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Abstract
Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel
reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be
considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness
of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also
convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two
concrete examples are included where the use of the present results is illustrated.

Keywords Sampling theorem · Multiplicative filter · Signal processing · Convolution · Fractional Fourier transform

1 Introduction

The fractional Fourier transform (FRFT) was first introduced
by Wiener and Condon in the 1920s. After a period without
attention, it was reinvented in 1980 by Namias in order to
solve certain classes of quadratic Hamiltonians in quantum
mechanics (cf. [9]). Later on,McBride andKerr [8] improved
the former studies to develop operational calculus and other
properties of the fractional Fourier transform. In recent years,
the FRFT has become the focus of many research papers in
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optics, optical systems and optical signal processing, time–
frequency representation, quantum mechanics, filter design,
pattern recognition, and many other applied sciences.

In very simple terms, the FRFT can be considered as a
generalization of the Fourier transform with one additional
parameter. For any real angle α, let

Kα(x, p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(α)√
2π

exp
{
ia(α)

(
x2 + p2 − 2b(α)xp

)}
,

if α is not a multiple of π

δ (x − p),

if α is a multiple of 2π

δ (x + p),

if α + π is a multiple of 2π,

with

a(α) = cot α

2
, b(α) = secα, c(α) = √

1 − i cot α

(where the square root is defined such that the argument of
the result lies in the interval (−π/2, π/2]). With the help of
this transformation kernel, the FRFT with angle α is usually
defined as

Fα [ f ] (p) =
∫ ∞

−∞
f (x)Kα(x, p)dx . (1)

For α = 0 and α = π/2, the FRFT domain becomes
time domain and frequency domain, respectively. Since the
FRFT can be interpreted as an anticlockwise rotation by the
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α angle in the time–frequency plane, it is more flexible than
the Fourier transform in many applications.

As a generalization of the Fourier transform, the rele-
vant theory of the FRFT (such as convolution theorems and
sampling theory) has been developed in a growing man-
ner through the years by several authors (cf., without being
exhaustive,Almeida [1,2], Zayed [20], Deng et al. [6]). As far
as it concerns convolutions and their consequences, a huge
amount of works could also be pointed out due to both theo-
retical and practical perspectives. Anyway, for this purpose,
as examples, we simply refer the interested reader to [4,5,11–
13,16] and to the references therein.

Signal reconstruction from some sample is an important
signal processing operation, which can provide a suitable
model of sampling and reconstruction in many applications.
For example, in [15] sampling formulae were derived to
reconstruct a bandlimited signal in the FRFT domain. By
a similar technique, the sampling theorem of bandlimited
signals was obtained in [6] for the linear canonical transform
domain.

In [3], we have introduced two new convolutions for the
FRFT. Namely, one of such convolutions was defined by

x(t) � y(t) = c√
2π

e−iat2

×
[

x(t)eiat
2 ∗ y

(

t + 1

2ab

)

eia(t2+t/ab)
]

(2)

and has the factorization property

Fα [x(t) � y(t)] (u) = Xα(u)Ŷα(u), (3)

where Xα(u) = Fα [x] , Ŷα(u) = Fα [y] e−iau2+iu .
Themain purpose of this paper is to obtain a new fractional

sampling theorem by using the fractional convolution (2)
without using the classical Shannon theorem. At the same
time, the paper also gives the design of multiplicative filters
in the FRFT domain via this convolution.

The paper is divided into four main sections and a final
conclusion, and organized as follows. In the next section,
we define the bandlimited signal in the FRFT domain, and
recall Xia’s sampling theorem, which can be considered as
a Shannon-type sampling theorem for the FRFT. In Sect. 3,
by using the fractional convolution (2), we establish the sam-
pling theorem for bandlimited signals in the FRFT domain
and give numerical experiments to demonstrate the effective-
ness of the proposed sampling theorem. In Sect. 4, we design
the multiplicative filters in the FRFT domain from the point
of view of the convolution (2) in the time domain and the
product in the FRFT domain. Examples are then considered
and, to finalize the paper, a conclusion is provided.

2 Known sampling theory

To start this section, we recall at first the definition of the
bandlimited signals in the FRFT sense.

Definition 1 If the α angle FRFT of the signal x(t) satisfies
the following condition

Xα (u) = 0, |u| > Ωh,

then x(t) is called the bandlimited signal in the FRFT α angle
or α angle fractional bandlimited signal, whose bandwidth is
defined as Ωh .

If a signal x(t) is Ωh bandlimited with angle α and α �= nπ

for any integer n, then by the inverse FRFT

x(t) =
√
1 + i cot α

2π
e−iat2

×
∫ Ωh

−Ωh

Fα [x] (u) e−iau2eiut cscαdu.

Let

g(t) =
∫ Ωh

−Ωh

Fα [x] (u) e−iau2eiut cscαdu.

It is easily seen that g is Ωh cscα bandlimited in the con-
ventional sense. Based on this, Xia [19] applied the Shannon
sampling theorem to g in the following way

g(t) =
∑

n

g(nΔα)
sin [Ωh cscα (t − nΔα)]

Ωh cscα (t − nΔα)
(4)

where Δα = π sin α
Ωh

. Substituting (4) into the representation

x(t) = g(t)

√
1 + i cot α

2π
e−iat2 ,

the author derived a sampling formula for the bandlimited
signal in the α angle FRFT domain

x(t) = e−iat2
∑

n

x(nΔα)e−iaΔ2
α
sin [Ωh cscα (t − nΔα)]

Ωh cscα (t − nΔα)
.

(5)

In fact, this is the uniform sampling formula which has been
generalized to many other forms. In 1999, Zayed and Garcia
[21] derived a new sampling theorem using samples of the
signal and its Hilbert transform. In [15], Tao et al. utilized the
product theorem (cf. [2]) for the FRFT to obtain the FRFT of
the sampled signal and then derived the reconstructed signal
through a bandpass filter in the FRFT domain. The authors
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also discussed sampling and sampling rate conversion of ban-
dlimited signals in the FRFT domain. Based on the fractional
Fourier series (FRFS),Wei at al. [17] proposed another proof
for Xias sampling theorem, and showed that this sampling
expansion for fractional bandlimited signal is a special case
of Parseval’s relation for complex FRFS. Furthermore, Stern
[14] extended Xia’s result to the linear canonical transform
(which is a generalization of the FRFT).

3 A new sampling procedure

In this section, we prove the reconstruction formula for ban-
dlimited signals from uniform samples associated with the
FRFT, and give a numerical experiment to demonstrate the
usefulness of the sampling theorem presented in this work.

3.1 A new sampling theorem

Theorem 1 Let x(t) be a bandlimited signal to [−Ωh,Ωh]
in the FRFT sense. Then, the following sampling formula for
x(t) holds:

x(t) = T e
−i sin 2α

4

2π sin α
e−iat2

×
+∞∑

n=−∞
x (nT ) eia(nT )2 sin [2ab (t − nT )Ωα]

ab (t − nT )
,

(6)

where n ∈ Z, T ≤ π

Ωh |cscα| is the sampling period and

Ωα ∈ [Ωh, ωs/| cscα| − Ωh] is the cutoff frequency.

Proof The uniform sampled signal is described as

x̂ = x(t) sδ(t) = x(t)
+∞∑

n=−∞
δ(t − nT ), (7)

where T is the sampling period and sδ(t) is the uniform
impulse train having its Fourier transform given by

Sδ(u) = 2
√

π

T

+∞∑

n=−∞
δ

(

u − n
2π

T

)

. (8)

According to the product theorem for the FRFT, we have

X̂α(u) = |cscα|√
2π

eiau
2

×
(

Xα(u)e−iau2 ∗ 2
√

π

T

+∞∑

n=−∞
δ

(

u cscα − n
2π

T

))

,

where “∗” denotes the classical convolution defined by

f (t) ∗ g(t) =
+∞∫

−∞
f (τ )g(t − τ)dτ .

Since

1

|a|δ (u − b/a) = δ(au − b),

we have

X̂α(u) = 1

T
eiau

2

×
(

Xα(u)e−iau2 ∗
+∞∑

n=−∞
δ

(

u − 2π

T cscα
n

))

.

(9)

From (9), we find that Xα(u) is replicated with a period of
1/(T cscα) after being sampled, and the nth component of
X̂α(u) differs from Xα(u) only by a magnitude factor 1/T
when n = 0, while for n �= 0 it modulates both the amplitude
by 1/T and the phase of Xα(u).

If x(t) is a bandlimited signal in the FRFT sense, or, in
another words, the support interval of Xα(u) is (−Ωh,Ωh),
then no overlapping occurs in X̂α(u) after sampling only if

2π

T |cscα| ≥ 2Ωh,

i.e., we have the sampling frequency

ωs = 2π

T
≥ 2Ωh |cscα| .

Thus, Xα(u) can be recovered, and the other replicated spec-
tra are filtered out through a low-pass filter having the gain T
and the cutoff frequency Ωα (Ωα ∈ [Ωh, ωs/| cscα| − Ωh])
in the FRFT domain, whose transfer function is given by

Hα(u) =
{
T |u| < Ωα

0 |u| ≥ Ωα

.

The original signal x(t) can be reconstructedwithout any dis-
tortion by the inverse FRFT of the recovered Xα(u). Limiting
the cutoff frequency of a low-pass filter within the interval
[Ωh, ωs/| cscα|−Ωh] is to pick out only the zeroth compo-
nent for X̂α(u).

The expression of the above-mentioned reconstructed sig-
nal can be obtained by (3). Assume Ŷα(u) = Hα(u). Then,
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y(t) = F−α

[
Ŷα(u)eiau

2−iu
]

=
√
1 + i cot α√

2π

Ωα∫

−Ωα

e−ia(t2+u2−2btu)Ŷα(u)eiau
2−iudu

=
√
1 + i cot α√

2π
T e−iat2

Ωα∫

−Ωα

e2iabtu−iudu

=
√
1 + i cot α√

2π
T e−iat2 2 sin [(2abt − 1)Ωα]

2abt − 1
.

Since

X̂α(u)Ŷα(u) = Fα

[
x̂(t) � y(t)

]
(u),

the output of the low-pass filter is as follows

x(t) = x̂(t) � y(t)

= c√
2π

e−iat2
[

x̂(t)eiat
2 ∗ y

(

t + 1

2ab

)

eia(t2+t/ab)
]

= c√
2π

e−iat2
∞∑

n=−∞

+∞∫

−∞
x (τ ) δ (τ − nT ) eiaτ 2

×
√
1 + i cot α√

2π
T e−ia(t−τ+1/2ab)2

× 2 sin [(2ab (t − τ)) Ωα]

2ab (t − τ)
eia

[
(t−τ)2+ t−τ

ab

]

dτ

= T e
−i

4ab2

2π sin α
e−iat2

+∞∑

n=−∞

∫ +∞

−∞
x (τ ) δ (τ − nT ) eiaτ 2

× 2 sin [2ab (t − τ)Ωα]

2ab (t − τ)
dτ,

which is equivalent to

x(t) = T e
−i sin 2α

4

2π sin α
e−iat2

×
+∞∑

n=−∞
x (nT ) eia(nT )2 sin [2ab (t − nT )Ωα]

ab (t − nT )
.

(10)

Note that (10) is the reconstruction formula of the bandlim-
ited signal in the FRFT domain. 
�

We would like to stress that both Xia’s formula and the
new sampling formula provide exact representations by the
uniformly sampled signal. However, those two theorems for
the bandlimited signal in the FRFT have been derived from
different perspectives. Namely, while formula (5) can be
found from the Shannon sampling theorem and viewed as

a Shannon-type sampling theorem for the FRFT, our new
sampling theorem is obtained just by using the new convolu-
tion for the FRFT. Moreover, for the Ωh bandlimited signal
in the α angle FRFT domain, in the expression (5) the cutoff
frequency is Ωh , while in the expression (6) it can be chosen
arbitrarily in the interval [Ωh, ωs/| cscα| − Ωh]. Thus, our
formula presents an extra flexibility for practical use.

3.2 Simulation

For the illustration of the just obtained result, we observe a
signal given by

x(t) = sin (0.6π t) e−i t2 .

Since the signal sin (0.6π t) is 0.6π bandlimited in the
Fourier transform domain, from the analysis in Sect. 2, we
know that the signal x(t) is 0.6π sin α bandlimited in the
FRFT domain with cot α = 2. In this example, we have

cosα = 2√
5
, sin α = 1√

5
, Ωh = 0.6π√

5
.

According to Theorem 1, the sampling period T should

satisfy T ≤ 5

3
. We choose T = 1

2
. Thus, no overlapping

occurs after sampling if the cutoff frequency belongs to the
interval

I =
[
0.6π√

5
,
4π√
5

− 0.6π√
5

]

.

We determine

Ωα = π√
5
.

The reconstruction expression of the original signal with the
sampling frequency fs = 2Hz, and the sampling interval
[0s, 5s] is given by

xα(t) = e− i
5

π
e−i t2

200∑

n=−200

sin (0.3πn)
sin

[
π

(
t − n

2

)]

t − n
2

.

Figures 1 and 2 present the partial plots of the original signal.
Figures 3 and 4 present those of the reconstructed signal.
The reconstructed signal exhibits a very near approach to the
original signal.

4 Multiplicative filtering in the FRFT domain

In this section, we mainly discuss the application of the
fractional convolution (2) for the designing of multiplicative
filters.
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Fig. 1 The real part the original signal
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Fig. 2 The imaginary part of the original signal
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Fig. 3 The real part of the reconstructed signal
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Fig. 4 The imaginary part of the reconstructed signal

rin(t)

Hα(u)

Fα(·) F−α(·) rout(t)

Fig. 5 Multiplicative filtering in the FRFT domain

4.1 Multiplicative filtering in the FRFT domain

The simple model of a multiplicative filtering in the FRFT
domain is shown in Fig. 5. In this configuration, the multi-
plicative filters can be achieved through the product in the
FRFT domain. First, the FRFT with angle α of the input
rin(t) is obtained, and then, it is multiplied by a transfer func-
tion Hα(u) in this domain. Finally, the result is transformed
with angle −α to obtain the output signal rout(t) in the time
domain. The effect of this filter can bemathematicallywritten
as the formula

rout(t) = F−α [Hα × Fα[rin]] (t).

There are many possible types of multiplicative filters in the
FRFT domain. We can achieve a low-pass filter, a high-pass
filter, a bandpass filter and so on, depending on the designed
transfer function Hα(u).

The above multiplicative filter in the FRFT domain can
also be achieved through a convolution in the time domain.
From (3), with the assumption that function Ŷα(u) acts as the
transfer function of the multiplicative filter, Hα(u) is given
by

Hα(u) = Yα(u)e−iau2+iu .
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Fig. 6 Multiplicative filtering in the FRFT domain through the new
convolution in the time domain

From (2) and (3), the output signal can be expressed as

rout(t) = rin(t) � y(t)

= c√
2π

e−iat2

×
[

rin(t)e
iat2 ∗ y

(

t + 1

2ab

)

eia(t2+t/ab)
]

.

Figure 6 illustrates the latter method.
The simple model of a multiplicative filtering in the FRFT

domain is shown inFig. 5,which is used to eliminate the chirp
noise [7]. The reason is that themajor computation load of the
multiplicative filtering through the new convolution is equal
to the conventional convolution, while the fractional domain
filtering needs to calculate FRFT twice. Since the convolution
∗ can be computed by the fast Fourier transform algorithm,
the filtering model through convolution can be more useful
in practical problems. The computational complexity of the
method based on the new convolution for samples of length
n is O(n log n).

The new convolution expression in the time domain is a
simple one-dimensional integral, and therefore, it is easier
to achieve filter design through the convolution in the time
domain than the generalized convolution introduced in [18],
where the proposed convolution cannot be expressed by a
single integral form.

4.2 Simulation

For the purpose of illustration, an example of pass-stopband
filter will be considered in this subsection.

The value of the fractional angle for filtering is calcu-
lated by using the time–frequency distribution. In Fig. 7, the
Wigner distribution (WD) is applied to the observed signal in
order to locate the signal and noise components in the time–
frequency plane. It is important to mention that the Wigner
distribution of Xα(u) is a rotated version of the Wigner dis-
tribution of the signal x(t) by an angle −α:

Fig. 7 Using WD to filter out the undesired signal by pass-stopband
fractional filter (cf. [10])

WXα (u, v) = Wx (u cosα − v sin α, u sin α + v cosα) .

Thus, two parallel cutoff lines can separate the undesired
noises from the desired signal. In this case (cf. also [10]), the
transfer function is

H (u) =
∏

((u − u0) /B)

which can be rewritten in the following form

H (u) =
{
1 for u0 − B/2 < u < u0 + B/2

0 otherwise.

The fractional angle and the cutoff frequency can be cal-
culated as follows (cf. Fig. 7)

α = cot−1
(

ω1

t1

)

, u0 = cosα (t0 + t1) /2,

B = |cosα (t0 − t1)| .

Here, we use x(t) = e−t2 as the original input signal. The
original Gaussian signal and its WD are plotted in Fig. 8a, b,
respectively. We suppose that the signal x(t) is interfered by
a chirp signal

n(t) = ei(t+10)2 .

The received signal rin(t) and its WD are plotted in Fig. 8c,
d, respectively.

In the current example, we have

α = cot−1 (−2) , B = 12√
5
, u0 = 0.
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Fig. 8 The original and the received signal
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Fig. 9 The real part of the output signal of multiplicative filter achieved
by using the new convolution

Hence,

H (u) =
{
1 for − 6√

5
< u < 6√

5

0 otherwise.

Figure 9 shows the output signal of themultiplicative filter
achieved by using the new convolution with MSE equal to
1.4236 × 10−4.

To conclude, we present a quantitative comparison
between the computational loads of multiplicative filters in
the time domain through the new convolution and that in the
FRFT domain through the product. The comparison is car-
ried out by using MATLAB language (version R2013a) on a
system having configuration Intel (R) Core(TM)2 Duo CPU
2.13GHz processor having 4GB RAM (Table 1).

Table 1 Quantitative comparison of the computation times of twomul-
tiplicative filters

Sampling freq. Sampling int. New conv. DFRFT

10Hz [−5s,5s] 0.040217 0.096807s

15Hz [−8s,8s] 0.080275 0.21818

20Hz [−10s,10s] 0.181237 0.44624

5 Conclusion

In this paper, having in mind the convolution (2) associ-
ated with the FRFT, we introduced a new sampling theorem
for fractional bandlimited signals and a multiplicative fil-
ter in the FRFT domain. This allowed us to obtain better
performances infiltering processeswhen comparedwith con-
ventional methods. Simulations and comparative examples
were included to illustrate the proposed method.
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