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Abstract
With the improvement of sensing and storing technologies, a large amount of weather data become available, and the data size
will continue growing as radar imaging instruments continuously acquire data. In this work, we develop a deep convolutional
neural network with a large collection of radar images as input to train and validate a classification model, and then we
use the model to detect hailstorm events. This is interdisciplinary work between the disciplines of computer science and
meteorology. We are primarily interested in what hailstorm features the network learns and how it learns as convolving into
deeper iterations. The evaluation results show a high classification accuracy in comparison with existing hailstorm detection
approaches. The proposed approach can also be used to detect other types of severe weather events with minimal efforts on
variable or parameter changes.

Keywords Hailstorm detection · Convolutional neural network · Deep feature extraction

1 Introduction

Radar systems are commonly used to acquire data and mea-
sure moving objects for applications such as surveillance,
weather analytics, and traffic controls. Data acquired by a
radar system are stored as images, which are accumulated as
new data is acquired. As a result, the data become a large
collection of radar images. Our goal is to discover patterns
or correlations (features) that associate to an event in radar
images, and then use them for current data in order to predict
the occurrence of a similar event. Detecting an event from
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radar images presents an exceptional challenge because of
the large data volume and high complexity to interpret.

In this work, we propose a convolution neural network
(CNN) to extract deep features in radar images for severe
weather detection. The CNN used in this work is motivated
by Krizhevsky et al. [14]. Severe weather detection is a typ-
ical research domain that uses radar images as the primary
input data source. In particular, we are interested in hailstorm
detection using a large collection of radar images that carry
space–time precipitation information.Ahailstorm is a type of
thunderstorms producing small ice balls (hails), which may
hurt people, damage buildings, cause small aircrafts to crash,
etc.

Existing hailstorm detection approaches use a variety of
meteorological data collected from multiple sources such as
cloud-top temperatures, severe hail indices, convective avail-
able potential energy. A hailstorm expert has to manually
tune the threshold values of those variables. Data collected
from multiple sources may be in different types, and they
are usually obtained at different time intervals. Also, for a
given event, some types of data are available while others
may be not or only available at a different time points. Thus,
such data formatting issues make hailstorm detection with
existing approaches a laborious task.

Contribution In this work, the CNN approach learns
features automatically from radar images with little human
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interference and provides higher accuracy in comparison
with the existing approaches.Wevisualize and analyzediffer-
ent CNN layers and discover a unique feature called a nested
looping pattern. This pattern was not discussed in previous
hailstorm detection research. We evaluate three activation
functions and two pooling operations, which are crucial com-
ponents in a CNN, with a concentration on their impact on
the network’s training performance and classification accu-
racy for hailstorm detection. This work is interdisciplinary
and requires the knowledge of computer science and meteo-
rology. To our knowledge, this is the first work that adopts a
CNN for hailstorm detection.

The rest of the paper is organized as follows: Sect. 2
reviews some existing approaches for hailstorm detection.
We describe our methodology with the CNN in Sect. 3. Data
preprocessing and the experimental design are presented in
Sect. 4. Section 5 describes the evaluation results. Section 6
concludes our work and discusses the future work.

2 Related work

In the past, approaches with thresholding, network, and
machine learning algorithms were proposed to detect hail-
storms. Auer [3] used a combination of radar reflectivity at
S-band and cloud-top temperatures to detect hails. Bauer-
Messmer et al. [4] used satellite data, and a hailstorm can
be predicted based on the visual threshold place on metostat
data. Witt et al. [16] proposed a Bayesian neural network
with S-band NEXRAD radar data and temperature profiles
to define a severe hail index.

Marzban et al. [16] developed two neural networks to pre-
dict the hail size and classify for hailstorm occurrence. The
features used in the neural network were parameters such as
VIL, severe hail index, storm top divergence derived from
doppler radar as well as some environmental parameters cal-
culated using numerical models such as vertically integrated
wet-bulb temperatures. Ravinder et al. [26] presented a k-
means clustering algorithm for visualRGBsatellite images to
obtain cloud textures, and then they applied the haar wavelet
transformation to transform the textures with wavelength to
detect hails. Merino et al. [17] developed a two-phase hail-
detection tool based on logistic regression models, in which
multi-threshold techniques were adopted. Shen et al. [30] uti-
lized CNNs for contour detections in natural images using a
new loss function. Their approach can detect features similar
to those in our application, but it does not consider feature
coherence in time-varying sequences.

In recent years, researchers have proposed detection
algorithms using microwave soundings. Ferraro et al. [7]
developed a simple threshold algorithm utilizing advanced
microwave sounding unit and the storm reports from Storm
Prediction Center for hailstorm detection. Mroz et al. [18]

presented a threshold method for Ku-band reflectivity and
evaluated the classification accuracy at different threshold
values.

3 Methodology

We preprocess radar images from a storm event database
and crop out image regions that contain historical hailstorm
events (see the details in Sect. 4.1). Those cropped regions are
the input of the network. The network utilizes theCNN layers
similar to those in [15,25]. We followed the network design
methodology in [14]. Training a CNN is an iterative process
that progresses neurons during the forward pass, and updates
parameters (e.g., the weights of convolutional filters) during
the backward pass, until the loss calculated at an iteration
during the forward pass is minimized. As shown in Fig. 1,
the network is composed of five convolutional (conv.) lay-
ers, four pooling (pool.) layers, four normalization (norm.)
layers, three fully connected (FC) layers. More technical
details can be found in [14].

A convolutional layer extracts features by using learnable
filters across the feature maps produced from the previous
layer. Filters are randomly initialized using Gaussian noise.
The output featuremap of each filter is stacked on top of each
other to form a three-dimensional output, whose depth is the
total number of filters used in the layer. Thus, each feature
element (or a neuron) can be represented as x ∈ R

d×d×m ,
where d×d is the size of the featuremap, andm is the number
of filters. Given the feature map stacks of the previous layer
as input, to obtain a neuron y(i, j) of the current layer, we use
the following equation:

yk(i, j) =
⎛
⎝

ml−1−1∑
r=0

n−1∑
s=0

n−1∑
t=0

wk
(s,t) · x(i−n/2+s, j−n/2+t,r)

⎞
⎠ + bk

(1)

Equation 1 originates from the convolution theorem [5],
where i, j ∈ [0, d) and they represent the neuron index in
the feature map of the previous layer; k ∈ [0,ml) represents
the kth filter in the current layer l; n defines the size of the
kth filter;wk

s,t is the weight value at the index (s, t) in the kth
filter; ml−1 represents the number of filters in the previous

Fig. 1 The design of our network
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layer (l −1), and it corresponds to the depth of the input fea-
turemap stack; bk is the bias of the kth filter.When l = 0 (the
first convolutional layer), the outermost sum over the depth
is ignored. Also, in each convolutional layer, the values of
neurons are transformedwith a nonlinear activation function.
Common activation functions include sigmoid [24], rectified
linear unit (ReLU) [6,19] and tanh [12,13].We studied those
activation functions for hailstorm detection (see Sect. 5.2).
We eventually chose ReLU as the activation function in the
convolutional layer.

A pooling layer uses the max pooling function to down-
sample the feature maps. The max pooling function selects
the maximum neuron value in the pooling region (defined
by the size of a pooling filter) and disregards others. Lit-
erature has shown the debate about overlapped pooling or
non-overlapping pooling [6,14,27,29]. We studied overlap-
ping and non-overlapping pooling operations for hailstorm
detection (see Sect. 5.2). We eventually chose the overlap-
ping pooling operation in the pooling layer.

The normalization layers use the local response normal-
ization method [14]. The first fully connected layer flattens
the output of the last normalization layer into a single vector.
A dropout method [32] is used in the first and second fully
connected layers. The third fully connected layer produces
two probabilities in correspondence to “Hail” and “No Hail”
classes.

4 Experimental design

The network was developed with Google’s TensorFlow
library [2] accelerated with Nvidia CUDA parallel process-
ing platform. The program was written using Python. The
training experimentwas performed on aNvidia’s Tesla P100-
PCIE GPU device with 12GB memory.

The experiment consists of three scenarios: training, val-
idation, and testing. Each scenario is assigned with a subset
of original radar images. This section first discusses the
preprocessingmethod that crops out the image regions corre-
sponding to the historical hailstorm events. Then, this section
discusses the training, validation, and testing scenarios in
detail.

4.1 Preprocessing

The storm event database from National Centers for Envi-
ronmental Information (NCEI) [1] maintains the records of
historical stormevents. The recordswere created basedon the
reports from officials, news, and other trusty sources. Each
event consists of the event location (latitude and longitude),
date and time, event type, etc. In our experiment, we used
hailstorm events recorded from year 2006 to 2016, with an
average of 17,000 hailstorm examples available per year.

We used the records of events to locate the hailstorms
on NEXRAD images available from Iowa Environmental
Mesonet [11]. We cropped the event from the image into the
size of 150 × 150 pixels. The center of the cropped image
is at the event’s latitude and longitude. It is possible that the
records archivedmultiple reports for a single event. Thus, we
considered that the cropped images overlapping within the
150 × 150 pixel vicinity are duplications of the same event.
NEXRAD images were collected by radar instruments every
5 min. We cannot always refer an event to the image with the
exact time. We therefore cropped the image within a (±1)
minute range of the event time. The total time to download
and crop images is about 5 h.

We also cropped the images that do not have hails. To do
this, we randomly selected images and randomly located a
cropping place on the images. We labeled them as “No hail”
images, if they do not overlap with any portion of a “Hail”
image.

As a result, we obtained a total of 133,421 cropped images,
which consumes 3.3GB of memory. Note that the original
full-size radar images require a total of 136GB for storage.
The cropped images were divided into three datasets in a
ratio of 7:2:1 for training, validation, and testing, respec-
tively. Table 1 lists the sizes of the image subsets we created.

4.2 Training

Due to the large number of input images and the large number
of parameters to learn, the GPU does not have enough mem-
ory to load them within one iteration of training. We used
batcheswith 600 images in each, sowe obtained a total of 156
batches. One iteration of training loaded and processed the
images of one batch. Thus, the network took 156 iterations to
complete one epoch. As progressing through epochs, the net-
work learned from the featuremaps and updated the learnable
parameters, as observed with progressively increased accu-
racy and gradually decreased loss. Tables 2 and 3 give the
hyperparameter values used in the network.

We used a less number of filters in early layers. As con-
volving to later layers, we increased the number of filters
and decreased the filter sizes. The stride parameter was used
to provide neuron shifts in convolving steps. It affects the
size of an output feature map. We also specified the padding
value which adds zero-valued neurons around the input fea-

Table 1 Image sets for training, validation, and testing

Ground truth labels Training Validation Testing Total

Hail 38,813 12,486 7675 58,974

No Hail 54,580 14,199 5668 74,447

Total 98,393 26,685 13,343 133,421
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Table 2 The configuration of
hyperparameters in the
convolutional layers for the
experiment

Hyperparameters Conv. 1 Conv. 2 Conv. 3 Conv. 4 Conv. 5

Input size 150 × 150 35 × 35 14 × 14 13 × 13 12 × 12

# of filters (m) 64 160 256 256 128

Filter size (e × e) 8 × 8 5 × 5 3 × 3 2 × 2 2 × 2

Stride 2 2 1 1 1

Padding 0 0 1 0 0

# of learnable parameters 12,352 256,160 368,896 262,400 131,200

Output size (d × d) 72 × 72 16 × 16 14 × 14 12 × 12 11 × 11

Table 3 The configuration of hyperparameters in the pooling layers for
the experiment

Hyperparameters Pool. 1 Pool. 2 Pool. 3 Pool. 4

Input size 72 × 72 16 × 16 14 × 14 11 × 11

Filter size (e × e) 3 × 3 3 × 3 2 × 2 3 × 3

Stride 2 1 1 1

Padding 0 0 0 0

Output size (d̃ × d̃) 35 × 35 14 × 14 13 × 13 9 × 9

ture map. As a result, the size of a feature map in a layer

(dl × dl ) can be calculated as dl = dl−1−e+2∗padding
stride+1 .

4.3 Validation

Validation checks the progress of learning in the epochs so
that we can tune the hyperparameters to improve the training.
We used 20% of the total images to validate the learning
results of the network. We checked the accuracy after an
epoch was completed. If the training accuracy increases but
the validation accuracy is randomor decreases, the overfitting
occurs. When the validation accuracy increases and the loss
computed from the training decreases, the overfitting issue
is reduced. The CNN layers used for validation is the same
as the one used for training.

4.4 Testing

We used 10% of the total dataset for testing. The test dataset
was not presented in the network during the training or
validation iterations. The testing used the best performing
model after the network was done for learning. Our evalua-
tion results were generated using the test dataset.

5 Evaluation results

The training of the network became stable after 65 epochs.
The execution time of a single epochwas an average of 5min.
The training took about 4 h and 30 min. Figure 2 shows that
the accuracy increases, and the loss decreases, as the number
of epochs increases. We did not experience an overfitting
issue because the loss value during the training continuously
decreaseduntil it converged to aminimumanddid not diverge
after that. The accuracies of training, validation, and testing
are 86%, 84%, and 83%, respectively.

5.1 Classification accuracy

We used the confusion matrix to statistically analyze the
accuracy of the trained classification model. For the test
dataset, correctly classified test images are categorized in
true positive (TP) and true negative (TN). Misclassified test
images are categorized in false positive (FP) and false neg-

Accuracy Loss

Epoch Epoch

Training with sigmoid

Training with ReLU

Training with sigmoid 

Training with ReLU

Training with tanh Training with tanh

Accuracy Loss

Epoch Epoch

Training with non-overlapping pooling

Training with overlapping pooling
Training with non-overlapping pooling

Training with overlapping pooling

(a) (b) (c) (d)

Fig. 2 Accuracy and loss comparisons. a, b Are the accuracy and loss
comparisons of the network with ReLU, sigmoid and tanh activation
functions. The overlapping pooling operation is used. c, dAre the accu-

racy and loss comparisons of the network with overlapping pooling and
non-overlapping pooling. ReLU activation function is used
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Table 4 The confusion matrix for “Hail” (positive) and “No hail” (neg-
ative) classification

Predicted hail Predicted no hail Total

Actual Hail 6303 (TP) 1372 (FN) 7675

Actual No Hail 830 (FP) 4838 (TN) 5668

Total 7133 6210 13,343

ative (FN). The confusion matrix is shown in Table 4. We
calculated theprecision,probability of detection (POD), false
alarm ratio (FAR), and critical success index (CSI). They can
be expressed with the following equations:

precision = TP

(TP + FP)
;POD = TP

(TP + FN)
; (2)

FAR = FP

(TP+FP)
;CSI = TP

(TP + FP + FN)
; (3)

POD is sensitive to FN. If the evaluation considers only
POD, the trained classification model may over-predict the
occurrence of hailstorm events. FAR is sensitive to TP. If the
evaluation considers only FAR, the model may under-predict
the occurrence of hailstorm events. CSI implies the confi-
dence level of using the model to detect events. According
to the measure of weather forecasting used by the National
Weather Service [8], the perfect model would have POD= 1,
FAR = 0, and CSI = 1. The CSI can also be expressed
as 1

1
1−FAR+ 1

POD−1
[28]. To compare our approach to existing

approaches, if exact CSI values are not provided in the exist-
ing papers, the function in [28] is used to computeCSI values.

As shown in Table 5, our approach achieved a high pre-
cision (0.821) and a high CSI (0.741). We observed that the
approach with the highest CSI was developed by Auer [3] in
the year 1994, but that approach requires cloud-top tempera-
tures as an additional parameter. It is usually difficult to find
a pair of cloud-top temperature and radar image at the same
location and time. For example, a GOES satellite instrument
usually produces a cloud-top temperature every 15 min [21].
A radar image is usually produced every 5 min. A hailstorm
event usually lasts for a few minutes in duration. Having a
15-min data producing interval to capture cloud-top temper-
atures leads to a high chance of missing the entire event of
a hailstorm. Data augmentation methods [23] such as image
flipping, rotating, and scaling may not make up the features
missed in uncaptured hailstorm events. Using radar images is
a more general and practical method for hailstorm detection,
and we will be less likely to miss any of hailstorms within
a 5-min radar image producing interval. With the solid state
of radar imagery recording and processing techniques, our
approach can be used to implement a real-time system to
detect hailstorms, without suffering the limitation of event
missing due to the use of cloud-top temperature parameters. Ta
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Fig. 3 Comparison of feature preservation between the use of overlap-
ping pooling and the use of non-overlapping pooling with three input
radar images. Each row (from left to right) shows the input radar image,
the feature map generated from a filter in the first convolutional layer,
and the results of the two different pooling operations. The radar image
size is 150×150. The feature map size is 72×72. The pooling filter size
is set to 3×3. The stride of overlapping pooling is set to 2. The size of the
overlapping pooling result is 35 × 35. The size of the non-overlapping
pooling result is 23× 23. As shown in the last two columns, the feature
regions are sharper after using overlapping pooling. The results from
overlapping pooling have higher color contrasts and clearer details

Without adding cloud-top temperatures, the accuracy of
Auer’s approach becomes worse than ours (26.1% less than
our CSI). Comparing with the recent approaches of Mroz et
al. [18] andNi et al. [20] in the year 2017, our approach results
in an increase of 29.2% and 34.7% for CSI, respectively.

In addition, we implemented a ResNet network [10], a
VGG16 network [31], and a nonlinear SVM [22] for hail-
storm detection using the same dataset that we used in our
CNN approach. The method of transfer learning based on
the knowledge learned in our approach was used to imple-
ment ResNet and VGG16 networks. The ResNet network
was composed of 177 layers, and the VGG16 was composed
of 19 layers. The weights for those layers were kept intact.
Three fully connected layers were added at the end of each
network. For SVM, we chose the radial basis function (RBF)
as the kernel function, and set the two RBF hyperparameters
as 10−3 and 103, which are in favor of spacing their values
far apart from each other. Their classification statistics are
listed as part of Table 5. Our approach performed better than
ResNet, VGG16, and SVM. This is evident by the CSI which
is better than all other approaches aforementioned.

5.2 Evaluation of activation and pooling functions

We compared sigmoid, tanh, and ReLU activation functions.
As shown in Fig. 2a, b, ReLU results in the highest accu-

racy and the lowest loss value. It preserves the receptive
fields of neurons through the CNN layers. In contrast, sig-
moid and tanh slow down the process of network learning.
The effectiveness of ReLU is significant during early epochs.
The loss with ReLU is reduced exponentially as the network
convolves over epochs. To complete 65 epochs, the network
took about 6 h with sigmoid, and about 7 h and 15 min with
tanh; In comparison, the network took about 4 h and 30 min
with ReLU.

We found that the use of the overlapping pooling oper-
ation results in a better accuracy. As shown in Fig. 2c,
d, the network with overlapping pooling starts with a low
accuracy, and then the accuracy increases logarithmically
over epochs. With non-overlapping pooling, the network
starts with a slightly higher accuracy, but over the epochs
it does not increase as fast as the network with overlap-
ping pooling. As regards to loss reduction, the network with
overlapping pooling starts with a relatively small loss value,
but it is not reduced much by the end. The network with
non-overlapping pooling reduces the loss exponentially, and
eventually results in a lower loss value. We also found that
the overlapping pooling method preserves essential feature
details when downsampling feature maps. Figure 3 shows
the comparison of feature preservation between the use of
overlapping pooling and the use of non-overlapping pool-
ing. Also, the CSI of the network with overlapping pooling
(0.741) is higher than the CSI with non-overlapping (0.639).

5.3 Hailstorm features

We wanted to understand what features the network learned
during the training. For different convolutional layers, we
used Conviz [9] to generate synthetic visualization of feature
maps. As shown in Fig. 4, feature maps of each convolu-
tional layer are visualized as a grid of images, where the
number of images is the total number of filters in the layer.
We noticed that neurons in feature maps appear to be blobby
and smoothly crowding together in early layers (e.g., the first
and second convolutional layers), and they tend to become
compact and localized as the network convolves. Sometimes
ReLU did not activate neurons due to the filters failing to
extract features from the input, such as the examples shown
in Fig. 4b, f, i, l, o, so the filters corresponding to those zero
feature maps became “dead.” However, the learning rate was
decayed properly and progressively, so dead filters did not
cause any training issue.

In Fig. 4a, c–e, g, m, n, we found that the network learned
a nested looping pattern from the images. Figure 5 shows
the example images that are correctly classified as “Hail.”
According to the domain knowledge of measuring precipi-
tation information, a high value of decibels (dBZ) between
60–65 usually indicates hailstorms. We found that a clear
nested looping patten has pink regions (> 60dBZ) gathering
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Conv. 1 Conv. 2 Conv. 3

Conv. 4 Conv. 5

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j)

(k)

(l)

(m)

(n)

(o)

Fig. 4 Feature maps from each of the five convolution layers after the last (the 65th) epoch. The zoom-in images of (a-o) show details of the
patterns learned by the network

Fig. 5 An example that test images labeled as “Hail” are classified as
“Hail” (TP) by our trained model

at the center of the pattern, and has red and yellow regions
fading toward outer loops. This is a unique feature whichwas
not discussed in the existing work.

5.4 Dataset limitations

The reports of hailstorm events we used for this experiment
are from different officials or agencies. There are cases that
a hailstorm (or a storm with strong involvement of hail fea-
tures) at a location was reported as a thunderstorm instead.
Because of that, “No hail” images used for training may con-
tain hail features. Such cases also exist in the test dataset and
may lead to misclassification. As shown in Fig. 6, the test
images labeled as “No hail” are classified as “Hail” because
hail (or hail-like) features exist in those images.

Also, there are cases that some reported events are
extremely localized, so the hail features are only in a small

Fig. 6 Test images labeled as “No hail” are classified as “Hail” (FP)
by our approach. Those misclassified images are mainly because of the
dataset limitations described in Sect. 5.4

region on the image. Such localized hailstorms usually last
a very short period time. It is possible that high dBZ values
were not captured by the radar instrument. That means it is
possible that a reported “Hail” event may not contain hail
features. This mismatch between the report and the actual
image may lead to misclassification.

Furthermore, there are cases that the hailstorm and thun-
derstorm are reported at the same place and same time. We
believe it is appropriate to label those images as “Hail” rather
than “No hail” for training, because such a storm usually con-
tains hail features and have already evolved to a hailstorm
though it may not yet be reported as that. To be cautious, we
checked the statuses of the reports in ± 3 min to find out if
an actual hailstorm was observed for that storm.
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6 Conclusion and future work

We have designed and evaluated a deep convolutional neu-
ral network for hailstorm detection. In each convolutional
layer, we studied what features the network tries to learn.
We discussed the effectiveness of training and classification
when using different activation functions and different pool-
ing methods in CNN layers. We provided a comprehensive
evaluation of the trained classification model for hailstorm
detection. With our approach, hailstorm detection at a given
location can be done in seconds with little human interfer-
ence.Our approach has the potential to be used to classify and
detect other types of severe weather events. With the knowl-
edge of current climates of a geographical region, our trained
classification model can be used to predict the occurrence of
a severe weather event.

The proposed approach will be suitable for the application
of local severe weather forecasting. A 150 × 150 cropped
image covers a 33.5× 45.63 miles of a geographical region.
We consider to increase the cropping size and evaluate if
the accuracy could be improved. In this work, hyperparame-
ter values are adjusted based on the intermediate validation
results and the analysis of visualized feature maps. In the
future, we plan to develop optimization algorithms to deter-
mine a suitable combination of hyperparameter values. The
goal is to further reduce loss. We will research on optimiza-
tion algorithms, such as Bayesian optimization algorithm in
[15], to automate the hyperparameter optimization.

We will mix radar images with other types of input data,
such as infrared images and visual images from satellites, to
create multichannel input for network training. Our long-
term goal is to predict hailstorms rather than detecting.
Creating multichannel input will be the next step toward that
goal. We will try to obtain more reliable data for training to
eliminate the dataset limitations as described in Sect. 5.4.We
will study a mix of hurricane, thunderstorm, tornado events
with larger and more complex train and test datasets.

Acknowledgements This research work was supported by NASA
Grant NNM11AA01A. We thank Dr. Sundar A. Christopher, Profes-
sor of Atmospheric Science at UAH, for his insightful suggestions for
this work. We thank Ms. Melinda Pullman who helped us organize the
data fromNational Center for Environmental Information StormEvents
Database. We thank the support of Department of Computer Science at
UAH and the support of NASA.

References

1. National centers for environmental information. https://www.ncei.
noaa.gov (2017)

2. Abadi,M.,Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado,G.S.,Davis,A.,Dean, J.,Devin,M.,Ghemawat, S.,Good-
fellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R.,
Kaiser, L., Kudlur,M., Levenberg, J.,Mané, D.,Monga, R.,Moore,

S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan,
V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. CoRR. arXiv:1603.04467
(2016)

3. Auer Jr., A.H.: Hail recognition through the combined use of radar
reflectivity and cloud-top temperatures.Mon.Weather Rev. 122(9),
2218–2221 (1994)

4. Bauer-Messmer, B., Waldvogel, A.: Satellite data based detection
and prediction of hail. Atmos. Res. 43(3), 217–231 (1997)

5. Bracewell, R.N.: The Fourier Transform and its Applications.
McGraw-Hill Series in Electrical Engineering, Networks and Sys-
tems, 2 rev. edn, p. c1986. McGraw-Hill, New York (1986)

6. Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features
learning for medical image analysis with convolutional autoen-
coder neural network. IEEE Trans. Big Data PP(99), 1–1 (2017)

7. Ferraro, R., Beauchamp, J., Cecil, D., Heymsfield, G.: A pro-
totype hail detection algorithm and hail climatology developed
with the advancedmicrowave sounding unit (AMSU). Atmos. Res.
163(Supplement C), 24–35 (2015)

8. Gerapetritis, H., Pelissier, J.M.: On the behavior of the critical
success index.USDepartment ofCommerce,NationalOceanic and
Atmospheric Administration, National Weather Service (2004)

9. Gryshkevych, S.: Conviz. https://github.com/grishasergei/conviz
(2016)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016)

11. Herzmann, D., Arritt, R., Todey, D.: Iowa environmental
mesonet. http://mesonet.agron.iastate.edu/request/coop/fe.phtml.
Verified 27Sept 2005. IowaStateUniversity,Department ofAgron-
omy, Ames, IA (2004)

12. Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best
multi-stage architecture for object recognition? In: 2009 IEEE 12th
International Conference on Computer Vision. IEEE, pp. 2146–
2153 (2009)

13. Klein, B., Wolf, L., Afek, Y.: A dynamic convolutional layer for
short rangeweather prediction. In: 2015 IEEEConference onCom-
puter Vision and Pattern Recognition (CVPR), pp. 4840–4848
(2015)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In: Pereira, F., Burges,
C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems 25, pp. 1097–1105. Curran Asso-
ciates, Inc, Red Hook (2012)

15. Liu, Y., Racah, E., Prabhat, Correa, J., Khosrowshahi, A., Lavers,
D., Kunkel, K., Wehner, M., Collins, W.D.: Application of deep
convolutional neural networks for detecting extreme weather in
climate datasets. CoRR. arXiv:1605.01156 (2016)

16. Marzban, C., Witt, A.: A bayesian neural network for severe-hail
size prediction. Weather Forecast. 16(5), 600–610 (2001)

17. Merino, A., López, L., Sánchez, J., García-Ortega, E., Cattani, E.,
Levizzani, V.: Daytime identification of summer hailstorm cells
from msg data. Nat. Hazards Earth Syst. Sci. 14(4), 1017–1033
(2014)

18. Mroz, K., Battaglia, A., Lang, T.J., Cecil, D.J., Tanelli, S., Tridon,
F.: Hail-detection algorithm for the gpm core observatory satellite
sensors. J. Appl. Meteorol. Climatol. 56(7), 1939–1957 (2017)

19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted
Boltzmann machines. In: Proceedings of the 27th International
Conference on International Conference on Machine Learning,
ICML’10. Omnipress, USA, pp. 807–814 (2010)

20. Ni, X., Liu, C., Cecil, D.J., Zhang,Q.: On the detection of hail using
satellite passive microwave radiometers and precipitation radar. J.
Appl. Meteorol. Climatol. 56(10), 2693–2709 (2017)

123

https://www.ncei.noaa.gov
https://www.ncei.noaa.gov
http://arxiv.org/abs/1603.04467
https://github.com/grishasergei/conviz
http://mesonet.agron.iastate.edu/request/coop/fe.phtml
http://arxiv.org/abs/1605.01156


Signal, Image and Video Processing (2019) 13:541–549 549

21. Oceanic, N., Administration, A.: Goes-R cloud top temperature
(2016). https://vlab.ncep.noaa.gov/web/goes-r-end-user-mission-
readiness-project/cloud-top-temperature

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

23. Perez, L., Wang, J.: The effectiveness of data augmentation in
image classification using deep learning. CoRR. arXiv:1712.04621
(2017)

24. Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion
mining with a deep convolutional neural network. Knowl. Based
Syst. 108(C), 42–49 (2016)

25. Pradhan, R., Aygun, R., Maskey, M., Ramachandran, R., Cecil, D.:
Tropical cyclone intensity estimation using a deep convolutional
neural network. IEEE Trans. Image Process. PP(99), 1–1 (2017)

26. Ravinder, A., Reddy, P.K., Prasad, N.: Detection ofwavelengths for
hail identification using satellite imagery of clouds. In: 2013 Fifth
International Conference on Computational Intelligence, Commu-
nication Systems and Networks (CICSyN). IEEE, pp. 205–211
(2013)

27. Sainath, T.N., Mohamed, A-r., Kingsbury, B., Ramabhadran, B.:
Deep convolutional neural networks for LVCSR. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 8614–8618 (2013)

28. Schaefer, J.T.: The critical success index as an indicator of warning
skill. Weather Forecast. 5(4), 570–575 (1990)

29. Scherer, D., Müller, A., Behnke, S.: Evaluation of Pooling Oper-
ations in Convolutional Architectures for Object Recognition, pp.
92–101. Springer, Berlin, Heidelberg (2010)

30. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour:
a deep convolutional feature learned by positive-sharing loss for
contour detection. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3982–3991 (2015). https://
doi.org/10.1109/CVPR.2015.7299024

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. CoRR. arXiv:1409.1556 (2014)

32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhut-
dinov, R.: Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

33. Žibert, M.I., Žibert, J.: Monitoring and automatic detection of the
cold-ring patterns atop deep convective clouds usingmeteosat data.
Atmos. Res. 123, 281–292 (2013)

123

https://vlab.ncep.noaa.gov/web/goes-r-end-user-mission-readiness-project/cloud-top-temperature
https://vlab.ncep.noaa.gov/web/goes-r-end-user-mission-readiness-project/cloud-top-temperature
http://arxiv.org/abs/1712.04621
https://doi.org/10.1109/CVPR.2015.7299024
https://doi.org/10.1109/CVPR.2015.7299024
http://arxiv.org/abs/1409.1556

	Deep feature extraction and its application for hailstorm detection in a large collection of radar images
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	4 Experimental design
	4.1 Preprocessing
	4.2 Training
	4.3 Validation
	4.4 Testing

	5 Evaluation results
	5.1 Classification accuracy
	5.2 Evaluation of activation and pooling functions
	5.3 Hailstorm features
	5.4 Dataset limitations

	6 Conclusion and future work
	Acknowledgements
	References




