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Abstract
In themedicine, the implication of individual differences has frequently been emphasized. Gender- and age-related differences
can be mentioned as the most important individual parameters. On the other hand, electrocardiogram (ECG) signals are the
subject of these differences. However, limited information is available regarding these individual dissimilarities in ECG
dynamics. This study was aimed to evaluate gender and age differences by means of novel Poincare section indices. Our focus
was to detect and classify dynamical behaviors of the ECG trajectories using three binary classification strategies: (1) gender-,
(2) age-, (3) gender- and age-based classification. After constructing the 2D phase space of ECG, linear Poincare sections
in distinct angles were developed and some geometric indices were extracted. The effect of delayed phase space on ECG
measures was also inspected. We tested our algorithm on 79 healthy subjects. Using support vector machine, the maximum
correct rate of 93.33% was achieved for the gender- and age-based classification strategies. Considering the information of
both age and gender, the highest rate was 94.66%. The best results were achieved with delays of 5 and 6. In conclusion, our
results showed that basin geometry of the ECG phase states is affected by individual differences.
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1 Introduction

Electrocardiogram (ECG) signals contain much rich infor-
mation about the cardiac electrical activity. This signal is
often used as a clinical and diagnostic tool [1, 2]. Women
and men have general differences in their hormonal, anatom-
ical, physiological, biochemical, and biomedical responses
[3–5]. Therefore, gender information plays an important
role in ECG signal interpretation in certain physiological,
psychological, or pathological states. In addition, it is well
established that other factors such as the subject’s age can
have an influence on the ECG signals [6]. To evaluate the
gender- or age-based differences, most of the previous inves-
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tigations concentrated on the statistical and morphological
features of ECG time series [6, 7]. Additionally, it has previ-
ously been proved that different frequency domain features
can provide some information about individual differences
in different states of disease and health. Despite the valuable
and encouraging results, these techniques suffer from some
shortcomings. One of the major shortcomings is that the fre-
quency domain-based methods do not offer any details about
the frequency component position in time. To overcome the
imposed limitation of these techniques, Wavelet-based pro-
cedures have been presented to examine the non-stationary
signals. Although the impressive reputation of the wavelet-
based methods in bio-signal interpretation, it is hampered by
some main limitations [8].

Due to the non-stationary, complex, and chaotic nature
of ECG, many recent investigations have emphasized on the
potential of the nonlinear bio-signal processing methods. By
means of dynamic and nonlinear features, an increasing num-
ber of methodologies have been presented to scrutinize the
gender-based ECG characteristics in various fields [9–12]. In
addition, some investigations dealt with age-related ECGdif-
ferences based on nonlinear dynamics [10, 13, 14]. Although
some of the nonlinear algorithms such as Lyapunov exponent
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can deliver some global information about the reconstructed
phase space structure of ECG and its trajectories, these
methods are not able to describe the shape details of ECG tra-
jectories. The geometric pattern of data points positioned on
Poincare surfaces has been served as beneficial information
in the study of nonlinear bio-signals [15–19]. To scrutinize
the detailed shape information included in the reconstructed
phase space, these techniques can also be utilized.

Following the idea of employing Poincare sections for
capturing the cardiac chaotic behavior within ECG time
series, we attempt to design a dynamic scheme to investi-
gate gender- and age-based differences. Totally, the proposed
framework covers the data selection, preprocessing module,
the process of feature extraction, and implementing the clas-
sification scheme, which are described thoroughly in the next
sections. An overview of the proposed procedure is provided
in Fig. 1.

2 Materials andmethods

2.1 Data

The data were selected from ECG-ID database available at
PhysioBank [20]. Totally, three hundred and ten 20-s seg-
ments of lead I ECG were contained, which acquired from
90 participants at the sampling rate of 500 Hz. Data filtering
included baseline drift removal, AC power line noise elimi-
nation (using a band-stop filter), exclusion of high-frequency
distortions, and signal smoothing [20]. In this study, ECG of
79 subjects, including 37 male (age: 31.24±13.92) and 42
female (age: 25.81±10.8) was applied.

2.2 Preprocessing

The ECG segments (X) were normalized as follows:

norm(X ) � 2(X − min(X ))
/
(max(X ) − min(X )) − 1 (1)

Further processing was performed in 0.8-s window length
according to a normal ECG cycle duration [21].

2.3 Phase space

First, the trajectory is defined in an n-dimensional space by
plotting the set of:

(2)

[xk, xk+τ , xk+2τ , . . . , xk+(d−1)τ ]

� X (k) for k

� 1, 2, . . . , N − (d − 1)τ

for a scalar vector xi (i �1, 2, …, N). In this equation, the
lag and the dimension of the embedding are τ and d, respec-
tively, and the delayed vector in the phase space is shown by
X(k). The phase space reconstruction is crucially affected by
the lag. Selecting a small and a large τ value generates an
absolutely correlated and uncorrelated phase, respectively.
We examined τ �2–7 in the reconstruction of ECG phase
space.

2.4 Poincare section

Description of the trajectory configuration and specification
of the attractor type is realized using Poincare section, which
is initially defined by the selection of Poincare hyperplane.
Then, its definition is completed by specifying the crossing
points (also called intersections) of the hyperplane and the
trajectory. A line which shows the system status (Eq. 3) is
the Poincare section in a 2D space.

y � tan(θ )x + b (3)

where tan(θ ) is the slope. In addition, b is the y-intercept.
In this study, the b was zero. Figure 2 shows the trajec-
tory of an ECG cycle in the phase plane (black curve). The
Poincare sections are shown in gray. A crossing point of the
data trajectory with a Poincare section in a blue circle was
also indicated.

The selection of the step size (θ ) is very influential. Inac-
curate θ can result in some incorrect features of basin. We
examined different θ in the range of 0°–360° with the step
size of 15° (Fig. 2). A line equation for each of two successive
points of the ECG trajectory (F(x, y)) was calculated, and the
crossing points of the line with Eq. (3) was computed (Eq. 4)

{
xCrossing point � yn−mxn−b

tan(θ)−m
yCrossing point � tan(θ ) xCrossing point + b

(4)

in which xn ≤ xCrossing point ≤ xn+1, m �
yn − yn−1

/
xn − xn−1. m denotes the line slope which pass-

ing over 2 successive points of trajectory F(x, y). xn and yn
are the trajectory coordinates.

Finally, the following indices were extracted: the number
of crossing points (F1), the area of ECG segment trajectory
which has the smallest (F2), the largest (F3) value, and the
mean area of basin values for all ECG cycles (F4). For cal-
culating features (F2)–(F4), the area of the basin was firstly
calculated for all ECG cycles, and then, the mean, minimum,
and maximum of this measure were extracted. The average
of standard deviations (SD) of the given series distribution in
the horizontal (F5) and vertical (F6) coordinates, the average
of third moments of the given series distribution in the hori-
zontal (F7) and vertical (F8) coordinates, and the average of
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Fig. 1 Suggested methodology

Fig. 2 The trajectory of an ECG
cycle in the phase plane (black
curve). The Poincare sections
are shown in gray. An example
of the crossing point is shown
with blue circle (color figure
online)

fourth moments of the data distribution in the horizontal (F9)
and vertical (F10) coordinates were extracted.

2.5 Classification

Three binary classification strategies were considered. (1)
Separating two gender categories of male (M) and female
(F). (2) Classification of two age-groups, including younger
adults (A1≤23 years) and older adults (A2>23 years). (3)
Considering both age and gender information concurrently.

In this way, four classes of younger male adults (MA1),
younger female adults (FA1), older male adults (MA2), and
older female adults (FA2) were defined. In addition, for the
last strategy, one versus all schemes was adopted.

Before entering the measures to the classifier, they
were normalized. A fivefold cross-validation scheme was
employed for 10 times, while accuracy, sensitivity, and speci-
ficity were calculated to evaluate the network performance.

The popular SVMalgorithmwas implemented for catego-
rization. This technique was known as a worthful one in the
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bio-signal categorization [22]. It usually operates with the
adoption of a nonlinear kernel function to transform an input
data into a high dimensional space, which ensures easier data
separability compared with the original input. Depending on
the input measures, an iterative learning procedure of SVM
makes an optimum hyperplane which has the largest bor-
der between the categories. Finally, to recognize different
clusters, the maximum-margin hyperplanes define the deci-
sion boundaries. Therefore, the higher the distance between
hyperplanes and data points, the higher the classification
rates. In this study, radial basis function (RBF), polynomial,
and quadratic kernels were tested.

3 Results

After preprocessing the data, the 2D phase space of ECG
segments was reconstructed for lags 2–7 (Fig. 3).

As shown in Fig. 3, the trajectory pattern was dissimilar
in different lags. As the lag increases, the area of the phase
space is larger. Its pattern has changed from being oval into
the circular mode. Then, the Poincare sections in different
angles were formed and 10 geometrical-based indices were
extracted from the crossing points of the Poincare sections
in different states. Mean, maximum, and minimum values of
ECG features in different lags are shown in Fig. 4 for male
and female groups.

Not only did gender affect the amount of indices, but the
effect of lag was also evident on these values (Fig. 4). For
example, the maximum number of Poincare crossing points
(F1) was higher in female than in male. Mean and SD of the
parameters in two age-groups are reported in Table 1.

Both lag and age affected the amount of indices (Table 1).
For example, lower F1 and F2 values were observed for A2
than A1. However, F3 values were higher in A2. The average
area has grown with increasing delay, especially in all delays
of the first age-group (F4). For other features, there was a
difference between the two age-groups and among the var-
ious delays, although these changes did not have a specific
pattern.

Performance evaluation of the features in terms of age and
gender was done using SVM (Fig. 5).

The highest mean rates for age categorization were
achieved in lag 6 using quadratic kernel (Fig. 5a). In this
case, themean accuracy, sensitivity, and specificity rateswere
83.33, 95, and 97.14%, respectively. The second best rates
were obtained by polynomial with the corresponding rates
of 81.33, 90, and 94.29%. For age classification, the highest
accuracy, sensitivity, and specificity were 93.33, 87.5, and
100%, respectively, using quadratic kernel. The highestmean
classification rates for gender separation were achieved for
lag 5 using quadratic kernel (Fig. 5b), where the mean accu-
racy, sensitivity, and specificity rates were 83.33, 94.29, and

95%, respectively. The second best rates were obtained by
RBFwith the corresponding rates of 83.33, 88.57, and 100%.
For gender classification, the highest accuracy, sensitivity,
and specificity were 93.33, 100, and 100%, respectively,
using RBF and polynomial functions.

It can be concluded that the best results were obtained
for the separation of age and gender classes with delays of
5 and 6. Therefore, in order to take into account the effect
of both gender and age parameters, we only used these two
delays. The mean±SD of F1–F10 in four different groups is
provided in Table 2.

In both lags, the ECG parameters were different in two
age-groups and in two genders (Table 2). Considering both
age and gender groups concurrently, mean performances are
reported for lag 5 and lag 6 in Table 3.

Optimal performances were achieved using the proposed
methodology (Table 3). FA2 was obtained the highest mean
rates using all kernel functions and for both lags. This class
was separated with the highest mean rate of 94.66% using
polynomial and lag 5. The second best results were allo-
cated to the MA1. Using RBF and lag 6, it was recognized
with the highest mean rate of 90%. Considering all classes,
the mean accuracy rates were in the range of 80–85%. The
highest mean accuracies were obtained using RBF. The sen-
sitivity and specificity rates were also promising. The mean
sensitivity rates were in the range of 92–98% and the mean
specificity rates were in the range of 87–96%. The second
best accuracy was obtained by polynomial kernel function
with the mean rates of 83.33 and 82.33% for lag 5 and lag 6,
respectively.

4 Discussion

Many factors affect ECG interpretation, including heart size,
torso morphology, ECG lead placement, environmental arti-
facts, the person’s height and weight, age, gender, race, and
genetic background. Therefore, it is very important and chal-
lenging to have robust ECG algorithms in different clinical
conditions. The main contribution of this study was to eval-
uate subject differences in terms of their age and gender
using ECG. We employed ECG of 79 subjects to scruti-
nize the effect of age and gender on the reconstructed ECG
phase space. We defined 10 features to quantify the points
of Poincare section intersected with the ECG phase space.
Our results revealed that ECG dynamics were different in
two age ranges and in two genders (Table 2). These results
are consistent with the previous findings. Former analysis
[6] showed that some global ECG indices are significantly
different in females and males. Another study [23] empha-
sized that as ECG characteristics varied with gender and age,
diagnostic ECG criteria should be age and sex specific. To
examine the impact of age and gender in paced breathing,
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Fig. 3 a The ECG phase space of a subject in different lags. b The boundaries of the trajectories in different lags

Fig. 4 The ECG Poincare section-based indices in different lags, a
female and b male. The mean values are shown in blue. Minimum
and maximum of the features are demonstrates in black dots. The hor-

izontal axis indicates the lag number, and the vertical axis shows the
values of different indices (F1–F10) (color figure online)

Fig. 5 Mean SVM accuracy, sensitivity, and specificity rates in 10 times run, using RBF, polynomial, and quadratic as a kernel function for a age
and b gender classification

spectral and sample entropy indices were employed [10]. It
was shown that fluctuations in cardio-respiratory coupling
were noticeable only in middle-aged male subjects. Beck-

ers et al. [13] reported that nonlinear measures of heart rate
variability (HRV) declinedwith age.However, therewere not
any clear gender-based differences in these indices. ECG dif-
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Table 1 Mean±SD of 10 extracted features (F1–F10) with different delays in two age ranges

Delay 2 Delay 3 Delay 4 Delay 5 Delay 6 Delay 7

Age range 1 (A1)

F1 (4.47±2.67)×
103

(3.91±2.35)×
103

(4.66±2.56)×
103

(5.44±2.7)×
103

(5.87±2.83)×
103

(5.89±2.89)×
103

F2 6.19×10−3

±0.013
0.013±0.023 0.024±0.047 0.02±0.034 0.019±0.029 0.032±0.057

F3 0.20±0.1 0.57±0.31 0.92±0.46 1.09±0.55 1.23±0.65 1.37±0.67

F4 0.054±0.036 0.16±0.12 0.25±0.14 0.28±0.18 0.31±0.22 0.34±0.26

F5 (1.48±1.53)×
10−4

(3.27±3.6)×
10−4

(3.38±2.49)×
10−4

(3.27±3.15)×
10−4

(2.38±1.65)×
10−4

(2.82±2.72)×
10−4

F6 (1.80±2)×
10−4

(3.43±3.24)×
10−4

(4.05±2.92)×
10−4

(4.19±3.5)×
10−4

(3.6±3.1)×
10−4

(3.55±3.2)×
10−4

F7 (−3.40±0.05)×
10−7

(−2.20±25.9)×
10−5

(3.16±16.1)×
10−5

(4.31±18.9)×
10−5

(4.46±9.1)×
10−5

(2.51±19.8)×
10−5

F8 (−1.01±6.63)×
10−5

(−9.88±18.4)×
10−5

(−7.72±15.1)×
10−5

(−4.52±22.8)×
10−5

(−3.17±14.6)×
10−5

(−6.34±21)×
10−5

F9 (2.26±3.15)×
10−5

(7.82±19.1)×
10−5

(7.71±9.1)×
10−5

(8.41±13.7)×
10−5

(4.77±4.89)×
10−5

(6.90±10.5)×
10−5

F10 (3.20±4.43)×
10−5

(8.08±16.2)×
10−5

(1.15±1.3)×
10−4

(1.46±1.9)×
10−4

(1.09±1.38)×
10−4

(1.08±1.39)×
10−4

Age range 2 (A2)

F1 (3.90±1.58)×
103

(3.4±1.58)×
103

(3.95±1.78)×
103

(4.62±2.01)×
103

(5±2)×103 (4.97±1.86)×
103

F2 (3.91±9.7)×
10−3

0.011±0.26 0.016±0.29 0.017±0.36 0.027±0.05 0.018±0.054

F3 0.2±0.07 0.58±0.23 1.028±0.40 1.22±0.54 1.35±0.58 1.41±0.63

F4 0.05±0.03 0.16±0.1 0.27±0.13 0.33±0.18 0.33±0.19 0.37±0.22

F5 (1.6±1.4)×
10−4

(3±3.18)×
10−4

(4.8±4.6)×
10−4

(4.9±6.8)×
10−4

(4.9±5.7)×
10−4

(4.97±5.4)×
10−4

F6 (1.83±1.7)×
10−4

(3.37±3.6)×
10−4

(4.77±4.1)×
10−4

(5.1±5.5)×
10−4

(5.16±4.9)×
10−4

(5.1±5)×10−4

F7 (−6.08±0.65)×
10−6

(−2.15±23)×
10−5

(−5.55±36)×
10−5

(−1.37±5.4)×
10−4

(−7.24±48.5)×
10−5

(−5.48±44.4)×
10−5

F8 (−9.67±0.82)×
10−6

(−9.3±23.2)×
10−5

(−1.03±3)×
10−4

(−1.78±3.9)×
10−4

(−1.32±3.9)×
10−4

(−1.24±3.6)×
10−4

F9 (2.29±3.4)×
10−5

(7.64±13.6)×
10−5

(1.3±1.9)×
10−4

(1.7±3.7)×
10−4

(1.66±3.2)×
10−4

(1.48±2.7)×
10−4

F10 (2.83±4.1)×
10−5

(8.48±1.7)×
10−5

(1.36±1.9)×
10−4

(1.7±2.8)×
10−4

(1.8±2.8)×
10−4

(1.57±2.6)×
10−4

ferences of females and males were investigated in response
to sad stimuli [9]. They reported the efficiency of nonlinear
indices in revealing gender-wise ECG differences. In another
study, they showed that compared to females, sleep depriva-
tion affects the ECG of males during affective stimuli [24].

In terms of the age and sex of subjects, there are a limited
number of studies that applied nonlinear methods to investi-
gate ECG dynamics. However, most of them provided global
information about the ECG trajectory. Compared with these
investigations, our proposed framework efforts to track the
local information embedded in the ECG basin.

We obtained the highest accuracy of 93.33% for the
gender- and age-based classification strategies. By combin-
ing age and gender information, the maximum rate was
94.66%. Previously, a little study was performed on gen-
der and age classification using physiological signals. For
gender classification, some frequency- and time-based HRV
features were used [25]. Using SVM, themaximum accuracy
of 84% was reported. A review article on gender classifica-
tion [26] showed that SVM has been a common classifier in
this field [26]. Other classifiers have been also used in age or
gender categorization [27]. For age classification, the high-
est area under the ROC (86.25%) was reported for Bayesian
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Table 2 Mean±SD of 10
extracted features (F1–F10)
with delays 5 and 6 in four
different groups

Female Male

Age range 1 Age range 2 Age range 1 Age range 2

Delay 5

F1 (5.8±2.74)×103 (4.63±2.26)×103 (5.06±2.71)×103 (4.62±1.94)×103

F2 0.023±0.38 0.011±0.17 0.012±0.019 0.02±0.41

F3 1.03±0.52 1.2±0.45 1.24±0.63 1.23±0.58

F4 0.26±0.18 0.38±0.18 0.31±0.18 0.31±0.18

F5 (3.39±3.25)×
10−4

(5.34±7.24)×
10−4

(2.97±2.97)×
10−4

(4.73±6.76)×
10−4

F6 (4.37±3.65)×
10−4

(6.06±7.3)×10−4 (3.72±3.3)×10−4 (4.70±4.63)×
10−4

F7 (2.69±21.3)×
10−5

(−1.92±5.62)×
10−4

(8.48±10)×10−5 (−1.13±5.34)×
10−4

F8 (−2.71±25.8)×
10−5

(−2.72±5.23)×
10−4

(−9.19±11.65)×
10−5

(−1.36±3.29)×
10−4

F9 (9.08±15.0)×
10−5

(2.02±3.73)×
10−4

(6.7±9.6)×10−5 (1.57±3.79)×
10−4

F10 (1.56±2.04)×
10−4

(2.30±3.79)×
10−4

(1.21±1.49)×
10−4

(1.49±2.25)×
10−4

Delay 6

F1 (6.04±2.89)×103 (4.89±1.89)×103 (5.41±2.74)×103 (5.04±2.09)×103

F2 0.02±0.03 0.024±0.035 0.016±0.02 0.028±0.056

F3 1.13±0.62 1.47±0.63 1.50±0.69 1.30±0.57

F4 0.28±0.23 0.37±0.21 0.4±0.19 0.31±0.18

F5 (2.2±1.62)×10−4 (5.6±6.31)×10−4 (2.8±1.7)×10−4 (4.58±5.48)×
10−4

F6 (3.62±3.46)×
10−4

(6.4±6.52)×10−4 (3.56±2.01)×
10−4

(4.62±3.99)×
10−4

F7 (3.15±8.2)×10−5 (−1.68±5.76)×
10−4

(7.86±10.68)×
10−5

(−3.05±44.6)×
10−5

F8 (−3.29±15.3)×
10−5

(−2.58±5.76)×
10−4

(−2.86±13.54)×
10−5

(−7.61±27.78)×
10−5

F9 (4.74±5.22)×
10−5

(2.23±1.05)×
10−4

(4.84±4.14)×
10−5

(1.41±2.87)×
10−4

F10 (1.16±1.54)×
10−4

(2.86±4.13)×
10−4

(9.13±8.35)×
10−5

(1.33±1.86)×
10−4

network. Though they used some nonlinear features, detailed
properties of ECG phase space have not been evaluated.

Although in this study we focused on the ECG Poincare
section indices of healthy subjects based on the gender and
age differences, in future investigations, the impact of these
two factors on ECG dynamics of patients with heart ailments
should be carefully studied by means of the proposed algo-
rithm.

5 Conclusions

This manuscript presented a novel age and gender classifi-
cation approach using Poincare section indices. Interesting

results have been achieved from these phase space-based
nonlinear features. Further improvements were obtained by
incorporating features coming from both age and gender
information concurrently. Totally, our findings provide a bet-
ter insight into age- and gender-based discrimination using
ECG characteristics delivered by Poincare section. In addi-
tion, considering the simplicity and rich information of the
suggested technique, which is provided based on the chaotic
nature of ECG, the algorithm can be applied as an efficient
method in ECG waveform analysis in different states of
disease and health, as well as for prediction and diagnosis
purposes.
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Table 3 Mean SVM accuracy,
sensitivity, and specificity rates
in 10 times run, using RBF,
polynomial, and quadratic as a
kernel function in two lags of 5
and 6

Kernel
type ↓

Gender ↓ Age
range ↓

Lag 5 Lag 6

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Polynomial Female 1 70.67 86.67 85.56 79.33 92.22 94.45

2 94.66 100 100 86 97.69 65

Male 1 83.33 96.15 100 84 96.16 100

2 84.67 98 97 80 94 95

Mean 83.33 95.21 95.64 82.33 95.02 88.61

Quadratic Female 1 68.67 82.22 80.56 74.67 91.67 87.78

2 94 100 100 83.34 90.77 95

Male 1 86.67 100 100 84.67 98.46 96.92

2 85.33 94 89 80 89 92

Mean 83.66 95.06 92.39 80.67 92.48 92.93

RBF Female 1 72 86.67 91.11 77.33 91.67 91.11

2 92 100 63.85 86.67 100 68

Male 1 88.67 96.16 96.92 90 100 98.46

2 86 100 98 80.67 99 91

Mean 84.67 95.71 87.47 83.67 97.67 87.14
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