://github.com/vojirt/kcf.
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the coefficients associated with the trivial templates (source
code available5).

2.7 Multiple instance learning tracker (MILTrack)

Babenko et al. [36] utilized the multiple instance learn-
ing framework for object tracking, where image patches
are bagged into positive and negative sets to discriminate
the target from background. MILTrack method uses Haar-
like features for representing the image patches. Target and
background samples are, then, discriminated by using a
boosting-based algorithm where a set of weak classifiers
are combined to make a classification decision (source code
available6).

2.8 Minimum output sum of squared errors tracker
(MOSSE)

Correlation-based approaches are widely used for object
tracking especially for their computational efficiency.MOSSE
is an adaptive correlation-based algorithm that calculates
the optimal filter for the desired Gauss-shaped convolution
output [31]. Themethod has an update mechanism that adap-
tively changes the correlation filter depending on the target
shape. This method has the lowest computational burden
among the compared algorithms (source code available7).

2.9 Online discriminative feature selection tracker
(ODFS)

In [37], an online discriminative feature selection approach
is proposed where the classifier score is coupled with the
importance of the patch samples. ODFS employs an feature
selection mechanism where the features that optimize the
objective function in steepest ascent direction for positive
samples and steepest descent direction for negative samples
are selected (source code available8).

2.10 Spatially regularized discriminative correlation
filter tracker (SRDCF)

Discriminatively learned correlation filters (DCF) utilize a
periodic assumption of the training samples to efficiently
learn a classifier on all patches in the target neighborhood.
The main contribution of [38] is mitigating the problems

5 L1APG Source Code: https://github.com/lukacu/visual-tracking-
matlab/tree/master/l1apg.
6 MILTrack Source Code: https://github.com/lukacu/mil.
7 MOSSE Source Code: https://github.com/albertoQD/tracking-
mosse.
8 ODFS Source Code: http://www4.comp.polyu.edu.hk/~cslzhang/
ODFS/ODFS.htm.

arising fromassumptions of periodicity in discriminative cor-
relationfilters by introducing a spatial regularization function
that penalizes filter coefficients residing outside the target
region. By selecting the spatial regularization function to
have a sparse discrete Fourier spectrum, thefilter is efficiently
optimized directly in the Fourier domain. For the classifica-
tion of the candidate patches, SRDCF employs HOG and
gray-scale features giving a 42-dimensional feature vector at
each 4x4 HOG cell (source code available9).

2.11 Sum of template and pixel-wise learners
(Staple)

In order to construct a model that is robust to intensity
changes and deformations, [39] combines two different
image patch representations which are sensitive to comple-
mentary effects. Correlation-based algorithms have robust
results on illumination change scenarios, but they are sen-
sitive to deformations because of their dependency on the
object shape. Color-based approaches, on the other hand,
handle shape variations well, but their dependency on color
hurts the performance on illumination changes. This tracking
algorithm combines the translation results of two approaches
in a weighted manner based on their reliability scores to
achieve a higher accuracy (source code available10).

2.12 Ensemble of MOSSE trackers (TBOOST)

In [40], an ensemble-based object tracking method is pro-
posed. This algorithm creates and updates an adaptive
ensemble of simple correlation filters and generates track-
ing decisions by switching among the individual correlators
in the ensemble depending on the target appearance in a com-
putationally highly efficient manner.

2.13 Learning adaptive discriminative correlation
filters via temporal consistency preserving
spatial feature selection (LADCF)

In [41], an adaptive spatial regularizer to train low-dimensional
discriminative correlation filters is utilized. By employ-
ing a temporal consistency constraint, a low-dimensional
discriminative manifold space is formed. Adaptive spatial
regularization and temporal consistency are combined to
achieve a robust tracking result. The method also utilizes
HOG, Color Names and ResNet-50 features to achieve bet-
ter performance (source code available11).

9 SRDCF Source Code: https://www.cvl.isy.liu.se/en/research/objrec/
visualtracking/regvistrack/.
10 Staple Source Code: https://github.com/bertinetto/staple.
11 LADCF Source Code: http://www.votchallenge.net/vot2018/
trackers.html.
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Fig. 2 Various cell image sequences for evaluation. For each sequence, ground truth bounding box that belongs to one object is depicted for frames
1, 50, 100, 150, 200, 250 and 300. The duration between two consecutive frames is 30 s

2.14 Learning to track at 100 FPS with deep
regression networks (GOTURN)

In [42], Held et al. proposed a method for using neural net-
works to track generic objects by training on labeled videos.
Unlike the most of the previous attempts to utilize neural
networks for tracking task, GOTURN uses a simple feed-
forward network with no online training in order to run in
real-time. The tracker aims to learn generic object motion in
training phase to track novel objects that will appear in the
testing phase (source code available12).

12 GOTURN Source Code: https://github.com/foolwood/
GOTURN_matconvnet.

3 Experiments

We compared the tracking algorithms using the metrics
described in the following subsection.

3.1 Performancemetrics

In all the following experiments, we use two evaluation met-
rics, i.e., success and precision rates, used in [10].

The first metric is the success rate which indicates the
percentage of frames, in which the overlap ratio between
the ground truth and the tracking result is sufficiently high
with respect to an appropriate threshold. A success rate plot
can be generated by varying the overlap threshold between 0
and 1. In order to rank the tracking algorithms based on their
success rates, we use theAreaUnder Curve (AUC) and Track
Maintenance (TM) scores, which are derived from success
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Table 1 Success and precision rate comparison for cell motility dataset

Success Precision
AUC TM LA

Staple [39] 0.67 1.000 1.000

DSST [30] 0.63 0.978 0.978

CODIFF [24] 0.52 1.000 0.972

SRDCF [38] 0.56 0.976 0.959

L1APG [35] 0.57 0.989 0.949

TBOOST [40] 0.58 0.947 0.911

COV [27] 0.48 0.977 0.898

KCF [34] 0.45 0.787 0.826

MOSSE [31] 0.46 0.856 0.823

IVT [33] 0.43 0.803 0.783

LADCF [41] 0.36 0.791 0.697

FCT [32] 0.38 0.788 0.693

ODFS [37] 0.31 0.700 0.522

GOTURN [42] 0.14 0.428 0.285

MIL [36] 0.11 0.345 0.193

plots. AUC refers to the total area under a success rate plot,
and TM is the ability of a tracker to maintain a track, i.e.,
the percentage of frames where a nonzero overlap ratio is
maintained.

The second evaluation metric is the precision value. It
denotes the percentage of the frames in which the Euclidean
distance between the estimated and the actual target cen-
ters is smaller than a given threshold. The precision value
demonstrates the localization accuracy (LA) of a given
tracking method. In order to rank the algorithms based on
their precision value, a distance threshold of 20 pixels is used
in Table 1.

3.2 Dataset

For our experiments,weusedNikon cellmotility dataset [43].
In order to make a comparison between tracking algorithms,
we first generated the ground truth data by annotating the
cells in each frame, where every cell is considered as a new
object. The dataset contains 5 different image sequences and
40 annotated objects that compose nearly 35,000 bounding
box data in ground truth. Dataset contains image sequences
with challenging rotation and deformation scenarios as well
as different object sizes (see Figs. 1, 2).

3.3 Results

Overall performance results of compared visual object track-
ers are depicted in Fig. 3, and quantitative results are listed in
Table 1. Best performing tracking algorithms for each indi-
vidual data sequence are shown in Table 2.
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Fig. 3 Success and precision plots for cell motility dataset

Table 2 Best performing trackers in cell motility video sequences

Rank 3T3 BPAE LLC-MK2 U2OS A-10

Success rate

#1 Staple Staple KCF DSST TBOOST

#2 DSST L1APG Staple Staple KCF

#3 CODIFF DSST DSST KCF CODIFF

Precision

#1 DSST Staple Staple DSST Staple

#2 Staple L1APG SRDCF Staple DSST

#3 CODIFF DSST KCF L1APG KCF
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Cell motility results show that Staple, DSST and CODIFF
algorithms have a better precision behavior than other algo-
rithms with a localization accuracy higher than 97 percent.

When the track maintenance scores are examined, best
performing tracking algorithms are Staple, CODIFF and
L1APG. AUC scores show that Staple, DSST and TBOOST
algorithms have the most successful results in terms of aver-
age success rate.

The results show that the neural network-based trackers
have not been performed very well in microscopy videos,
although they achieve successful results in color images. This
might be caused by the fact that the deep visual features uti-
lized by the trackers are obtained by training on the color
videos captured by regular cameras. These featuresmight not
be very descriptive in microscopy videos. Therefore, train-
ing the models on microscopy datasets might increase the
tracking performance.

4 Conclusion

In this study, we compared various state-of-the-art object
tracking algorithms on a cell motility dataset and presented a
framework for evaluating the performance of new cell track-
ing algorithms. Our experiments showed that Staple tracker
which utilizes amixture of correlation-based and color-based
approaches has the best results in terms of localization accu-
racy, track maintenance and success rate. In general, DSST
and CODIFF are other best performingmethods based on the
metrics used in the comparison.
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