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Abstract
Clustering validity index (CVI) plays an important role in data partitioning and image segmentation. In this paper, a new CVI
is proposed to perform the color image segmentation. The proposed CVI combines compactness, separation and overlap to
assess the clustering quality effectively. The aggregation operators (t-norms and t-conorms) are used to build a new reliable
and robust overlap measure. Moreover, a genetic algorithm is employed to dynamically optimize the clusters centroids and get
the best possible data partition. The clustering of super-pixels is performed to reduce the computational cost and convergence
time. The genetic algorithm with new clustering validity index is able to find the best data partitioning. The performance of
the proposed algorithm is evaluated on the Berkeley image segmentation database. The extensive experimentation shows that
the proposed algorithm performs better compared to other state-of-the-art methods.

Keywords Clustering validity index (CVI) ·Clustering · Segmentation · t-norms · Super-pixels ·Genetic algorithm ·Overlap ·
Compactness · Separation
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1 Introduction

In image processing and computer vision literature, segmen-
tation refers to the process of dividing an image into multiple
disjoint segments. It is a key preliminary vision task used
by various high level image and videos analysis techniques
such as: content-based image retrieval [1–6], image compres-
sion [7–10], object detection [11–17] and activity recognition
[18–23]. There are two main types of image segmentation:
interactive segmentation and automated segmentation. Inter-
active segmentation [24–27] extracts an object of interest
with the help of human interaction, while automated seg-
mentation partitions an image into a set of disjoint regions
without any human interaction [28–34]. A large number of
image segmentation algorithms have been reported in the lit-
erature. However, these can be divided into four categories:
(1) image based, (2) feature-based, (3) physics-based and (4)
hybrid approaches.

The physics-based approaches [35–39] utilize the
reflectance property of the objects for segmentation. These
methods can better handle the chromatic changes caused by
shadows and highlights. However, in most cases, no prior
information about the object’s reflectance is available. There-
fore, physics-basedmethods are only useful for some specific
cases, where the reflectance of objects is known.
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The hybrid approaches [28,29,40–45] try to combine
the strengths of each approach. However, how to combine
the strengths of different approaches and avoid their weak-
nesses? Still remains an open question.

Feature-based approaches treat the segmentation process
as a clustering problem [30–32,46–50]. As in any cluster-
ing problem, determining the exact number of clusters is a
principal shortcoming of these approaches.

The quality of data partitioning and clustering can be
assessed by a clustering validity index (CVI) [51,52]. Such
an index quantify the extent to which the given clusters
reflect the actual structure present in the data. In this paper,
we propose a new clustering validity index which com-
bines the compactness, separation and overlap to improve
the accuracy of segmentation. The concept of aggregation
(t-norms and t-conorms) is used to build a new measure
of overlap. The optimal clusters centroids and the opti-
mal number of clusters are estimated by using a genetic
algorithm-based optimizer. Additionally, the super-pixels are
used for reducing the computational complexity to get well-
defined segments.

Section 2 presents the proposed method in detail, while
Sect. 3 contains the experimental results followed by conclu-
sion.

2 The proposedmethod

The proposed method has three key processes. The first is
super-pixel segmentation to reduce the search space and com-
putational cost of the clustering process. The second is a new
clustering validity index (CVI) which is proposed to get the
best possible arrangement of data partitioning. Finally, the
genetic algorithm is used to optimize the cluster centroids
and find the optimal number of clusters.

2.1 Super-pixels generation and features extraction

Perceptually uniform regions in image are called super-
pixels. It exponentially reduces the image primitives regions
and helps to extract rich spatial features [53–56]. In thiswork,
the procedure of [56] is used for the super-pixel segmenta-
tion. Figure 1 shows the result of super-pixel segmentation
[56].

Let χ i represents the ith super-pixel, then its feature vec-
tor, xi ∈ �n×1, is computed as follows:

xi =
[∑

j=1 χ i
j

|χ i | ∈ RGB,

∑
j=1 χ i

j

|χ i | ∈ HSV,

∑
j=1 χ i

j

|χ i | ∈ Lab, h̄

]T

(1)

Fig. 1 The first row contain images taken from BSD [61] while the
second row show the results of super-pixel segmentation [56]

where the first, second and third components of the feature
vector represent the means of super-pixel in RGB, HSV and
Lab color spaces respectively, while h̄ represents the normal-
ized histogram of oriented gradients (HoG) of 8× 8 window
centered on the super-pixel.

2.2 Clustering validity index (CVI)

Let v1, v2, . . . , vK ∈ �n×1 represent the clusters cen-
troids and X = {x1, x2, x3, . . . xN } denote the data points.
Then, the membership values ui j , i = 1, 2, . . . , K and
j = 1, 2, . . . , N can be determined as [57]:

ui j =
⎡
⎣ K∑

l=1

( ||vi − x j ||2
||vl − x j ||2

) 2
m−1

⎤
⎦

−1

,

for 1 ≤ i ≤ K , 1 ≤ j ≤ N (2)

where m is a parameter used to control the fuzziness of the
membership values. The membership ui j demonstrates the
relationship of a point x j to a centroid vi . The t-conorm is
normally used to assign a data point x j to the most matching
element of the membership vector u j = [u1 j ; . . . ; uK j ]T .
However, a data point x j may be a member of multiple cen-
troids with different degree of similarity. Thus, the aggregate
value of u j is better to evaluate the overlap of a particular
data point, x j . The fuzzy OR operator (fOR − l) [58] uses
the combination of t-norms with a given order (l) to estimate
the extent of similarity. Suppose a ρ represents the power set
of C = 1, 2, . . . , K and ρl = {S ∈ ρ : |S| = l}, where |S|
represents the cardinality of the subset S. Then (fOR − l)

maps u j to a scalar value .i.e.,
l⊥(u j ) ∈ [0; 1],
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l⊥(u j ) = �
S∈ρl−1

(
⊥

j∈C\Su
i j

)
. (3)

The above equation demonstrates that the standard t-norms,
l⊥(u j ) give us the lth highest value of u j .
Then, for a particular point x j ∈ X , the degree of overlap

among l fuzzy clusters can be determined by its membership
vectoru j , as given in Eq. (3). For a point x j the total degree of
overlap is determined by the order which induces minimum
overlap. The K -order overlap measure is adopted to explore
the most probable order(s) that induces minimum overlap.
Thus, for a given point x j the overall overlap can be given
by Eq. (4).

O⊥(u j , K ) =
�K/2�
⊥ u j + K⊥u j

2
(4)

Thus, the commutative overlap for K -order is given by:

O⊥(K ) =
∑N

j=1 O⊥(u j , K )

N
(5)

Illustration of Overlap O⊥(K ) Consider the following
fuzzy membership matrix U :

⎡
⎢⎢⎢⎢⎣
0.200 0.185 0.091 0.120 0.241 0.080
0.080 0.074 0.227 0.160 0.231 0.227
0.240 0.111 0.182 0.080 0.154 0.091
0.040 0.121 0.048 0.200 0.039 0.273
0.120 0.148 0.046 0.070 0.031 0.136

⎤
⎥⎥⎥⎥⎦

where K = 5 and number of data points are six. In this case

the
�K/2�
⊥ u j and

K⊥u j give us the third and fifth maximum
values in each column, respectively, where j = 1, 2, . . . , 6.

3⊥u j

= [
0.120 0.121 0.91 0.120 0.154 0.136

]
5⊥u j

= [
0.040 0.074 0.046 0.070 0.031 0.080

]

Thus,
3⊥u j+ 5⊥u j

2 becomes:
[
0.080 0.098 0.478 0.095

0.093 0.108
]
. So the total overlap O⊥(5) becomes 0.1587.

The commutative normalized fuzzy deviation of data
points [59] is used as a compactness measure,

� =
K∑
i=1

(∑N
j=1 u

i j ||vi − x j ||2∑N
j=1 u

i j

)
(6)

The separation is defined in term of clusters centroids diver-
sity. Let V = [v1, v2, . . . vK ]T represent the K clusters
centroids then a symmetricmatrix A ∈ �K×K is constructed:

A = V TV (7)

The clusters separation � can be computed by the following
equation:

� = max(λ)∑K
i=1 Aii

(8)

whereλ represent the eigenvalues of A. The compactness ‘�’
needs to be minimized in order to maximize the intra-cluster
similarities. Similarly, we need smaller overlap O⊥(·) to
ensure the maximum disjointness. To increase inter-clusters
deviation, we need to maximize the fuzzy separation �. So,
the final clustering validity index (CVI) is given by:

CVI = �

�
· O⊥(κ) (9)

The smaller CVI represents the best clustering and vice versa.

2.3 Genetic algorithm-based super-pixels clustering

We consider the clustering of super-pixels as a maximization
case of optimization problem. The main purpose of genetic
algorithm is to decide the optimal number of clusters, K , and
estimate optimal centroids.

Let vi ∈ �n×1, i = 1 . . . K represent the clusters cen-
troids then a chromosome is represented by string of real
numbers, [(v1)T, (v2)T, . . . (vK )T] ∈ �1×nK , where n is the
dimension of centroid and K denote the number of centroids.

In case of genetic algorithm, one need to have a fitness
function to evaluate the quality of chromosome (solution).
Here, we consider clustering as a maximization optimization
problem and define a fitness function by incorporating the
new clustering validity index (CVI),

f = 1

CVI
. (10)

The given fitness function is the reciprocal of the clustering
validity index (CVI), as given in Eq. 9. Note that the highest
fitness value means the best chromosome and low fitness
value means the bad chromosome.

Algorithm 1 demonstrates the genetic algorithm in detail.
A container Bs is used to store the best solution found so
far. An initial population is selected form {P̄ ∪ P}, where
P is randomly generated from the set of super-pixels X and
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1 Bs ← ∅ //A container used store the best solution
2 for K ← 2 to Kmax do
3 ρm ← 0.18
4 ρc ← 0.8
5 Randomly generate a population P
6 Generate the oppostion P̄ o f population P
7 Select the NP best individuals f rom{P̄ ∪ P} as ini tial population
8 while (g ≤ G) or (δ �= True) do
9 Compute the f i tness o f each individual

10 Select individuals f or reproduction
11 Per f orm crossover
12 Per f orm mutation
13 For new population select the best individuals f rom old population and new of f springs
14 ρm ← ρm · e−g/η

15 if ρm < 0.02 then
16 ρm ← 0.02

17 if ( fg,best − fg−1,best ) < τ , for few successive generations then
18 δ ← True

19 if the fittest chromosome, PK is better than Bs then
20 Bs ← PK

21 K ← K + 1

Algorithm 1: eudocode of Genetic Algorithm

Table 1 Genetic algorithm parameters

Parameter Value/type

Crossover type Single point

Crossover cut point selection Random

Mutation type Random

Crossover rate (ρc) 0.8

Mutation rate (ρm) [0.02 to 0.18]

Selection type Binary tournament

Population size 20

P̄ represents its opposition [60]. For each individual, i , its
opposition is computed,

P̄i, j = a j + b j − Pi, j , (11)

where Pi, j and P̄i, j represent the jth component of the ith
individual of the current population and its opposition respec-
tively. The details of parameters setting of GA are given in
Table 1. The binary tournament selection is used to select
the candidates for reproduction. Subsequently, the chromo-
somes that are being selected are put into the mating pool for
reproduction. New offsprings are produced on the basis of
single point crossover with random cut point. The crossover
rate ρc is set to 0.8. Initially, the mutation rate ρm is kept
high for the sake of better exploration and decreased with
time to ensure exploitation. The initial mutation probability
ρm is set to 0.18 (as given in line 3). In the successive itera-
tions, themutation rate is decreased by factor of e−g/η, where

η = 20 (line 13). The lines 14–15, set the lower bound of
the mutation rate ρm. To ensure elitism the best individuals
among the parent population and newly generated offspring
are retained in the new population. The stopping criteria,
(g ≤ G‖δ �= true) is used to terminate the execution. Note
that G represents the maximum epochs while δ, fg,best, and
fg−1,best represent the flag, best solutions in the current gen-
eration and previous generation respectively. Lines 18 and
19 of the Algorithm 1 demonstrate that the old best solution,
which is stored in container Bs, is replaced by the new best
solution if f (Pk) > f (Bs), where f (·) represent the fitness
of a chromosome. We run the algorithm for different number
of clusters, K , with K ∈ {2, 3, . . . , Kmax}. Thus, the algo-
rithm returns the best possible number of clusters, K , with
optimized centroids.

3 Experimental results

The experimentation is performed on Berkeley image seg-
mentation database (BSD) [61]. The results of proposed
algorithm are compared with six well-known image segmen-
tation methods: Segmentation via Lossy Data Compression
(LDC) [62], Efficient Graph-based Image Segmentation
(EG) [63], Describing Reflectance’s for Color Segmenta-
tion Robust to Shadows, Highlights, and Textures (also
called Ridge-based Analysis of Distributions physics-based)
(RADp) [35], Statistical Region Merging (SRM) [64], A
Level Set Method for Image Segmentation in the Presence of
Intensity InhomogeneitieswithApplication toMRI (LS) [65]

123



Signal, Image and Video Processing (2019) 13:833–841 837

and Multi-region Image Segmentation by Parametric Kernel
Graph Cuts (KGC) [66].

3.1 Qualitative comparisons

Here, the results of the proposed algorithm are visually com-
pared with six algorithms: SRM, LDC, RADp, KGC, LS,
and EG. For qualitative analysis, 11 images are selected from
Berkeley Segmentation Database (BSD) [61] which include
Coastal (321 × 481), Night (481 × 321), Building (481 ×
321), Bear (321 × 481), Flower (321 × 481), Cow (321 ×
481), Men (321 × 481), Boat (4811 × 321), Bird (481 ×
321), Lady (481 × 321) and Ship (481 × 321).

Figure 2 visually presents the results of the above-
mentioned algorithms for 11 BSD images. The first row
demonstrate the results of the mentioned algorithms for
Coastal image. The Coastal image contain rocks, water, sky
and a small boat. For Coastal image, the proposed method
performs best and accurately segment out the water, sky, rock
and the boat. Similarly, SRM also performs better for the
Coastal image and generate results near to human percep-
tion. The LDC over-segments the water and rock regions,
while the RADp is unable to perform any segmentation.
The KGC, LS, EG and NC perform poor and tend to pro-
duce over-segmentation. The second row of Fig. 2 shows
the results for Night image. It is clear that the proposed
method outperforms the other methods and achieve results
near to the correspondinghuman subject. For the same image,
SRM and RADp perform better and segment forest region
but fail to detect the moon area. Although KGC detects the
moon but divides the sky region into undesirable segments.
The LS, EG and NC fail to detect the actual boundaries
of the objects and lead to undesirable results. Note that
the proposed method also outperform the other techniques
in case of Building (third row), Bear (fourth row), Flower
(fifth row) and Cow (sixth row) and produce results which
nearly matching corresponding human segmentations. Sev-
enth row demonstrates the results for Men image. It can
be observed that the proposed method performs better than
other stated methods. For the Men image, the SRM, RADp,
and KGC perform comparatively good but LDC and LS
makes over-segmentation. In case of Boat (eight row), the
proposed method performs best, while the rest of methods
perform over-segmentation of water, sky and boat regions.
For Boat, the RADp is unable to perform any segmenta-
tion. It is clear form Fig. 2 that the proposed algorithm
perform better compared to other stated methods in case
of Bird (ninth row), Lady (tenth row) and Ship (eleventh
row).

The proposed algorithm uses the RGB, HSV and Lab
color spaces to encode the color information and histogram
of oriented gradients (HoG) to encode the texture informa-
tion. Thus, the proposed algorithm fails when two different

segments have nearly the same textures and colors. It can be
noted from Fig. 3 that the spider and rock region (non-fungus
region) have nearly the same colors and textures and hence
the proposed algorithm fails to separate them out.

Generally, the SRM faces the problem of under seg-
mentation, while the LDC is unable to achieve the actual
contours and hence produce over-segmented results. Nor-
mally, RADp fails to get the segments boundaries and tends
to under segmentation, while in some cases it over-segment
the uniform regions and makes noisy segmentation. The
KGC generally leads to over-segmentation but for some
instances, it performs better comparatively. The LS per-
form poorly to detect the segments boundaries. For many
images, the performance of EG is good enough but gener-
ally leads to over-segmentation. The results show that the
proposed method comparatively performs better than other
stated methods.

3.2 Quantitative comparison

We have used the variation of information (VoI) [67] and
probabilistic rand index (PRI) [68] to quantitatively evaluate
the performance of the proposed method.

Variation of information (VoI) relates two segmentation in
term of information contents and returns a score in the range
[0,∞). The smaller value of VoI denotes the high degree of
similarity between the different setup of segmentations and
vice versa.

TheProbabilisticRand Index (PRI)matches the given seg-
mentation with underlying ground truth segmented images.
It assigns variable weights to pixels pairs to incorporate the
human-induced variability among ground truths. PRI gener-
ates a score in the range of [0, 1]. The larger PRI score means
the better segmentation and vice versa.

Table 2 shows the PRI score of each algorithm for the 11
selectedBSD images. The last column of the Table 2 contains
the average PRI score of each algorithm for the 11 images.
It is clear from the given table that the proposed algorithm
outperforms the rest of the algorithms in term of PRI score.
Similarly, Table 3 presents the VoI score of each algorithm
for the given 11 BSD images. It can be noted from Table 3
that the proposed algorithm perform better than the other
algorithms in term of VoI score. Table 4 show the mean PRI
and VoI scores of the seven algorithms for 500 BSD images.
It is clear from Table 4 that the proposed method perform
better compared to other stated methods in term of VoI and
PRI scores.

Running time analysis It is difficult to compute the running
time complexity of Genetic Algorithm (GA) analytically, in
term of BigOh notation, due to its stochastic and randomized
nature. Therefore, the running time of the proposed algo-
rithm is measured and compared with other algorithms in
terms of CPU time. The simulations are performed in MAT-
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Fig. 2 Qualitative comparison of the proposed method with other algorithms. The first column contains the ground truth human segmented images,
while second to seventh column present the results of proposed method, SRM, LDC, RADp, KGC, LS, and EG respectively
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Fig. 3 Fail case

LAB R2014a with Windows 7 operating system on a Laptop
machine having the processor, Intel(R) Core(TM) i3-2350M
CPU@ 2.30 GHz, and installed memory of 8 GB. The detail

of the running time (in seconds) of different algorithms is
given in Table 5.

4 Conclusion

In this paper, a new clustering validity index (CVI) is
proposed. The proposed CVI combines the clusters over-
lap, global compactness and fuzzy separation. The clusters
overlap determines that how much a particular data point
belongs to the other clusters centroids. The global compact-
ness determines that how much the points in a particular
cluster are similar while the fuzzy separation looks for
the difference among different clusters centroids. The bet-
ter clustering/segmentation needs minimum overlap and
minimum compactness while maximum separation. Fur-
thermore, a genetic algorithm is applied to optimize the
clusters/segments centroids. The clustering of super-pixels

Table 2 PRI score for 11 selected BSD images

Algorithm Boat Night Coastal Men Building Bear Flower Cow Bird Lady Ship Average

Proposed method 0.8556 0.8458 0.8608 0.8680 0.7934 0.8122 0.8306 0.8019 0.7983 0.7832 0.8529 0.8275

SRM 0.7304 0.7665 0.7740 0.7710 0.7718 0.7035 0.7632 0.7058 0.8236 0.7531 0.8151 0.7616

LDC 0.7631 0.7826 0.7874 0.7816 0.7845 0.7621 0.7138 0.7423 0.7344 0.7328 0.7689 0.7594

RADp 0.5546 0.5265 0.5286 0.5434 0.3215 0.7542 0.6238 0.4213 0.6321 0.1328 0.4539 0.4993

KGC 0.6921 0.8190 0.8354 0.8214 0.7304 0.6531 0.7832 0.7561 0.6325 0.6653 0.7435 0.7392

LS 0.6640 0.7365 0.7888 0.7268 0.7014 0.6328 0.7235 0.6893 0.6362 0.6895 0.7363 0.7022

EG 0.7571 0.7809 0.7885 0.7849 0.7879 0.7789 0.7985 0.7516 0.7831 0.7536 0.7632 0.7832

Table 3 VoI score for 11 selected BSD images

Algorithm Boat Night Coastal Men Building Bear Flower Cow Bird Lady Ship Average

Proposed method 1.0655 1.5734 1.3497 1.7351 1.2831 1.9566 1.5639 1.4407 2.5301 1.8831 1.42812 1.6190

SRM 2.1188 2.0606 2.0592 2.0464 2.0456 2.3088 2.1106 2.0091 2.0564 2.0466 2.0862 2.0732

LDC 2.7642 2.7351 2.7593 2.7187 2.7007 2.7543 2.8301 2.6563 2.6189 2.733 2.7817 2.7320

RADp 1.9606 2.0816 2.1096 2.0810 2.1187 1.9507 2.1717 2.2032 2.0910 2.1077 2.2125 2.1989

KGC 2.4841 1.0264 1.7802 3.0189 3.2335 2.3846 1.2265 1.7009 3.1169 3.2135 3.3182 2.4094

LS 3.1394 1.7182 3.5529 5.3882 4.9257 4.10941 1.0192 3.6539 4.3789 5.9153 3.8953 4.2905

EG 2.8343 2.7975 2.7612 2.7521 2.7311 2.9241 2.7879 2.8512 2.7021 2.7412 2.7819 2.7876

Table 4 Average PRI and VoI scores for 500 BSD images

Measures Proposed method SRM LDC RADp KGC LS EG

PRI 0.8162 0.7681 0.7833 0.5366 0.7343 0.6738 0.7857

VoI 1.9109 2.0551 2.6996 2.119 2.8982 4.9686 2.7589

Table 5 Average running time in second for an image of size (481 × 321)

Proposed method SRM LDC RADp KGC LS EG NC

35.35 64.56 78.78 40.45 64.03 72.29 20.86 88.38
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is performed in order to reduce the computational complex-
ity. The proposed dynamic genetic algorithm automatically
converges to the optimal number of clusters/segments, which
haveminimum overlap and compactness, andmaximum sep-
aration. The algorithm runs for a different number of clusters
K in the range [Kmin, Kmax]. The number of clusters K ,
which best maximize the objective function is considered
the optimal segmentation. For initialization, the opposition-
based strategy is used in order to have a better start.
Performance of the proposed algorithm is compared with six
state-of-the-art image segmentation algorithms. The qualita-
tive and quantitative results demonstrate that the proposed
algorithm performs better compared to other state-of-the-
art image segmentation methods. In future work, the image
segmentation may be extended to semantic segmentation by
incorporating saliency and attention networks [69,70].
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50. Guo, Y., Xia, R., Şengür, A., Polat, K.: A novel image segmentation
approach based on neutrosophic c-means clustering and indetermi-
nacy filtering. Neural Comput. Appl. 28(10), 3009–3019 (2017)

51. Vendramin, L., Campello, R.J., Hruschka, E.R.: Relative clustering
validity criteria: a comparative overview. Stat. Anal. Data Min.
3(4), 209–235 (2010)

52. Starczewski, A.: A new validity index for crisp clusters. Pattern
Anal. Appl. 20(3), 687–700 (2017)

53. Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for super-
pixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462
(2014)

54. Shen, J., Hao, X., Liang, Z., Liu, Y., Wang, W., Shao, L.: Real-
time superpixel segmentation bydbscan clustering algorithm. IEEE
Trans. Image Process. 25(12), 5933–5942 (2016)

55. Dong,X., Shen, J., Shao, L.: Hierarchical superpixel-to-pixel dense
matching. IEEETrans. Circuits Syst. VideoTechnol. 27(12), 2518–
2526 (2017)

56. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate
superpixel segmentation. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
pp. 2097–2104 (2011)

57. Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybern. 3(3), 58–
73 (1973)

58. Mascarilla, L., Berthier, M., Frélicot, C.: A k-order fuzzy or oper-
ator for pattern classification with k-order ambiguity rejection.
Fuzzy Sets Syst. 159(15), 2011–2029 (2008)

59. Khan, A., Jaffar, M.A.: Genetic algorithm and self organizing map
based fuzzy hybrid intelligent method for color image segmenta-
tion. Appl. Soft Comput. 32, 300–310 (2015)

60. Rahnamayan, S., Tizhoosh,H.R., Salama,M.M.:Opposition-based
differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79
(2008)

61. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human
segmented natural images and its application to evaluating seg-
mentation algorithms and measuring ecological statistics. In:
Proceeding of the IEEE International Conference on Computer
Vision, vol 2, pp. 416–423 (2001)

62. Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Unsupervised segmen-
tation of natural images via lossy data compression. In: Computer
Vision and Image Understanding, pp. 212–225 (2008)

63. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based
image segmentation. Int. J. Comput. Vis. 59(02), 167–181 (2004)

64. Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pat-
tern Anal. Mach. Intell. 26(11), 1452–1458 (2004)

65. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore,
J.C.: A level set method for image segmentation in the presence
of intensity inhomogeneities with application to MRI. IEEE Trans.
Image Process. 20(7), 2007–2016 (2011)

66. Salah, M.B., Mitiche, A., Ayed, I.B.: Multiregion image segmenta-
tion by parametric kernel graph cuts. IEEE Trans. Image Process.
20(2), 545–557 (2011)

67. Meila, M.: Comparing clusterings by the variation of information.
In: Schölkopf,B.,Warmuth,M.K. (eds.)Learning theory andkernel
machines, Lecture Note in Computer Science, vol. 2777, pp. 173–
187. Springer, Berlin, Heidelberg (2003)

68. Unnikrishnan, R., Hebert, M.: Measures of similarity. In: Proceed-
ings of the IEEE Workshop on Computer Vision Applications, vol
1, pp. 394–401 (2005)

69. Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans.
Image Process. 27(5), 2368–2378 (2018)

70. Wang, W., Shen, J., Ling, H.: A deep network solution for atten-
tion and aesthetics aware photo cropping. IEEE Trans. Pattern
Anal. Mach. Intell. (2018). https://doi.org/10.1109/TPAMI.2018.
2840724

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TPAMI.2018.2840724
https://doi.org/10.1109/TPAMI.2018.2840724

	Color image segmentation using genetic algorithm with aggregation-based clustering validity index (CVI)
	Abstract
	1 Introduction
	2 The proposed method
	2.1 Super-pixels generation and features extraction
	2.2 Clustering validity index (CVI)
	2.3 Genetic algorithm-based super-pixels clustering

	3 Experimental results
	3.1 Qualitative comparisons
	3.2 Quantitative comparison

	4 Conclusion
	References




