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Abstract
We propose a vision-based localization algorithm with multiswarm particle swarm optimization for driving an autonomous
vehicle. With stereo vision, the vehicle can be localized within a 3D point cloud map using the particle swarm optimization.
For vehicle localization, the GPS (global positioning system)-based algorithms are often affected by the certain conditions
resulting in intermittent missing signal. We address this issue in vehicle localization by using stereo vision in addition to
the GPS information. The depth-based localization is formulated as an optimization-based tracking problem. Virtual depth
images generated from the point cloud are matched with the online stereo depth images using the particle swarm optimization.
The virtual depth images are generated from the point cloud using a series of coordinate transforms. We propose a novel
computationally efficient tracker, i.e., a multiswarm particle swarm optimization-based algorithm. The tracker is initialized
withGPS information and employs aKalmanfilter in the bootstrapping phase. TheKalmanfilter stabilizes theGPS information
in this phase and, subsequently, initializes the online tracker. The proposed localization algorithm is validated with acquired
datasets from driving tests. A detailed comparative and parametric analysis is conducted in the experiments. The experimental
results demonstrate the effectiveness and robustness of the proposed algorithm for vehicle localization, which advances the
state of the art for autonomous driving.

Keywords Vehicle Localization · Intelligent vehicles · Autonomous Vehicles · Particle Swarm Optimization · Localization

1 Introduction

In recent years, the development of autonomous vehicles and
advanced driver assistance systems (ADAS) [9,12,16,17,21]
has received significant attention from the research com-
munity. An important research in ADAS is the localization
of the vehicle in a dynamic environment. Vehicle local-
ization is important for several applications such as path
planning, environment perceptions, and automated driving.
For environment perception, details from the surrounding
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environment can be used by the vehicle in aiding the task
such as lane marker detection and curb detection. We have
investigated the problem of localizing the vehicle in a dense
3D point cloud, which is generated by a mobile mapping
system and contains detailed environment information. Cur-
rently, researchers adopt the GPS sensor to localize the
vehicle [26]. However, the GPS sensor is susceptible to inter-
mittent missing signals in urban areas, the degradation of
GPS signal and missing satellite coverage, resulting in local-
ization errors [5,11].

We propose a new method to address this issue by using
the depth information from stereo vision system to perform
the localization. Virtual depth maps generated from the 3D
point cloud arematchedwith the stereodepthmaps to localize
the vehicle. Virtual depth maps are generated using the fol-
lowing set of coordinates transformation matrices, the fixed
vehicle stereo and time-varying world-vehicle transforma-
tion matrices. It can be seen that the optimal set of coordinate
transformationmatrices generate a virtual depthmapwhich is
identical to the online stereo depth information. Thus, by esti-
mating the optimal set of coordinate transforms, we perform
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the vehicle localization. We propose to perform the vehicle
localization in three phases: the off-line phase, the boot-
strapping phase, and the online phase. In the off-line phase,
we use the particle swarm optimization algorithm (PSO) to
estimate the vehicle stereo transformation matrix, while in
the bootstrapping phase and online phases, we estimate the
world-vehicle transformation matrix. The Kalman filter is
used in the bootstrapping phase to stabilize the GPS–INS
information and subsequently initialize a novel multiswarm
PSO-based tracking algorithm in the online phase. The time-
varying world-vehicle transformation matrix is estimated
by the PSO-based tracker in the online phase. The parti-
cle swarm optimization (PSO) algorithm generates candidate
virtual depth maps, which are then evaluated within a depth-
based cost function. The depth-based cost function measures
the similarity between the virtual depth map and the online
stereo depth map, which is then utilized by the PSO frame-
work to estimate the optimal set of coordinate transforms. To
estimate the optimal transforms in a computationally efficient
manner, we prune the depth maps and restrict the cost func-
tion evaluation to the remaining depth regions. We perform
the pruning using the v-disparity method [18] and eliminate
certain objects such as the pedestrians, vehicles, and build-
ings.

We evaluated our proposed algorithm with acquired data
sets and performed a detailed comparative and parameter
analysis. Experimental results show that the proposed algo-
rithmperformsbetter than the baseline algorithms.Weextend
the work by John et al. [15], where authors utilized the stan-
dard PSO to localize the vehicle. Our main contributions
include: (1) A novel multiswarm PSO algorithm is used to
localize the vehicle in the point cloud; (2) the Kalman filter
is used in the bootstrapping phase to stabilize the GPS–INS
information and initialize the online PSO tracker. Addi-
tionally, we perform a detailed parametric and comparative
analysis in comparison with previous work [15] .

The rest of this article is structured as follows. In Sect. 2,
the state-of-the-art literature is reviewed. We then present
our proposed algorithm in Sect. 3. Experimental results are
presented in Sect. 4, and our observations and conclusion are
presented in Sects. 5 and 6, respectively.

2 Literature review: state of the art

Usually, a GPS sensor is employed for vehicle localization.
However, the GPS-based system is prone to low accuracy
and limited by intermittent weak signals due to insuffi-
cient or missing satellite, tall buildings, and tunnels [5,11].
Researchers have sought to address this issue by incorporat-
ing additional sensors [3]. Typically, the inertial navigational
systems (INS) are used to enhance the vehicle’s capability
in localization. The INS systems filter the GPS signals to

account for the localization signals. Additionally, the INS
also performs interpolation to account for the intermittent
missing GPS signals. The filtering and interpolation are
mainly performed using the Kalman filter [4]. However, the
Kalman filter is limited to linear motion and fails to perform
accurate localization for nonlinear vehicle motion. This is
addressed by nonlinear variants of the Kalman filter such
as the Extended Kalman filter (EKF) [24]. In case of the
visual odometry methods, following the initial localization,
feature extraction andmatching in successive frames are used
for localization [22]. While the INS and VO-based meth-
ods do improve the localization accuracy, they are prone to
accumulative drift errors. To address this issue, sensors such
as LIDAR are used [26]. The LIDAR sensor can localize
the vehicle in the surrounding environment using features
from surrounding environments, such as lane markings and
buildings. However, precise LIDAR sensors tend to be too
expensive to afford [26]. Another approach considers the
localization as a Simultaneous Localization and Mapping
(SLAM) problem. Despite of the recent developments in
vehicle localization using SLAM, the approach is still prone
to the effects of error accumulation or divergence [2].

The problem of divergence is addressed by utilizing prior
information such as dense point clouds [6,19,23]. To inte-
grate the prior information within the localization problem,
typically, vision sensors are used. It can be seen that the
monocular camera is commonly used for this task [20]. Com-
pared to this work, Yoneda et al. [26] utilized LIDAR to
localize the vehicle in 3D point clouds. However, the precise
LIDAR used in their work is expensive and not feasible for
practical applications. In spite of the recent advancements
in vehicle localization techniques, it can be seen that the
problem still remains a challenge. Recently, John et al. [15]
utilize the particle swarm optimization to localize the vehicle
in the point cloud using stereo vision. However, the standard
particle swarm optimization algorithm is shown to be com-
putationally expensive.

We propose to localize the vehicle in the dense point cloud
map using stereo depth information and a novel multiswarm
particle swarm optimization algorithm. Furthermore, novel
bootstrapping phase is introduced to stabilize the GPS infor-
mation prior to the vehicle localization. Our solution with the
stereo vision reduces the overall cost of the system and can
also achieve a good performance for vehicle localization.

3 Localization algorithm

We implement vehicle localization in the point cloud map
using stereo-based depth information. Our experimental
vehicle is equipped with a GPS, an odometer, and a stereo
vision system. The point cloud maps are generated by the
mobile mapping system (MMS) [1] in advance and contain
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detailed 3D information of the environment. The MMS gen-
erates the point clouds where each 3D data point contains
the latitude, longitude, and altitude information. The latitude
and longitude information is represented in the 2D Universal
Transverse Mercator (UTM) system.

Given a pre-defined point cloud map, the autonomous
vehicle can be localized within the point cloud using GPS
information. However, the GPS information is prone to inter-
mittent missing signal in certain areas. Thus, in our proposed
work, we perform the vehicle localization using the stereo-
based depth information. To perform the localization, we
generate virtual depth maps from the 3D point clouds using
a set of transformation matrices. The set of three transfor-
mation matrices perform the transformation between three
coordinate systems. The first matrix transforms the point
cloud maps from the world to the vehicle coordinate T v

w

(world vehicle). The second matrix transforms these trans-
formed data points from the vehicle coordinate to stereo
coordinate T s

v (vehicle stereo). Finally, using the intrin-
sic parameters of the stereo camera, T i

s , the virtual depth
map is generated. Among the three matrices, the vehicle
stereo T s

v and stereo intrinsic T i
s matrices are constant for

the autonomous vehicle. While the world-vehicle matrix T v
w

changes as the vehicle moves. The world coordinate system
is defined at the origin of the UTM coordinate. The vehi-
cle coordinate system corresponds to the GPS location in
the vehicle, and the stereo coordinate system corresponds to
the left camera in the stereo rig. An overview of the three
coordinate systems is provided in Fig. 1a.

We estimate the optimal set of transformation matrices in
three phases and perform the vehicle localization. The three
phases are represented by the off-line, bootstrapping, and
online phases. In the off-line phase, the fixed matrix T i

s is
obtained by calibration, while the fixed vehicle stereo matrix
T s

v is estimated using the PSO. In the bootstrapping phase,we
obtain an initial estimate of the time-varyingmatrix T v

w using
the Kalman filter and GPS-INS information. The initial esti-
mated of world-vehicle matrix is used to initialize a novel
multiswarm PSO-based tracker in the online phase. In the
PSO-based optimization framework, candidate transforma-
tion matrices are used to estimate generate candidate virtual
depth maps. These candidate virtual depth maps are evalu-
ated within a depth-based cost function. The cost function
evaluates the “goodness of fit” between the candidate virtual
depth maps Mv , generated by the PSO, and the online stereo
depth map Ms(t). By estimating the optimal set of candidate
transformation matrix, we perform the vehicle localization.
To reduce the computational complexity of the PSO evalu-
ation, we prune the stereo depth map using the V-disparity
method proposed by Long et al. [18]. The depth evaluations
are confined to the remaining regions of the stereo depthmap.
We next review the different algorithm phases. An overview
of the algorithm is presented in Fig. 1b.

Fig. 1 An illustration of the a different coordinate systems and b the
optimization-based localization framework

3.1 Off-line phase

In the off-line phase, we estimate the fixed vehicle stereo,
T s

v , and stereo intrinsic matrix, T i
s . The matrix T i

s corre-
sponds to the intrinsic calibration parameter of the vehicle’s
stereo rig and is obtained by calibrating the stereo rig using
a checkerboard pattern. To estimate the fixed vehicle stereo
matrix, we acquire a dataset using our experimental vehicle
in a pre-defined area where the time-varying transformation
matrix T v

w information is readily available.More specifically,
the dataset is acquired in areas without tall buildings and
good satellite coverage. In such areas, the GPS–INS infor-
mation directly corresponds to the varying transformation
matrix information with minimal errors.

Given the calibrated T i
s matrix and acquired GPS–INS-

based world-vehicle T v
w matrix, we utilize the PSO algorithm

to estimate the fixedmatrix T s
v . The PSO algorithm estimates

an optimal T s
v by generating and evaluating a set of candi-

date virtual depth maps. The set of virtual depth maps are
generated by PSO using the corresponding set of candidate
transformation matrices. These set of virtual depth maps are
then evaluated by the PSO bymeasuring their similarity with
the stereo depthmap. The stereo depthmap is generated from
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the vehicle using the MPV algorithm [18]. To enhance the
computational efficiency of PSO evaluation, we prune the
depth map using a disparity map-based algorithm. The esti-
mated depth map is used in the PSO cost function to evaluate
the virtual depth maps. Using the complete stereo map for
evaluation is computationally expensive. Thus, we prune the
depth map and limit the evaluation to only certain depth map
regions.More specifically, we utilize the curb detection algo-
rithm proposed by Long et al. [18] to remove objects such as
pedestrians and vehicles from the depth map.

The PSO generates candidate virtual depth maps using
the candidate vehicle stereo transformation matrix T s

v . More
specifically, each particle in the PSO swarm, xm , is a vector
representation of the candidate matrix T s

v . The mth particle
is given as xm = [ex , ey, ez, θ, tx , ty, tz], where ex , ey, ez, θ
represents the axis–angle representation of the rotation
matrix and tx , ty, tz represents the translation parameters.

The candidate virtual depth maps generated by the PSO
particles are evaluated by the PSO cost function. The PSO
cost function measures the similarity between the candidate
virtual depth map and the stereo depth map generated by the
MPV algorithm. To reduce the computational efficiency, the
depthmaps are pruned and the PSO evaluation is restricted to
the unpruned regions. The cost function for the PSO evalua-
tion is obtained bymeasuring theEuclidean distance between
the candidate prunedvirtual depthmaps and the pruned stereo
depth maps. This is given as:

f (x′) = dist(Ms, Mv(x′, T i
s , T v

w)) (1)

where x′ represents the PSO particle, which is a vector rep-
resentation of the candidate transformation matrix T s

v . Note
that T i

s and T v
w matrices are available for the vehicle stereo

matrix estimation. A detailed overview of the off-line phase
is presented in Fig. 2a.

3.2 Bootstrapping phase

Following the estimation of the parameters of the vehicle
stereo T s

v matrix, the vehicle localization is performed by
estimating the time-varying world-vehicle transformation
matrix T v

w in the online phase using a PSO-based track-
ing algorithm. In the bootstrapping phase, we initialize the
tracking algorithm usingGPS–INS information derived from
a bootstrapping sequence with b frames. The GPS–INS
directly provides the estimates of the T v

w matrix for the boot-
strapping frames. However, these estimates are not stable.
Consequently, we stabilize these estimates over the boot-
strapping sequences using the Kalman filter. Following the
stabilization, we use the optimal Kalman state parameters
x(b) of the bth frame to initialize the PSO tracker. The x(b)
is a 7-dim containing the axis–angle representation and trans-
lation parameters of T v

w . We next explain in detail the online

(a) Offline phase

(b) Bootstrapping phase

(c) Online phase

Fig. 2 A detailed overview of the different phases involved in the pro-
posed algorithm

phase. A detailed overview of the bootstrapping phase is pre-
sented in Fig. 2b.

3.3 Online phase

We perform the vehicle localization at each time instant
t using the novel PSO-based tracker. Given the estimated
transformation matrices, i.e., T s

v and T i
s , we estimate the

remaining time-varyingworld-vehicle transformationmatrix
T v

w without using the GPS–INS information. Typically, vari-
ants of the Kalman filter and particle filters are used for the
tracking algorithm.However, both these algorithms are prone
to divergence. To address this issue, we utilize the PSO algo-
rithm to perform tracking, by estimating the parameters of
the T v

w matrix or xvw(t) at every t frame.Candidate parameters
generated by the PSO algorithm, along with the previously
estimated fixed transformation matrices, are used to generate
the candidate virtual point cloud depth maps. By measuring
the similarity between the candidate and stereo depth images,
the optimalworld-vehicle transformation parameters are esti-
mated and the vehicle is localized.However, the time-varying
PSO algorithm is computationally expensive and not suited
for online tracking.

The time-varying PSO algorithm [25] functions as an
global-to-local optimizer with varying inertia values. At high
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(a) (b)

Fig. 3 An illustration of the amultiple swarm PSO and b single swarm
PSO algorithm in a 2-dim search space. The blue bounding boxes rep-
resent the search limits, and the blue circles represent the particles. The
red circle represents the PSO estimate in the previous frame, while the
green circle represents the predicted particle (colour figure online)

inertia values, the PSO functions as a global optimizer, while
at lower inertia values the PSO functions as a local opti-
mizer. We propose to localize the vehicle by tracking the
Kalman initialized transformation parameters in the online
phase. This tracking is proposed as a local constrained search
at each frame using the PSO. This is achieved by modifying
the global-to-local PSO optimizer to a local optimizer. To
account for vehicle motion and increase robustness, we pro-
pose to use multiple PSO swarms to perform constrained
local search at two locations of the search space. For a given
frame t , we initialize the first PSO swarm at the previous
frame’s t − 1 estimate xvw(t − 1). The second swarm is ini-
tialized at the predicted estimate for frame t , x̂vw(t). The
predicted estimate at frame t is generated using the veloc-
ity vector ν(t − 1) by,

ν(t − 1) = xvw(t − 2) − xvw(t − 1) (2)

The PSO swarm at both the locations are initialized using
a pre-defined diagonal covariance �b. Following the initial-
ization, each swarm performs the local search independently
following the PSO algorithm.At the end of PSO iteration, the
best global particles of the two swarms are compared and the
global particle with better cost function value is selected as
the estimate for frame t . Examples of the localization results
are shown in Fig. 4. Henceforth, we refer to this algorithm as
the multiple PSOmultiple search limit (MPML). An illustra-
tion of the proposedMPML is shown in Fig. 3. Similar to the
off-line PSO evaluation, the candidate generated by the mul-
tiswarmPSO is also evaluated by the depth-basedmeasure. A
detailed overview of the online phase is presented in Fig. 2c.

4 Experimental results

The proposed algorithm is validated on multiple acquired
data sets.We performed a detailed comparative and paramet-

Fig. 4 Localization results from theonline phase on the acquireddataset
using theMPMLalgorithm. The left column denotes the left image from
the stereo pair; the middle column denotes the estimated disparity. The
right column represents the estimated point cloud virtual depth image

ric analysis of the algorithm. Different variations in the PSO
tracker are also evaluated. We perform two sets of exper-
iments. In the first set, we evaluate the estimation of the
vehicle stereo coordinate transform by the off-line PSO algo-
rithm. In the second set, we evaluate the vehicle localization
by the online multiswarm PSO algorithm. Our algorithmwas
implemented on a Windows machine (3.5GHz Intel i7 pro-
cessor) with MATLAB.

Data sets and algorithm parameters The training data set for
the off-line phase contains 15 stereo depth maps and corre-
sponding T v

w parameters derived from the GPS–INS sensor.
We used 5 PSO particles, c1 and c2 were set at 2, A was set
to 0.5, and C was set to 100 PSO iterations.

We acquired three data sets with multiple sequences for
the online phase. The first data set contains 4 sequences with
300 frames. The second data set contains 5 sequences with
1200 frames. The third data set contains 3 sequences with
1200 frames. The length of the bootstrapping sequence b
was set to 5. The MPML contained 5 particles with the pre-
vious estimate swarmcontaining 3 particles and the predicted
estimate swarm containing 2 particles. For both the swarms,
C was set to 50 iterations and A was set to 0.1 to facilitate a
local search. Finally, we define the search limits for the PSO
search, based on the maximum inter-frame velocity.

4.1 Estimation of the vehicle stereo coordinate
transform

In our first experiment, we evaluate the off-line phase of our
proposed algorithm. More specifically, we evaluate PSO’s
estimation of the fixed transformation matrix T s

v . We per-
form a comparative analysis of the PSO algorithm with the
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baseline algorithms, including genetic algorithm (GA) and
the simulated annealing algorithm (SA) [10]. To facilitate a
fair comparison, the algorithm parameters of the GA and SA
were kept similar to the PSO. Firstly, the number of gener-
ations and iterations of the GA and SA is equal to the PSO
iterations. Secondly, the same search limits were also used to
constrain the GA and SA. We report the Euclidean distance
measure between the estimated transformation matrices and
the ground truth transformation matrix parameters. The
errors reported in our results correspond to thedistances in the
transformation matrix-based “feature space.” As discussed
earlier, these transformation matrices are represented in 7-
dimvector form containing the axis–angle representation and
the translation parameters. The ground truth parameter for
this evaluation is obtained from the manually calculated dis-
tance and orientation between the GPS (vehicle coordinate)
and stereo camera (stereo coordinate) on the experimental
vehicle.

As shown in Table 1, we observed that the PSO algorithm
reported better computational accuracy than the baseline
algorithms. Comparing the computational efficiency, we
observed that the PSO is computationally efficient. The vari-
ations in computational time can be attributed to the search
limits enforcement scheme in the algorithms. While the PSO
enforces the search limits by simply reversing the sign or
search direction of the velocity components, the GA and
SA perform re-sampling to enforce the search limits. Thus,
the increased computational time can be attributed to the re-
sampling scheme in the baseline algorithm.

We also compared two cost functions, which are based on
pruned depth map and complete stereo depth map, respec-
tively. Table 2 shows that the pruned depth map improved
both the accuracy and the computational efficiency.

Table 1 Mean and variance of the Euclidean distance-based “feature
space” error measures for the PSO, GA, and SA over 3 trials on the
off-line dataset

Algorithms PSO GA SA

Error 0.62 ± 0.08 1.52±0.6 1.32 ± 0.5

Time taken (min) 35 37.25 69.75

Table 2 Mean and variance of the Euclidean distance-based “feature
space” error measures for the PSO over 3 trials with and without pruned
depth map

Number of iterations Pruned depth map Complete stereo

Error 0.62 ± 0.08 1.06 ± 0.2

Time taken (min) 35 37

4.2 Vehicle localization

We evaluate the performance of the multiswarm PSO algo-
rithm. More specifically, we evaluate PSO’s estimation
of the varying transformation matrix T v

w . We report the
Euclidean distance measure between the estimated transfor-
mation matrices and the ground truth transformation matrix
parameters. The errors reported in our results correspond
to the distances in the transformation matrix-based “feature
space.” As discussed earlier, these transformation matrices
are represented in 7-dim vector form containing the axis–
angle representation and the translation parameters. The
ground truth parameter for the online phase for the track-
ing sequences corresponds to the GPS–INS parameters. We
perform a detailed comparative and parameter analysis of the
vehicle localization. For comparative analysis, we evaluated
the proposedMPMLmethodwith the particle filtering frame-
work, i.e., the particle filter (PF) [7] and the annealed particle
filter (APF) [8]. Similar to the off-line phase, the particle fil-
tering evaluations were kept similar to the 250 iterations of
the MPML. The PF contains 250 particles, and the APF con-
tains 125 particles and 2 layers.

Two sub-experiments were conducted in the compar-
ative study to estimate the T v

w parameters. In the first
sub-experiment, we estimated the T v

w(t) for all the t > b
frames, where b corresponds to the bootstrapping frames.
Note that in this experiment, the GPS–INS-based Kalman
filter was only used in the bootstrapping frames. The local-
ization in the remaining frames is based on depth only. As
shown in Table 3, the proposed algorithm outperformed the
baselines. The divergence error in PF caused the low accu-
racy in the final results.

In the second sub-experiment, termed as the “missing
GPS experiment,” we evaluated the localization errors for
the intermittently missing GPS signals, by sequentially per-
forming the tracking and re-initialization. More specifically,
for a sequence of length n, we performed the bootstrap in
the first b frames, followed by tracking in the next k frames.
At the end of the b + k frames, a Kalman filter-based re-
initializationwas run for b frames using theGPS information.
The re-initialization is similar to the bootstrapping phase.
The optimal Kalman state estimate at the end of the re-
initialization phase was adopted to initialize the tracking for

Table 3 Mean and variance of the Euclidean distance-based “feature
space” error measure for the first sub-experiment

Dataset MPML PF APF

1 0.23 ± 0.01 0.89 ± 0.27 1.57 ± 0.7

2 0.08 ± 0.01 1.3 ± 0.53 2.04 ± 1.0

3 0.5 ± 0.06 1.1 ± 0.3 2.3 ± 1.6
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Table 4 Mean and variance of the Euclidean distance-based “feature
space” error measure for the missing GPS experiment with 5 missing
frames

Dataset MPML PF APF

1 0.03 ± 0.01 0.32 ± 0.01 0.48 ± 0.03

2 0.01 ± 0.01 0.2 ± 0.01 0.44 ± 0.03

3 0.01 ± 0.02 0.22 ± 0.1 0.37 ± 0.03

the next k frames. Thus, we sequentially performed the track-
ing and re-initialization in every k and b frames, respectively.
The experiments were carried out for b = 5 and k = 5
frames. The results are tabulated in Table 4, where we can
see that the performance improves for smaller intermittent
signal.

Different variants of the PSO swarm For the parameter
evaluation of the algorithm,we evaluated different variants of
the PSO algorithm for comparative study in the experiments.
Apart from our proposed algorithm, where 2 independent
PSO swarmswere initialized to perform the tracking, we also
performed an evaluation with the global-to-local PSO algo-
rithm. The PSO algorithm was initialized with 5 particles, A
as 0.1 and C = 50. A single global search limit was defined
accordingly. During the online tracking, for each frame t , we
initialized the swarm and search limits around the previous
frame’s t−1 estimate.We refer to this algorithm as the single
PSO with single search limit (SPSL). The search limit range
for this variant was set up to be bigger than the MPML’s
search limit range to account for inter-frame motion. The
results obtained with variants are given in Table 5 for the
localization experiments and in Table 6 for the missing GPS
experiment. It can be seen that the MPML achieves a better
performance than the original algorithm. An illustration of
the variants is provided in Fig. 3.

Table 5 Mean and variance of the Euclidean distance-based “feature
space” error measure for the localization experiment

Dataset MPML SPSL

1 0.23 ± 0.01 0.63 ± 0.17

2 0.08 ± 0.01 0.69 ± 0.10

3 0.5 ± 0.06 0.89 ± 0.06

Table 6 Mean and variance of the Euclidean distance-based “feature
space” error measure for the missing GPS experiment with 5 missing
frames

Dataset MPML SPSL

1 0.03 ± 0.01 0.27 ± 0.06

2 0.01 ± 0.01 0.06 ± 0.04

3 0.01 ± 0.02 0.03 ± 0.02

5 Discussion

Based on the experimental results, we found that the stereo
vision was a suitable alternative to the expensive LIDAR
for depth-based localization. In the off-line phase, the PSO
algorithm reported a better performance and computational
efficiency than comparative optimization algorithms like the
GA and the SA algorithm. This result reflected previous
observations on different optimization problems like track-
ing [13] and registration [14], etc. The better performance can
be attributed to the PSO algorithm’s search mechanism. On
the other hand, higher computational efficiency is achieved
thanks to the search limit mechanism. Unlike the GA and
SA which enforce the search limits by re-sampling [14],
the PSO enforces the search limits by merely reversing the
velocity vector and assigning the boundary values to the
particles. While the PSO reported good results for the off-
line phase, the computational efficiency was not suitable for
the online phase as the time-varying PSO algorithm takes
135s per frame on a CPU. By utilizing the locally con-
strained MPSO algorithm, we reported a computational time
of 400ms per frame on CPU. A similar computational time
was also reported by the SPSL algorithm, but the param-
eter estimation accuracy is slightly inferior as observed in
Table 5. This can be attributed to SPSL algorithm’s bigger
search limits, compared to the MPML (Fig. 4).

6 Conclusion

We propose to localize the vehicle in the dense point cloud
using stereo vision. An optimization framework using the
particle swarm optimization is formulated to localize the
vehicle in autonomous driving. Candidate virtual depthmaps
are generated from the point cloud using a series of transfor-
mation matrices. The optimal set of transformation matrices
are searched with a depth-based cost function within the par-
ticle swarm optimizer. The proposed algorithm optimizes
these transformation matrices in three phases, i.e., the off-
line phase, bootstrapping phase, and the online phase. The
fixed transformation matrices are estimated in the off-line
phase using the particle swarm optimization, while the vary-
ing transformation matrix is initialized in the bootstrapping
phase and estimated in the online phase using a novel
optimizer-based tracking framework. The proposed algo-
rithm is validated with the acquired data sets. In addition,
we performed a detailed comparative and parametric anal-
ysis. The proposed algorithm reports a better localization
accuracy in comparison with the baseline algorithms. In our
future work, the algorithm will be implemented on vehicle
with GPU and tested extensively with large-scale data sets.
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