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Abstract
In this paper, an object blur detection and deblurring technique is proposed to restore multi-directional motion blurred objects
in a single image. We have proposed local blur angle detection method based on Radon transform (RT) and Laplacian of
Gaussian (LoG). While capturing the images, motion blur occurs mainly due to either movement of the objects or movement
of the camera. Here, we have focused to restore the objects which has been blurred by motion of the objects. The estimation
of likely blur direction is calculated in the blurred image using RT and gradient operators. To detect blur angle locally at each
pixel, the new local blur angle estimator using RT and LoG has been developed. Numerical experiments have been carried
out for the proposed method, and the results are compared with the state-of-the-art methods.

Keywords BID (blind image deconvolution) · NBID (non-blind image deconvolution) · Radon transform (RT) · Fourier
transform (FT) · Laplacian of Gaussian (LoG) · Point spread function (PSF)

1 Introduction

In classical theory of digital image processing, the image
restoration is a challenging job which has been discussed
since the last three decades [1–4]. There are two kinds of
motion blur problems studied in the field of image restora-
tion, i.e., blur due to camera motion and blur due to object
motion. In the past, lots of attention has been given toward
camera motion blur, while few work has been found in the
literature toward object motion blur. In this paper, we have
focused on detection and restoration of blur occurred due
to object motion. Motion blur in the object arises when
speed of the object is greater than the camera shutter speed
while capturing the image. Image restoration is one of the
area of digital image processing, where the researchers have
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tried to resolve blur through development of blur models
and de-blurring techniques. Image restoration techniques are
classified mainly into two categories: blind image deconvo-
lution (BID) if blur function (PSF) is unknown and non-blind
image deconvolution (NBID) if blur function (PSF) is known.
Most familiar blur happens due to uniform motion of the
camera which is defined as follows:

g(x, y) = h(x, y) ∗ f (x, y) + n(x, y), (1)

where h(x, y) is degradation function (it is also called blur
function or point spread function or blur kernel), f (x, y)
is original image, n(x, y) is noise function, and g(x, y) is
degraded image. And “∗” is denoted as two-dimensional
convolution operator. Blur function represents the cumula-
tive effects of distortions caused by uniform movement of
either camera or object, as well as all optical and electronic
aberrations produced by imperfect sensing and recording
equipment. Identification of degradation function is the first
and most important step in restoring the original image
f (x, y) from degraded image g(x, y). In BID, estimation
of two functions, f (x, y) and h(x, y), is difficult problem in
general and it is classified as ill-posed problem in the absence
of a prior knowledge about the actual image and blur func-
tion. Different kinds of motion blurred images exist based on
various blur kernels shown in Fig. 1. Blur model described
by Eq. (1) is applicable when camera is in linear motion.
However, this model is inappropriate when more than one
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Fig. 1 Different kinds of PSFs: a linear motion PSF and b nonlinear
motion PSF

Fig. 2 Different kinds of PSFmodels for twomoving objects: a two lin-
earmotionswith different directions, b both linear and circularmotions,
c two nonlinear motions and d both linear and nonlinear motions

object in the image are moving simultaneously with differ-
ent speeds and with different directions as shown in Fig. 2.
In our work, we have considered linear motion of the mov-
ing objects as shown in Fig. 2a. In general, motion of the
objects in the scene can be combination of linear and nonlin-
ear motions either in the same or in different directions with
various motion parameters as shown in Fig. 2b–d.

This paper describes a novel algorithm for detection and
restoration of multiple objects which have been blurred due
to motion. Here, we have estimated global blur parameters of
blurred objects of the image by localization, in whichwe pro-
pose new technique using LoG and directional derivative on
each pixel followed by RT [5] to find blur parameters. Here,
we have considered three assumptions: (i) availability of rich

texture in the blurred region, (ii) each object has blurred uni-
formly throughout image and (iii) object motions are parallel
to image plane. In addition, we have used Chan Vese (CV)
segmentation method [6] to segment objects having different
motions.

In our approach,RT is used locally formeasuring direction
of blur at a pixel location instead of intensity in fidelity term
in Chan Vese segmentation technique. We have tested accu-
racy of the result by determining the cumulative frequency
of absolute error of large number of samples. The behavior
of the algorithm is validated by comparison with root-mean-
square error (RMSE) of proposedmethod and state-of-the-art
methods [7,8] through simulation.

A brief outline of this paper is as follows. In Sect. 2, we
have reviewed earlier works related to deconvolution of cam-
era motion blur images and object motion blur images along
with few segmentation techniques. In Sect. 3, we have dis-
cussed blur model for construction of synthetic image. The
proposed technique for blur parameter estimation for more
than two blurred objects is described in Sect. 4. Experimental
results and implementation are given in Sect. 5, and finally,
conclusion and future scope are discussed in Sect. 6.

2 Earlier works

In this section, we have reviewed earlier works related
to blind image deblurring techniques. We categorized blur
motion into two ways: blur due to camera motion and blur
due to object motion. Also we have reviewed few contour-
based segmentation techniques.

2.1 Earlier works on cameramotion deblurring

Many researchers have developed parametric blur models for
estimatingPSF shown inFig. 1a.Using thesemodels it is easy
to restore blurred image in comparisonwith nonlinearmotion
blurwhich is shown in Fig. 1b. For a parametric linearmotion
blur model, it is modeled using convolution of blur function
with latent image as expressed in Eq. (1) for linear motion
of sensor (see, [9]). In [10], Cai et. al. have tried to remove
camera shake using regularization and split Bergmanmethod
where they used sparsity-based regularization terms on both
images and motion blur kernel which is extension of work
done in [11–13]. In [9], Almeida et. al. have used concept of
sparsity of edges existing in blur and deblur image in regu-
larization technique for restoration of the natural images. In
[14],Choet. al. haveproposedmaximumaprior (MAP)using
RT to detect blur direction in the uniform motion blurred
images. Subsequently, Ji et. al. [15] have done similar work
based on gradient of the image. In [16–18], authors have
discussed RT with image gradient to deblur noisy blurred
images using Lucy–Richardson deblurring and Weiner filter
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methods. In [19], Sakano has usedHough transform concern-
ing gradient vectors for PSF estimation. In [20], Gupta et. al.
have used motion density function (MDF) to record cam-
era motion. Using MDF they have estimated space-variant
motion in 6D by approximating three degrees of motion. But
this method will work only for small length of motions as
it approximates 6D by 3D. Similar work has been discussed
in [21], where authors tried to estimate space-variant motion
blur using hybrid camera, user interaction and alpha map. In
[5], Oliveira et. al. have used the concept of spectral behavior
of natural images to estimate motion blur as it gives sinc-like
behavior in Fourier domain. Using RT on FT, orientation and
length of motion blur are estimated. In [22], Goldstein et. al.
have pointed out about spectral irregularities occurring due
to strong edges. However, in [8]Oliveira et. al. have proposed
modified RT, called Radon-d transform and its approxima-
tion by cubic polynomial to avoid these irregularities. In [7],
Krahmer et. al. have proposed cepstrum and steerable filter
method for estimating blur parameters. In [23], Oyamada et.
al. have used these techniques extensively to estimate piece-
wise linear and nonlinear motion blur parameters. In [24],
Amin et. al. have used kernel similarity-based algorithm to
restore linear/nonlinear blur images, where they have min-
imized objective function using conjugate gradient (CG) to
obtain corresponding estimate of parameters and compared
it with other nonlocal regularization methods described in
[25,26].

2.2 Earlier works on object motion deblurring

As dynamic scene deblurring is more complex than static
scene deblurring, little work has been done in this field. Fig-
ure 2a–d shows various kinds of blur motion for two moving
objects in a single image. In [27], Kim et. al. have addressed
the deblurring problem of dynamic scenes which contains
multiple moving objects. In [28], Harmeling et. al. have
proposed a method that restores overlapping patches of the
blurred image, but it is not working at boundary of the mov-
ing object as they are not segmenting motion blur. Similar
work has been done in [29], based on two-stage approach, one
related to object and other related to background similar to
that [26] byLevin. In [30],Mariana et. al. have discussed sim-
ilar concept by extending their previous single-layer method
which is presented in [9,31]. Also complex dynamic scene
deblurring has been tried in [27] by Kim et. al. They have
inferred optical flow from blurred videos which is blurred
by global and local varying blurs caused by various reasons
such as moving objects, camera shake, depth variation and
defocus. MAP framework has been used to segment variant
blurred regions in [32]. Here authors have tried to incorpo-
rate a soft-segmentation method to take moving objects and
background regions into account for kernel estimation. Simi-
lar method has been discussed in [33,34] where authors have

deblurred using regularizationmethodwithout segmentation.
In [35], Couzinie-Devy et. al. solved this problem by casting
as a multi-label segmentation problem and estimating local
varying blur.

In [36], Favaro et. al. have proposedmotion deblurring and
scene reconstruction of multiple moving objects. But they
have used multiple images to avoid parameter assumption,
while Choung et. al. [37] andMin et. al. [38] have used single
image with parameter assumption. In [39], Morgan et. al.
have presented reconstruction filter for game-like application
of object motion blur.

Chan et. al. (see, [6]) have proposed a new model for
active contours to detect objects in a given image. This tech-
nique is based on curve evolution,Mumford–Shah functional
for segmentation [40] and level sets [41], which uses region
segmentation-based stopping criteria than edge detection-
based stopping criteria on active contour models presented
in [42,43].

3 Blur model

The available blur model for one-directional motion blur is
given in Eq. (2).

K L = 1
L ; if 2

√
x2 + y2 ≤ L

2 and y
x = tanθ,

= 0; otherwise,
(2)

where L is a blur length (which is proportional to motion
velocity and camera exposure time), θ is a blur angle, and
x, y are pixel positions. Figure 3b shows uniform motion
blurred image of the original image in Fig. 3a using Eq. (2)
in the direction of 45◦ and 80 pixels blur length. But the
model fails to generate blurred images wherein one or more
objects are moving. Once we know PSF, using convolution
theoremwe can find original image.We have used blurmodel
locally which is given in Eq. (2) to generate synthetic images
for testing and validation of our proposed model. This kind

Fig. 3 aOriginal image: cameraman and b linear motion blurred image
with 45◦ blur angle and 80 pixels blur length
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Fig. 4 a Two estimated object motion directions (shown as two peaks in the graph) related to two blurred objects moving at 8◦ and 45◦ as shown
in (b)

of motion occurs in images where object is moving, with
assumption that all parts of object have the same motion
during camera exposure time. The generated blurred image
for two motion blurred objects using blur model given in
Eq. (2) is shown in Fig. 4b.

4 Proposed technique

In this section, we propose local blur angle estimators and
introduced the RT and Chan Vese segmentation technique.

4.1 Step 1: blur detection technique

RT is the integral of a function along straight lines (see in,
[44]). For a two-dimensional function I (x, y), RT is defined
as

R(I , ρ, θ) =
∫ ∞

−∞
I (ρ cos θ − y sin θ, ρ sin θ + y cos θ)dy.

(3)

Equation (3) is known as RTwhich is an integration of image
over line at a distance ρ from origin and at an angle θ from x-
axis (see in, [44]). Largest value of RT in the range [0◦, 180◦]
will determine the blur angle [45]. Variant of RT is proposed
in [5] as Radon-d transform which is defined as

Rd(I , ρ, θ) =
∫ d

−d
I (ρ cos θ − y sin θ, ρ sin θ + y cos θ)dy,

(4)

where Rd is modified RT, called Radon-d transform, which is
changing the integration limit of RT to maximum inscribed

square, with d = m/
√

(2), m = min{M, N } for M × N
image. In classical approach RT of FT of an image is used to
calculate blur direction, but this technique does not give blur
direction in small size images as FT of small size images does
not produce enough parallel lines of frequency information
(sinc-like structure) generated due tomotion which is used in
RT to estimate blur angle. When we use FFT, spectral irregu-
larities occur (see in, [22]), as well as high-frequency content
observed along lines at 0◦ and 90◦. To avoid these problems,
approximation of Radon-d transform has been proposed in
[8] by fitting a third-order polynomial to estimate blur angle,
i.e.,

Rd(log | I |, ρ, θ) ≈ aρ3 + bρ2 + cρ + d. (5)

In our approach, we have calculatedRT on directional deriva-
tive on small region of blurred image to determine likely blur
angles in the image. To calculate likely blur directions in the
image the following blur angle estimators are proposed:

θ̂
g
1 = Argmax

θ
Var {∇v [R(∇I)]} , (6)

where∇ is gradient operator, R denotes RT, and∇v is deriva-
tive along vertical direction in theRT.After estimation of first
likely direction using Eq. (6), second direction can be esti-
mated as follows:

θ̂
g
2 = Arg max

θ 	=θ̂
g
1

Var {∇v [R(∇I)]} . (7)

Similarly, after estimation of first, second,. . ., and (n − 1)th
likely directions, the nth direction can be estimated by

θ̂
g
n = Arg max

θ 	=θ̂
g
1 ,θ̂

g
2 ,...,θ̂

g
n−1

Var {∇v [R(∇I)]} . (8)
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Table 1 Mean estimated blur
angle (◦), test image: Lena

Window size True angle LoG Laplacian Sobel Prewitt

10 30 31.12 31.224 36.764 37.393

20 30 30.331 30.139 34.092 34.813

30 30 30.158 30.13 31.674 33.247

40 30 30.102 30.093 31.163 31.92

Table 2 Standard deviation of estimated blur angle, test image: Lena

Window size LoG Laplacian Sobel Prewitt

10 5.0627 8.4744 20.9866 21.3123

20 1.0498 1.3848 14.6803 16.3747

30 0.6878 1.0641 9.5748 12.3684

40 0.5245 0.6963 7.2387 8.9426

Here θ̂
g
1 , θ̂

g
2 , . . . , θ̂

g
n are estimated blur direction related to

blurred objects available in the image. We have used gra-
dient operator to sharp the edges created due to blurring in
the objects. Local maximum variation in the RT will give
likely blur angle related to each object as shown in Fig. 4a.
Calculated likely blur direction in the image is used to find
its availability and location in the image using directional
derivative. Directional derivative of function I (x, y) at (a, b)
in the direction of a unit vector u = (u1, u2) in xy-plane is
defined as

∇u I = ∇x I .u1 + ∇y I .u2, (9)

where ∇x and ∇y are derivative operators with respect to x-
axis and y-axis, respectively. If the prior knowledge about
existing blur directions in the blurred image is available, then
we can use directional derivative to emphasize detection of
blur angle in that direction locally. Then, the pixelwise blur
angle is determined by using LoG on directional derivative
followed by RT. LoG is defined as follows:

LoG = x2 + y2 − 2σ 2

σ 4 e
−(x2+y2)

2σ2 , (10)

whereσ is standard deviation, and x and y are pixel locations.
The proposed pixelwise blur angle estimator is derived as
follows:

θ̃ l = Argmax
θ

{
∇v

[
R
(
LoG(∇uI)

)]}
, (11)

where θ̃ l is estimated blur direction determined locally for
each pixels considering lowest error. Accuracy of the blur
angle estimator depends on the selection of the window size
around each pixel. Techniques mentioned earlier in Sects. 2

Fig. 5 Test images: a Cameraman (A1), b Lena (A2), c Peppers (A3)
and dMandrill (A4) of size 512 × 512 pixels

and 2.1 do not work for small image size. The proposed local
blur angle estimator given by Eq. (11) is novel technique to
estimate blur angle for smaller size of image or locally. The
proposed estimators are better than other FT-based estimators
[5,7,8]. Pseudocode of the proposed blur angle detector is
given in Algorithm 1. Experimental results are discussed in
Sect. 5.

Algorithm 1 Pseudocode of blur angle detector
1: Input: Blurred image I
2: Calculate θ̂

g
n ; likely blur directions ; using Eqn (6–8)

3: while k < n do
4: Calculate ∇u I ; Directional derivative ; using Eqn (9)
5: Calculate θ̃ l at each pixel; Blur angle estimator; using Eqn (11)
6: end while
7: Output: Detected blur direction (at each pixel) image ; shown in

Fig.9(e–f)
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Fig. 6 Comparison of RMSE of estimated blur angles detected using proposed method and methods from [7,8] for test images

4.2 Step 2: blurred object segmentation and
deconvolution

In this subsection, we have segmented the individual objects
having the same blur angle using Chan Vese (CV) segmenta-
tion technique. CV segmentation is based onMumford–Shah
segmentation, level set method and curve evolution tech-
niques (see in, [6,40,41]). Basic concept in this method is
to minimize the following functional:

F(C, c1, c2) = μ ∗ length(C) + γ ∗ area(insideC)

+α1

∫

inside(C)

(I − c1)
2dxdy

+α2

∫

outside(C)

(I − c2)
2dxdy, (12)

where c1 and c2 are average intensity values inside and out-
side contour C , respectively, and α1 and α2 are constant
control parameters. Also, μ and γ are constant parameters
to give weightage to length or area (usually, μ, γ ≡ 1), C is
boundary of the object, and I is an input image.

To segment objects based on blur angle information, we
replace intensity value in Eq. (12) by estimated blur angle
determined by Eq. (11). The modified equation is given as:

F(C, θ1, θ2) = μ ∗ length(C) + γ ∗ area(insideC)

+α1

∫

inside(C)

(θ̃ − θ1)
2dxdy

+α2

∫

outside(C)

(θ̃ − θ2)
2dxdy. (13)
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Fig. 7 Comparison of cumulative frequency plot of absolute error of estimated blur angle using proposed method and methods from [7,8] for test
images

Here θ1, θ2 are average angles inside and outside contour C,
respectively, and α1 and α2 are constant control parameters.
Also, μ and γ are constant parameters to give weightage to
length or area (usually, μ, γ ≡ 1), C is boundary of the
object, and θ̃ is blur angle. Once objects are segmented after
estimation of blur angle of the object, blur length of that
object can be determined using technique from [5]. Conse-
quently, using inverseWeiner filter blurred object is restored.
Pseudocodeof segmentation anddeconvolution steps is given
in Algorithm 2.

Algorithm 2 Pseudocode of object segmentation and decon-
volution
1: Input: Detected blur direction image; ; shown in Fig.9 (e-f)
2: Initialize C around object ; To segment object of interest
3: Calculate θ1, θ2 ; Average angles inside and outside C
4: Solve F(C, θ1, θ2) ; To minimize functional F
5: if Fi+1 ≡ Fi then stop
6: end if
7: For each segmented object find blur length
8: Deconvolution using Inverse Weiner filter
9: Output: Restored objects

123



1008 Signal, Image and Video Processing (2019) 13:1001–1010

Table 3 Performance matrix of estimated blur angle in the test images

Technique Cameraman Lena Peppers Mandrill

Method in [7] 0.01 ± 6.0 0.01 ± 6.0 0.01 ± 7.0 0.02 ± 6.0

Method in [8] 0.04 ± 10.0 0.05 ± 10.0 0.04 ± 11.0 0.05 ± 10.0

Proposed method 0.40 ± 0.6 0.41 ± 0.3 0.36 ± 0.3 0.51 ± 0.3

Fig. 8 a Restored one of the object from blurred image in Fig. 9c using
proposed technique and b restored second object from Fig. 9c

5 Experimental results

In this section we have discussed experimental results of the
proposed method as well as state-of-the-art methods. Tables
1 and 2 show mean and standard deviation of estimated blur
angle using LoG-based method and other edge sharpening
filter for test image Lena. The test image was blurred with
blur parameters; blur angle, i.e., 30◦, and blur length, i.e., 60
pixels. We found LoG is the most suitable edge sharpening
filter in both noisy and noiseless image in comparison with
other edge sharpening filters.

To test the proposed blur angle estimator, we run simula-
tion on 4 standard test images as shown in Fig. 5. Observation
test set (i.e., blurred test images) is generated with blur
parameter ranging from 10◦ to 90◦ (blur angle) and 10
to 60 pixels (blur length). From each blurred test images,
about 200,000 windows (subimages) selected randomly with
dimension ranging from 10× 10 to 90× 90 pixels. Figure 6.
showsRMSEof proposedmethodwith state-of-the-artmeth-
ods [7,8]. From these figures, it is clearly visible that RMSE
from proposed method is smallest in all test images in com-
parison with other methods.

Figure 7 compares cumulative frequency plots of abso-
lute errors of detected blur angles using proposed method
with methods in [7,8]. From these figures, it is observed that
errors in proposed method are the smallest in comparison
with other two existing methods [7,8]. Table 3 shows the
performance matrix derived from Jaccard’s similarity index
[46]. The table shows the probabilistic similarity value with
standard deviation. (Here similarity value 1 means 100 %
match.) The value from proposed method is 0.5 ± 0.3 (i.e.,
50% match) which is far better than the values 0.05 ± 10.0
(5% match) from two existing methods.

Fig. 9 a, b Original images, c, d blurred image with 2 and 3 blurred
objects, e, f blur angle estimated using proposed method, g, h blur angle
estimated using FT-based estimation method [7] and i, j blur angle esti-
mated using third-order polynomial approximation of RT-basedmethod
[8]

Figure 9 shows the blur angle detected using proposed
method with other two state-of-the-art method locally in
two blurred objects and three blurred objects. Figure 9c is
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blurred images with blur parameters: blur angles: 8◦, 45◦,
and blur lengths: 30 pixels. Figure 9d is blurred images
with three blurred objects with blur parameters: blur angles:
10◦, 40◦, 67◦ and blur lengths: 25, 30 and 37 pixels. Fig-
ure 9e, f shows the estimated blur angle using proposed
method from input images shown in Fig. 9c, d. It is observed
that the blur angle estimated by proposed method is uni-
form throughout the objects region and differentiable with
other objects, while blur angle estimated using existingmeth-
ods is poor in accuracy as well as nondifferentiable. White
lines superimposed on the object shown in Fig. 9e are actual
boundary of the blurred objects. Excess detection angle is
due to window size used for detection. Our recommendation
for window size is to be in the range of 10 × 10 to 20 × 20.
If we further increase the window size, then it is negatively
affecting the performance, like computation time increases
and over detection. Figure 8 shows the restoration of two
blurred objects of the image from Fig. 9c.

6 Conclusion and future scope

In this paper a newmethod is proposed to estimate the param-
eters for multi-directional object motion blur. To identify the
likely patterns of linear motion blur locally we used RT of
LoG and directional derivative on smallest possible window
around eachpixel in the image.The identification of the likely
blur direction is determined using RT of gradient of blurred
image. The correctness of the proposed method is validated
in synthetic images by simulations. Results are compared
with state-of-the-art methods for blur parameters estimation.
From the results, it is observed that our proposed method for
blur angle estimation is best among the other existing meth-
ods for detecting blur angle locally. This method can further
be extended for different nonuniform motions in the object.
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