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Abstract
Activities of daily living (ADL) can be used to identify a person’s daily routine which helps health professionals to provide
preventive healthcare. Classification of ADLs is therefore very important. In this study, long short-term memory (LSTM)
network, which is an extension of recurrent neural networks, is used. Data collected in MobiAct data set are used to train and
test the network. An accuracy of 0.90 is achieved using LSTM network.
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1 Introduction

Activities of daily living (ADL) classification are used to
identify a person’s activity level and also used to detect falls
sincemost of the hospitalized elderly peoplewere admitted to
hospitals due to falls. By identifying a person’s activity level,
early diagnosis of some diseases can bemade. Several studies
were conducted to develop classification algorithms for daily
activities using accelerometer data. This can be used in con-
text awareness sensing or fitness and health tracking. Context
aware applications can customize their behavior based on the
current activity.

A triaxial accelerometer attached to the waist was used by
Mathie et al. [1] to classify movements. The algorithm was
structured as a hierarchical binary tree. Initially signals from
the accelerometer were divided into activities and rest. Activ-
itieswere further divided intowalking, changes in orientation
and falls while rest was further sub-divided into standing,
sitting, and lying. In the studies conducted using 26 sub-
jects, sensitivity and specificity of 97.7% and 98.7% were
achieved. In this algorithm, activities and rest were identi-
fied calculating the energy expenditure and comparing that
to a threshold. If the value exceeded the threshold, the signal
was classified as an activity or else as a rest. Tilt angles of
a subject were used to find whether the subject was upright
or lying. In the cases where this algorithm could not achieve
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good accuracy a rule-basedmethod, which used the tilt angle,
duration, energy expenditure, past and future activities, was
used to find the probability of standing and sitting. Falls were
also classified according to a similar rule-based method.

A kinematic sensor attached to the chest was used in a sys-
tem developed by Najafi et al. [2] to detect sitting, standing,
lying, and walking. This method was tested on community
dwelling elderly persons in a gait laboratory and during their
normal physical activities as well as on hospitalized elderly
persons. The system was able to identify with a high rate
of accuracy of the following actions: sit to stand, stand to
sit, 62 transfers from bed, 144 posture changes to left, right,
back and ventral as well as walking. The device consists of a
gyroscope and two accelerometers to measure angular veloc-
ity as well as front and vertical accelerations of the trunks,
respectively.

Allen et al. [3] investigated two classification methods
based on Gaussian mixture model (GMM) and a heuristic
rule-based method to identify standing, sitting, lying, and
walking using a triaxial accelerometer attached to the waist.
Because of the limitation of user data, GMMs can be used
to resolve this issue by adapting feature extraction to the
GMM to separate gravitational and body components from
the acceleration data. These data as well as delta coefficients
derived from gravitational and body components as well as
energy expenditure were used as features for the GMM.
While heuristic rule-based methods had problems in iden-
tifying sitting and standing as well as the transition between
the two positions, GMM method also had problems in iden-
tifying the standing.
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In another study, Karantonis et al. [4] implemented awaist
mounted device for real-time activity classification using tri-
axial accelerometry. This can also identify activity, rest, and
postural orientation. In this algorithm, signal magnitude area
(SMA) was used to distinguish between activity and rest
while the tilt angle was used to classify upright, lying or
inverted positions. signal magnitude vector (SVM) which
was derived from the accelerometer data and identified pos-
sible fall events. If a frequency peak fell between 0.7 and
3Hz of the fast Fourier transform (FFT) of z axis data, then
the upright active was classified as walking. This calculation
was done in the computer, as opposed to others, which were
done on the wearable device itself.

Various studies have been conducted to design a method
to detect falls in real time. If a fallen person can get assistance
quickly, then it may help to reduce some of the effects from
the fall. In the case the fallen person is unconscious, these
devices may help bring quick assistance.

Lindemann et al. [5] developed a fall detector using
accelerometers that can be attached to a hearing aid behind
the ear. This algorithm can detect ADLs and falls. Sensitivity
and specificity of the devicewere accessed using acceleration
patterns and ADLs of one young volunteer and one 83-year-
old volunteers. The algorithm used an estimated velocity and
measured accelerations to detect the falls. This algorithm
showed a false positive only when the hearing aid was hit by
the hand. Otherwise it was able to identify falls events and
normal activities.

Bourke et al. [6] used accelerometers attached to the thigh
and trunk to identify supervised simulated falls and ADL. 10
young people were used for the supervised falls and these
falls simulate 8 common types of falls of older persons. To
detect ADL, 10 elderly persons were used. To classify falls,
thresholds were derived from the acceleration data of the
simulated falls. When using the upper threshold of the fall in
the trunk, all ADL tasks were correctly classified. From that
result, they decided that the most suitable place to attach the
sensor was the trunk.

Kangas et al. [7] investigated various fall detection algo-
rithmswith accelerometers attached towaist, wrist, and head.
Using data from ADLs as a reference, three algorithms were
used on different phases of a fall. The results showed that
good results can be achieved if the accelerometer was worn
on head or waist. They concluded that a waist worn device
which can identify the impact phase and the lying phase of
the fall was ideal for fall detection.

Zheng [8] used a single triaxial accelerometer and a hier-
archical scheme as the recognition method. Least squares
support vector machines (LS-SVM) and Naive Bayes (NB)
algorithm was used as the classifiers. He achieved an accu-
racy rate of 95.6% for recognition of 10 activities. A Doppler
radar system was developed with Hidden Markov models to

classify ADLs in an unsupervised manner [9]. An accuracy
of 89% was obtained for 6 features.

SmartStep, which is an insole-based ADL classification
system, was used with a wrist worn device to compare the
accuracy [10]. It achieved a high score for perceived com-
fort since an insole-based system does not hinder the daily
activities. A-Wristocracy, which is a system developed by
Vepakomma et al. [11], uses artificial neural networks to clas-
sify home activities using a wrist worn device. While it did
not use video imaging, feature set was extracted using mul-
timodal sensing suites. It classifies 22 activities with 90%
or more accuracy. Ando et al. [12] developed a multisensor
approach to identify critical activities of elderly people and
personswith neurological pathologies. It combines data from
a gyroscope and an accelerometer. This system achieved a
specificity of 0.98 while sensitivity is 0.81. K nearest neigh-
bor algorithmwas utilized in Physical Activity Classification
Algorithm (PAC) which classified 13 ADLs using multiple
sensors attached to different body locations [13].

Another approach is gait pattern identification. Several
studies used extreme machine learning (ELM) and ANN for
the pattern identification. These are also helpful in preventing
falls in the elderly [14,15].

Using deep learning methods to classify ADLs is a cut-
ting edge technique. When performing recognition tasks,
it is important to identify temporal correlations within the
input data. This problem can be addressed using convo-
lutional neural networks (CNNs). However, CNNs have a
limitation to capture dependencies within input data. To
capture long-range dependencies, deep recurrent neural net-
works (DRNNs) were proposed by Murad et al. [16]. They
presented unidirectional, bidirectional, and cascaded archi-
tectures based on long short-term memory (LSTM) DRNNs
evaluated their effectiveness on miscellaneous benchmark
datasets, and showed superior performance. These deep
learning techniqueswere used in other area, such as to predict
protein secondary structure, backbone angles, contact num-
bers, and solvent accessibility [17]. LSTM RNNs were also
used to predict remaining useful life of lithium-ion batteries
[18]. In this paper, ADLs are classified using LSTM, which
is part of RNN.

The remainder of the paper is organized as follows: Sect. 2
is devoted for the background of this study including deep
learning and its application in the field of ADL classification.
Themethodology is described in Sect. 3. Experiments and the
corresponding results are reported and analyzed in Sect. 4.
Finally, the conclusion is drawn in Sect. 5.
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Fig. 1 Architecture of RNN process [16]

2 Background

2.1 Deep learning

Deep learning methods can extract discriminating features
from data. Since processing capabilities have also increased
complex data analysis can be done in real time.Deep learning
algorithms can be supervised, semi-supervised or unsu-
pervised. Artificial neural networks, deep belief networks,
deep neural networks, recurrent neural networks (RNN) are
some of the algorithms associated with deep learning. These
algorithms are used in bioinformatics, speech processing,
computer vision, and in many other applications.

2.2 Long short-termmemory

Long short-term memory (LSTM) is an extension of RNNs.
RNNs differ from the traditional neural networks in which
their inputs and outputs are assumed to be independent of
each other. But in RNNs it has a memory which can remem-
ber previous computations. There are multiple nodes in a
hidden layer in RNNs as shown in Fig. 1. Each node cal-
culates current hidden state ht and output yt using previous
hidden state ht−1, and input xt as

ht = F (Whht−1 +Uhxt + bh) , (1)

yt = F
(
Wyht + by

)
, (2)

where weight for the hidden to hidden recurrent connection,
input to hidden connection, and hidden to output connection
are denoted by Wh , Uh and Wy , respectively. bh and by are
bias terms for hidden and output states. F is an activation
function which is a nonlinear function and is chosen from
hyperbolic tangent, sigmoid or rectified linear unit [16].

LSTMs typically have a similar architecture, but they use
a different function to calculate hidden state and memory
in LSTMs are called cells. These cells take previous hidden
state and current input and decide what to keep. In addition,
these cells can capture long-term dependencies.

Fig. 2 Architecture of LSTM process [16]

In Fig. 2, the architecture of LSTM process is shown. ft is
the forget gate, it is the input gate, ot is the output gate, and gt
is the input modulation gate. ct and ht are internal state and
hidden state, respectively. b, U , and W are learning param-
eters of cell gates. Subscripts of these learning parameters
denote the cell gate. b f , U f , W f are learning parameters of
forget gate, bi , Ui , Wi are learning parameters of input gate,
bo, Uo, Wo are learning parameters of output gate, and bg ,
Ug , Wg are learning parameters of input modulation gate.
They are, in detail, expressed as

ft = σ
(
b f +U f xt +W f xt−1

)
, (3)

it = σ (bi +Ui xt +Wiht−1) , (4)

ot = σ (bo +Uoxt +Woht−1) , (5)

gt = σ
(
bg +Ugxt +Wght−1

)
, (6)

ct = ft ct−1 + gt it , (7)

ht = tanh(ct )ot , (8)

where σ is the sigmoid function and tanh(·) is the hyperbolic
tangent function.

3 Method

In this study, acceleration data from 10 subjects are used
in a LSTM network to classify 5 different activities, i.e.,
standing,walking, jogging, jumping, and climbing stairs. Ini-
tially a third-order median filter is used on the acceleration
signals to remove abnormal noise spikes. Acceleration sig-
nals consist of gravitational component and body component.
To separate gravitational component from body component,
low-passfiltering is done.Low-passfiltered signal is the grav-
itational component [gravitational acceleration (GA)] and by
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Fig. 3 Block diagram of the classification process [19]

Fig. 4 Block diagram of the LSTM layer [19]

subtracting that signal from raw acceleration (RA) signal we
get the body component [body acceleration (BA)] as

BA = RA− GA. (9)

These body components are used to calculate the signal
magnitude area (SMA) as

SMA = 1

T

(∫ T

0
x(t) dt +

∫ T

0
y(t) dt +

∫ T

0
z(t) dt

)
,

(10)

where T is the length of the acceleration signal.
After that zero crossing rates for each axis of accelera-

tion are calculated. These rates along with SMAs are used
as features for the input to the LSTM. It is specified with a
output size of 400, number of classes as 5 and to output the
last of the sequence. Training options used are 300maximum
epochs, mini batch size of 10 and is trained using stochastic
gradient descent with momentum. These parameters are cho-
sen using trial and error method. The network is trained on
5 activities of 20 subjects, namely standing, climbing stairs,
jogging, jumping and walking. Finally the network is tested
on 5 activities from another 20 subjects and the accuracy is
calculated.

A sequence input layer inputs sequence into the network.
AnLSTM layer learns long-term dependencies between time
steps of sequence data. As shown in Fig. 3 to predict class
labels network has a fully connected layer, softmax layer
and classification output layer. In Fig. 4 block diagram of
the LSTM layer is shown. h denotes the hidden state and c
denotes the cell state of each LSTM unit.

4 Experiments and results

4.1 Datasets

Thedata used in this study are fromMobiAct data setwhich is
publicly available [20]. Data are collected from a smartphone
while subjects are performing different types of activities. A

Samsung Galaxy S3 device with the LSM330DLC inertial
module was used to capture the motion data. The gyroscope
was calibrated prior to the recordings using the device’s inte-
grated tool. For the purpose of data capturing, an Android
application was developed that records raw data for accel-
eration, angular velocity and orientation with the enabled
parameter SENSOR_DELAY_FASTEST. This provides the
highest possible sampling rate.

In an attempt to simulate daily usage ofmobile phones, the
device was located in a trouser pocket freely chosen by the
subject in any random orientation. For the falls, the subjects
used the pocket on the opposite side of the falling direction.
Each sample is stored along with its time stamp in ns.

For the generation of the MobiAct dataset 57 subjects
(42 men and 15 women) were recorded while performing
the predefined activities. The subjects’ age spanned between
20 and 47years (average: 26), the height ranged from 160
to 189cm (average: 175), and the weight varied from 50 to
120 kg (average: 76). 50 subjects completed successfully
all ADLs and 54 subjects completed all falls. In total, 10
trials had to be removed from the dataset due to errors in
acquisition.

4.2 Result and discussion

An accuracy of 0.90 is achieved using above LSTM settings.
The results are shown in Table 1.

The network is trained by initially dividing the data set in
to small groups called mini batches. In the table mini batch
loss is the difference between predicted value and the true
value and mini batch accuracy is the percentage accuracy of
the predicted value compared to the true value. Base learning
rate is the speed by which the network is trained. Accuracy
of training and loss of training, and the confusion matrix are
shown in Figs. 5 and 6, respectively. In Fig. 5, light line is
the training accuracy which is the classification accuracy on
each individualmini batch.Dark line is the smoothed training
accuracy, obtained by applying a smoothing algorithm to the
training accuracy. It is less noisy than the unsmoothed accu-
racy, making it easier to spot trends. Similarly in the graph
below light line is the loss and dark line is the smoothed
loss. The figure marks each training Epoch using a shaded
background. An epoch is a full pass through the entire data
set. In the confusion matrix, the classification of target class
versus output class is shown. In the figure numbers 1, 2,
3, 4 and 5 are standing, climbing stairs, jogging, jumping,
and walking, respectively. When classifying there is a small
confusion between jogging and jumping which are similar
activities. This method was then compared to the Gaussian
mixturemodel (GMM)classifier. For the samedataset,GMM
recorded an accuracy of 82% which is lower than the accu-
racy recorded by LSTM.
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Table 1 The results of LSTM showing time elapsed, mini batch loss, mini batch accuracy, and base learning rate

Epoch Iteration Time elapsed (ns) Mini batch loss (m/s) Mini batch accuracy (m/s) (%) Base learning rate

1 1 0.02 1.6087 100.00 0.0100

10 50 1.39 1.6113 0.00 0.0100

20 100 2.83 1.1434 70.00 0.0100

30 150 4.30 0.7378 20.00 0.0100

40 200 5.74 0.7232 40.00 0.0100

50 250 7.15 0.7085 50.00 0.0100

60 300 8.62 0.6965 50.00 0.0100

70 350 10.12 0.6867 60.00 0.0100

80 400 11.60 0.6786 60.00 0.0100

90 450 13.08 0.6709 60.00 0.0100

100 500 14.54 0.6629 60.00 0.0100

110 550 16.00 0.6532 60.00 0.0100

120 600 17.45 0.6409 60.00 0.0100

130 650 18.93 0.6269 70.00 0.0100

140 700 20.40 0.5922 70.00 0.0100

150 750 21.87 0.5870 60.00 0.0100

160 800 23.34 0.5312 70.00 0.0100

170 850 24.83 0.5719 70.00 0.0100

180 900 26.30 0.5849 60.00 0.0100

190 950 27.77 0.5771 60.00 0.0100

200 1000 29.26 0.8577 40.00 0.0100

210 1050 30.74 0.6213 60.00 0.0100

220 1100 32.21 0.5168 60.00 0.0100

230 1150 33.69 0.3995 80.00 0.0100

240 1200 35.16 0.7250 70.00 0.0100

250 1250 36.64 0.4395 80.00 0.0100

260 1300 38.14 1.2448 40.00 0.0100

270 1350 39.64 1.0723 40.00 0.0100

280 1400 41.12 0.8563 50.00 0.0100

290 1450 42.60 0.2744 90.00 0.0100

300 1500 44.09 0.8109 70.00 0.0100

Fig. 5 Accuracy of LSTM process

5 Conclusion

In this study, we classified five activities namely standing,
climbing stairs, jogging, jumping, and walking, for 20 sub-
jects using trained LSTM network, which was trained using
another 20 subjects. This classifier can be used to identify the
context of the user and the identified context can be used in
context-based applications. We used SMAs and zero cross-
ing rates were used as input features to the LSTM network
making this simpler. In addition, using only 4 features is
sort of a benefit in terms of computation time. This study
achieves 0.90% accuracy although a very few features are
used as inputs. A-Wristocracy, also achieved a 90% accu-
racy while the Doppler radar system developed with Hidden
Markov models to classify ADLs in an unsupervised manner
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Fig. 6 Confusion matrix of the dataset

achieved an accuracy of 89% for 6 features. Chen et al. also
used LSTM to classify activities and achieved an accuracy
of 92%; however, they used the entire acceleration signal as
the input [21]. In this case, we used features extracted from
the acceleration signal since it will reduce the computation
time.When classifying there is some confusion between jog-
ging and jumping. This is mainly due to the fact that they
are similar activities. As a conclusion, our proposed method
outperforms some other methods proposed in the mentioned
literature.
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