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Abstract
Instantaneous frequency (IF) estimation of multi-component signals with closely spaced and intersecting signal components
of varying amplitudes is a challenging task. This paper presents a novel iterative time–frequency (TF) filtering approach
to address this problem. The proposed algorithm first adopts a high-resolution time–frequency distribution to resolve close
components in the TF domain. Then, IF of the strongest signal component is estimated by a new peak detection and tracking
algorithm that takes into account both the amplitude and the direction of peaks in the TF domain. The estimated IF is used
to remove the strongest component from the mixture, and this process is repeated till the IFs of all signal components are
estimated. Experimental results show the superiority of the proposed method as compared to other state-of-the-art methods.

Keywords Instantaneous frequency estimation · Adaptive time–frequency analysis · Intersecting components · Highly
adaptive directional time–frequency distribution

1 Introduction

Many real-life non-stationary signals such as those encoun-
tered in radar, sonar, electroencephalogram (EEG), transients
in nonlinear systems, jamming signals can be modeled as
amplitude-modulated frequency-modulated (AM-FM) sig-
nals [1,2,16,17,22,27]. The instantaneous frequency (IF) is
an important parameter for analysis of AM-FM signals. The
IF estimation is frequently applied in a number of signal
processing applications such as extraction of features for
classification [16], signal detection [18], interference miti-
gation in global navigation satellite system (GNSS) [1], and
fault diagnosis [29].
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The IF can be estimated by using time–frequency (TF)
methods such as empirical mode decomposition [11], cubic
phase function [20], discrete chirp Fourier transform [30]
or time–frequency distributions (TFDs). TFDs methods are
often employed to estimate the IF of signals because of their
ability to concentrate signal energy along the IF curve while
spreading the noise in the TF plane [4,6,10,21,27]. So, the IF
at any given time instant is usually estimated from the loca-
tion of peaks in a TF plane. In the case of multi-component
signals, there are multiple ridges, so the IF estimation nor-
mally involves both detection of peaks and assigning detected
peaks to the corresponding IF curves [5,26]. The assignment
of detected peaks to IF curves is usually done by exploiting
the slow variation in the change in the IF trajectory between
consecutive time instants, e.g., the Viterbi-based algorithms
[9,14,21], the image processing methods that exploit local
connectivity of peaks [26], and blind source separation algo-
rithms [5]. Unfortunately, the aforementioned IF estimation
algorithms are applicable only to signals that are separable in
the TF domain, i.e., signal components neither intersect each
other nor they are so close to each other that the underly-
ing TFD fails to resolve them [26]. Recently, few algorithms
have been developed to estimate the IF of well resolved but
intersecting signal components, e.g., the methods based on
Markov random fields [31], the modified Viterbi algorithms
[8,21], and the ridge path regrouping (RPRG) [6]. However,
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Fig. 1 a True TFD obtained by summing up the ADTFDs of the indi-
vidual signal’s components; and b the ADTFD of the same signal with
(a = 2, b = 30)

methods basedonMarkov randomfield andViterbi algorithm
are computationally expensive as they require an exhaus-
tive search. TheRPRG is computationally efficient algorithm
though its performance is sensitive to noise.

Previous studies have shown that high-resolution TFDs
lead to better resolution of close signal components, hence
reliable TF representations for IF estimates [3,19,23]. In our
earlier study [19], it was demonstrated that adaptive direc-
tional time–frequency distribution (ADTFD) outperforms all
other TF methods when signal components are close to each
other and there is variation in relative strengths of signal com-
ponents. However, the ADTFD fails to achieve good energy
concentration at the intersecting point when there is variation
in relative amplitudes of signal components as is illustrated
in Fig. 1.

Therefore, the ADTFD cannot be used for the IF estima-
tion of intersecting component with varying amplitudes. In
this study, we propose a new ADTFD-based IF estimation
method for signals with intersecting components and vary-
ing amplitudes. The proposed method first finds cross-term
free high-resolution TFD of a given signal by adopting a
locally adaptive directional TFD (LO-ADTFD) [25]. Using
the obtained clean TFD, the IF of the strongest component is
estimated by a novel mechanism that takes into account both
amplitude and direction of the detected peaks for assign-
ing them to appropriate IF curve. Considering the direction
ensures that the algorithm does not switch to the IF of other
components at the intersecting point. Finally, the estimated
IF is used to remove the signal component from the given
mixture. This procedure is repeated until IFs of all the com-
ponents are estimated.

2 Adaptive time–frequency distribution

2.1 Quadratic time–frequency distribution

Many non-stationary signals can be modeled as multi-
component amplitude-modulated and frequency-modulated
signals as:

s(t) =
N∑

k=1

sk(t) =
N∑

k=1

ak(t)e
j2π

t∫

0
fk (τ )dτ

, (1)

where ak(t) is instantaneous amplitude, fk(τ ) is IF, and N
is the total number of signal components.TF methods are
appropriate tool for the analysis of such signals. TF meth-
ods can be broadly classified into linear TF representations
and quadratic TF representations [13]. For the IF estimation
applications, linear TF representations are transformed into
a quadratic TFD by multiplying the linear TF representation
with its complex conjugate, e.g., Spectrogram is obtained
by multiplying short-time Fourier transform with its com-
plex conjugate. The Wigner Ville distribution (WVD) is a
core distribution from a quadratic class defined as the Fourier
transform of instantaneous auto-correlation function [13,28].

W (t, f ) =
∫

s
(
t + τ

2

)
s∗ (

t − τ
2

)
e− j2π f τdτ. (2)

The WVD has ideal energy concentration for mono-
component signals, i.e., signals with N = 1, with linear fre-
quency modulation. It suffers from cross-term interference
problem for multi-component signals [13]. The cross-terms
have oscillatory characteristics, and their rate of oscillation
increases as the distance between different signal com-
ponents is increased [12]. Cross-terms severely affect the
readability of a signal. They are often reduced by applying a
low-pass filter in TF domain [13].

ρ(t, f ) = W (t, f ) ∗
t
∗
f
γ (t, f ), (3)

where γ (t, f ) is a smoothing kernel whose shape usually
depends on some parameters. Smoothing reduces cross-
terms but also deteriorates the resolution of cross-terms. The
problem of cross-terms becomes challenging when signal
components are close to each other. In such scenarios, inten-
sive smoothing is likely to merge close signal components.
Previous studies have shown that high-resolution TF repre-
sentations can be obtained by adapting the direction of the
smoothing kernel at each point in TF plane [19].

2.2 Locally adaptive directional TFD

In order to circumvent the aforementioned issues of the tra-
ditional TFD, in this section we present TFD that adapts the
direction of the smoothing kernel at each TF point in the TF
plane and it is mathematically expressed as:

ρ(t, f ) = W (t, f ) ∗
t
∗
f
γθ (t, f ), (4)

where θ is the direction of smoothing kernel. In this study, we
have selected double derivative directional Gaussian filter as
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a smoothing kernel [19].

γθ (t, f ) = ab

2π

d2

d f 2θ
e−at2θ −b f 2θ . (5)

The shape of γθ (t, f ) depends on parameters a and b, while
the direction is controlled by θ . The direction of smoothing
kernel, i.e., γθ (t, f ), is adapted locally such that it is aligned
parallel to the major axis of ridges of a TF representation for
better suppression of cross-terms and enhancement of auto-
terms [19]. Such smoothing can be expressed as:

θ(t, f ) = argmax
θ

∣∣∣∣|ρ(t, f )| ∗
t
∗
f
γθ (t, f )

∣∣∣∣ , (6)

where −π/2 ≤ θ < π/2. Such directional smoothing
reduces cross-terms without distorting auto-terms. In order
to have optimal performance, both shape and direction of the
smoothing kernel need to be adapted. It is demonstrated in
earlier studies (i.e., [23]) that assigning a small value to a
and large value to b results in intensive smoothing along the
major axis of auto-terms and little or no smoothing along
minor axis thus resulting in fine resolution of close compo-
nents [23]. Such intensive smoothing distorts the energy for
short-duration signal components and fails to suppress inner
interference. On the other hand, assigning a lower value to
b results in extensive smoothing along the minor axis and
can cause merger of close components [23]. Typically, a is
assigned a value between 2 and 3, while b is assigned a value
within a range of 5–30. As there are infinite values between
the given ranges, the exhaustive search is computationally
infeasible. However, our earlier study has shown that a good
performance can be obtained from a small subset of values in
the given range [25]. This problem of appropriate selection
of a and b can be resolved by the following procedure as
discussed in [12]

– Let ((a1, b1), (a2, b2), ..) be a set of possible values for
a and b.

– Analyze a given signal using a number of ADTFDs. Note
that for computing ADTFD, the direction parameter is
optimized using the expression given in Eq. 5.

ρi (t, f ) = W (t, f ) ∗
t
∗
f
γθ,ai ,bi (t, f ) (7)

– The desired TF representation, named as locally adaptive
directional TF distribution (LO-ADTFD), is obtained as:

ρ(t, f ) = min
i

(ρi (t, f )) (8)

In this study, we have used only two sets for a and b, i.e.,
(a = 2, b = 20) and (a = 2, b = 30).

Fig. 2 Estimated IF for a multi-component signal composed of four
intersecting components

3 Proposed IF estimationmethod

As discussed above that one problem frequently observed
in IF estimation algorithms is caused by variations in rela-
tive amplitude of signal components as illustrated in Fig. 1.
Another common problem in IF estimation algorithms is that
at the intersecting point the algorithm may switch to the
wrong component as illustrated in Fig. 2.

The proposed method addresses these problems by first
estimating the IF of the strongest signal component from
the given mixture using a new peak detection procedure that
avoids tracking of the wrong signal component at the inter-
section point as discussed in Sect. 3.1. The IF information is
then used to design a TF filter that removes the signal com-
ponent from themixture signal as discussed in Sect. 3.2. This
process is iterated till all the components are extracted from
the mixture.

3.1 IF estimation of the strongest signal component

The IF of the strongest component is estimated using the
following peak detection and tracking algorithm that takes
into account both amplitude and direction of the detected
peak before assigning it to the appropriate IF. The flowchart
of the IF estimation algorithm is shown in Fig. 3, and key
steps of the algorithm are elaborated as follows:

1. Detect a point of highest energy (t0, f0) in a TF plane.
2. The IF of kth component at time instant t0 is estimated

as: f̂k(t0) = f0 where f̂k(t0) is the estimated IF at time
instant t0.

3. The IF for t > t0 is estimated using the following proce-
dure.

4. Increment t = t +1/ fs, where fs is sampling frequency.
5. Detect peak in the neighborhood of f̂k(t − 1/ f s).

f0 = argmax
f

|ρ(t, f )| (9)

Where f̂k(t − 1/ fs) − B ≤ f ≤ f̂k(t − 1/ fs) + B and
B is a preselected threshold based on bandwidth.
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Fig. 3 Procedure for IF estimation of the strongest component in a TFD

6. It is possible that near intersecting regions, the detected
peak may belong to IF curve of any other component.
Therefore, the proposed algorithm compares the prin-
cipal direction of the detected peak with the principal
direction of the peak detected in earlier iteration, i.e., at
the time instant t − 1

fs
. If directions of these two peaks

are close, i.e:

∣∣∣θ
(
t, f̂k

(
t − 1

fs

))
− θ(t, f0)

∣∣∣ < T , (10)

then the detected peak is assigned to the IF curve of kth
component as:

f̂k(t) = f0 (11)

Otherwise, the IF is estimated by extrapolation as:

f̂k(t)= f̂k
(
t − 1

fs

)
+ 1

fs
tan

(
θ

(
t− 1

fs
, f̂k

(
t − 1

fs

)))

(12)

Theprincipal direction of the ridges is obtainedduring the
estimation of direction of adaptive directional smoothing

kernel in Eq. 6. The same direction information is being
exploited in this step for IF estimation at intersecting
points. Equation 10 is based on the assumption that the
IF of the signal components varies slowly so that the
difference between the direction of two IF peaks is less
than T , where T is selected based on the rate of the change
in the IF of the signal component. For signals with fast
varying IFs, it should be assigned a large value, while
for slow varying IFs, e.g., linear frequency-modulated
chirps, it should be assigned a small value. In this study,
we have used T = 15.

7. Repeat from step (4) till boundary of TFD is reached
8. A similar procedure is adopted to estimate IF at t < t0.

3.2 Time–frequency filtering for removal of the
selected signal component

Once IF of the strongest component is detected, it is removed
from the mixture signal. The procedure of such TF filtering
is illustrated in flowchart shown in Fig. 4. The procedure is
also summarized in the following steps.

Fig. 4 The TF filtering algorithm to remove the strongest component

123



Signal, Image and Video Processing (2019) 13:517–524 521

1. Estimate the instantaneous phase as:

ϕ̂k(t) =
t∫

0

f̂k(τ )dτ. (13)

2. Use the estimated phase to de-chirp the given signal:

sc(t) = s(t)e− j ϕ̂k (t) (14)

Assuming ϕ̂k(t) ≈ ϕk(t).

sc(t) =
N∑

n=1

an(t)e
jϕn(t)e− j ϕ̂k(t)

= ak(t) +
N∑

n=1
n �=k

an(t)e
jϕn(t)e− j ϕ̂k(t) (15)

3. The instantaneous amplitudeof the kth signal component,
i.e., ak(t), is now a low-pass signal that can be extracted
from the original signal by application of a low-pass filter.

4. The kth component is synthesized from the estimated
phase and estimated amplitude as: sk(t) = ak(t)e jϕk(t).

5. The synthesized signal is then removed from the original
signal

s(t) = s(t) − sk(t) (16)

3.3 Summary of the algorithm

In this section, we present summary of the proposed IF esti-
mation algorithm. The overall procedure is illustrated in
Fig. 5, and the key steps of the algorithm are summarized
as follows:

1. Initialize k = 0.
2. Increment k = k + 1.
3. Analyze signal s(t) using LO-ADTFD.
4. Estimate the IF of the strongest component, i.e., fk(t),

using method described in 3.1.
5. Use the estimated IF, i.e., fk(t), to remove component

sk(t) using de-chirping method described in 3.2, i.e,
s(t) = s(t) − sk(t).

6. Repeat from 2 till the signal energy falls below a prese-
lected threshold.

Fig. 5 The proposed IF estimation algorithm

4 Results and discussion

4.1 Experimental results

Let us compare the performance of the proposed IF esti-
mation algorithm with a recently developed method which
exploits the combinationof intrinsic chirp component decom-
position and RPRG to estimate the IFs of multi-component
signals [6]. For RPRG-based methods, we have used the
Spectrogram, LO-ADTFD, adaptive optimal kernel TFD
(AOKTFD) andmodified B distribution (MBD) as the under-
lying TFDs. For the proposed method, only the LO-ADTFD
is employed as the underlying TFD as the proposed IF esti-
mation is developed specifically for the LO-ADTFD.

Example 1 Let us consider a multi-component signal com-
posed of two closely spaced components crossed by a single
component. The signal is shown in Fig. 6a and defined as:

z(t) = z1(t) + 2z2(t) + 0.8z3(t), (17)

where z1(t) = e j2π(0t−31t3), z2(t) = e j2π(90t−35t3), and
z3(t) = e j2π(105t−35t3). The signal is sampled at 256 Hz,
and its duration is 1 s. The sampling frequency is chosen to
be greater than 2 times of the maximum frequency in the
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Fig. 6 a Ideal TF representation of the signal. The estimated (circle
mark) versus original IF using the b proposed method employing the
LO-ADTFD, P = (2, 8), (2, 50); c RPRG employing the LO-ADTFD

P = (2, 8), (2, 50);dRPRGusing theAOKTFDas the underlyingTFD
[15]; eRPRG based on the Spectrogram (hamming, L = 45, N = 256)
[6]; and f RPRG based on the MBD (α = 0.5, N = 256)

signal as per Nyquist criterion. The signal is corrupted by
the additive white Gaussian noise with signal-to-noise ratio
(SNR), defined as signal power divided by the noise power,
equal to 10 dB. Figure 6 illustrates that only the proposed
method results in accurate estimation of IF for the given sig-
nal, while all other methods fail.

Let us test the robustness of the proposed algorithm to
additive white Gaussian noise. Themean square error (MSE)
between the original IF and the estimated IF is used to
measure the accuracy of the IF estimates for each compo-
nents. MSE for i th component is computed as: MSEi =∑Ns

k=1 fi (k) − f̂i (k), where fi (k) is the true IF of the i th

component, f̂ (k) is the estimated IF of the i th component,
and Ns is the number of IF samples. The overall accu-
racy is estimated by computing average MSE defined as:
MSEavg = 1

N

∑N
i=1 MSEi . 100 trials of Monte Carlo sim-

ulations are performed to estimate the average MSE, i.e.,
MSEavg, at SNR levels ranging from 0 to 10 dB. Figure 7
indicates that the proposed method achieves the best perfor-
mance for all SNR levels.

Example 2 Let us now repeat the above experiment by con-
sidering a 4-component signal such that two closely spaced
parallel quadratic chirps of varying amplitudes are inter-
sected by two linear frequency-modulated components in a

Fig. 7 The average MSE between the original IFs and the estimated
IFs using the proposed method and ICCDD-RPRG based on the LO-
ADTFD, MBD and Spectrogram

TF domain. The signal is defined as:

z(t) = z1(t) + z2(t) + z3(t) + 0.5z4(t), (18)

where z1(t) = e j2π(105t−35t3), z2(t) = e j2π(120t−35t3),
z3(t) = e j2π(50t2) and z4(t) = e j2π(50t2+30t). The above-
mentioned signal is sampled at 256 Hz, and signal duration
is 1 s. The proposed algorithm is applied to estimate the IF
of the given signal.

100 trails of Monte Carlo simulations are performed to
estimate the average MSE at SNR levels 2 dB, 4 dB, 6 dB,
8 dB, 10 dB and 12 dB. Figure 8 indicates that the proposed
method achieves the best performance for all SNR levels.
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Fig. 8 The average MSE between the original IFs and the estimated
IFs using the proposed method and ICCDD-RPRG based on the LO-
ADTFD, MBD and Spectrogram

Fig. 9 a LO-ADTFD representation of a multi-component signal com-
posed of 2 crossing components; b the LO-ADTFD of the signal after
removing the first component; c estimated IF (dashed line) versus orig-
inal IF (dotted line)

Fig. 10 The average MSE between the original IFs and the estimated
IFs using the proposed method and ICCDD-RPRG based on the LO-
ADTFD, MBD and Spectrogram

Example 3 Let us illustrate the performance of the proposed
algorithm by using a 2-component signal with time-varying
amplitude. The signal is obtained by multiplying linear
frequency-modulated chirps by the triangular window. The
signal is corrupted by the additive white Gaussian noise.
A step-by-step demonstration of the proposed algorithm is
illustrated in Fig. 9.

Figure 10 compares the performance of the proposed
method with other methods including the RPRG employing
MBD, Spectrogram and LO-ADTFD as underlying TFDs for
SNRs 0 dB, 2 dB, 4 dB, 6 dB, 8 dB, 10 dB. Experimental

results confirms that the proposed method is applicable to
signals with time-varying amplitudes.

4.2 Discussion of results

The proposed method outperforms RPRG-based IF estima-
tion methods in terms of robustness to noise for signals with
complicated IF structures as shown above. The robust per-
formance of the proposed algorithm for difficult cases of
intersecting and close components is due to the following
factors.

– Selection of a TFD The LO-ADTFD is a high-resolution
TFD that outperforms other methods in terms of IF esti-
mation as demonstrated in earlier studies [19].

– Iterative extractionof the signal componentsWhen signal
components of varying amplitudes intersect each other,
the LO-ADTFD and other TFDs fail to achieve good
energy concentration in the intersection regions, e.g., see
Fig. 9a. This leads to problems in most IF estimation
methods. The proposed method addresses this problem
by recursive filtering [7]. The strongest component is
detected and removed from the mixture signal. This pro-
cess is repeated till all the components are extracted. The
removal of strongest component reduces the cross-terms
caused by its presence in earlier iteration thus resulting
in improved analysis of the mixture signal containing
remaining signal components as illustrated in Fig. 9.

– IF tracking algorithm The new IF tracking algorithm
takes into account both the direction and amplitude of
signal components to avoid trackingproblems at the inter-
section point. The proposed method is robust to noise
as compared to RPRG method, e.g., the MSE obtained
by the proposed tracking method is lower than the MSE
obtained by the RPRG method even if both methods use
the same underlying TF representation.

5 Conclusion

A new multi-component IF estimation algorithm for sig-
nals with intersecting and close signal components has been
proposed. The proposed method uses a combination of the
high-resolution time–frequency signal analysis method, i.e.,
the LO-ADTFD, and new IF estimation algorithm that takes
into account the direction of ridges for tracking signal com-
ponents to avoid mix up at the intersecting point in TF
domain. Experimental results indicate the superiority of the
proposed method in comparison with the other state-of-the-
art methods such as RPRGmethod. The gain in performance
improvement is obtained at the expense of additional compu-
tational cost. The proposed algorithm involves computation
of LO-ADTFD, IF estimation and TF filtering. The com-
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putational cost of IF estimation and TF filtering is O(N 2
s )

and O(Ns log Ns), respectively. The computational cost of
LO-ADTFD is O(N 2

s log N
2
s +KM2N 2

s ) for single iteration,
where Ns is number of samples in a TFD, K is number of
directional filters employed and MxM is size of smooth-
ing kernel. Thus, the computational cost of single iteration
of the algorithm becomes O(N 2

s log Ns + (1 + M2)N 2
s +

Ns log Ns). For N number of components, the computational
cost of the algorithm becomes O(NN2

s log Ns + N (2K +
1)N 2

s + NN s log Ns). However, the computational cost of
LO-ADTFD can be alleviated by using a fast implementa-
tion of ADTFD [24].
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10. Djurović, I.: Estimation of sinusoidal frequency-modulated signal
parameters in high-noise environment. Signal Image Video Pro-
cess. 11(8), 1537–1541 (2017)

11. Gupta, R., Kumar, A., Bahl, R.: Estimation of instantaneous fre-
quencies using iterative empirical mode decomposition. Signal
Image Video Process. 8(5), 799–812 (2014)

12. Hlawatsch, F.: Interference terms in the Wigner distribution. Digit.
Signal Process. 84, 363–367 (1984)

13. Hlawatsch, F., Boudreaux-Bartels, F.: Linear and quadratic time–
frequency signal representations. IEEE Signal Process. Mag. 9(2),
21–67 (1992)

14. Jiang, L., Li, L., Zhao, G., Pan, Y.: Instantaneous frequency estima-
tion of nonlinear frequency-modulated signals under strong noise
environment. Circuits Syst. Signal Process. 35(10), 3734–3744
(2016)

15. Jones, D.L., Baraniuk, R.G.: An adaptive optimal-kernel time–
frequency representation. IEEE Trans. Signal Process. 43(10),
2361–2371 (1995)

16. Khan, N., Ali, S.: Classification of EEG signals using adaptive
time–frequency distributions. Metrol. Meas. Syst. 23(2), 251–260
(2016)

17. Khan, N., Jnsson, P., Sandsten, M.: Performance comparison of
time–frequency distributions for estimation of instantaneous fre-
quency of heart rate variability signals. Appl. Sci. 7(3), 1–16 (2017)

18. Khan, N.A., Ali, S.: Exploiting temporal correlation for detec-
tion of non-stationary signals using a de-chirping method based
on time–frequency analysis. Circuits Syst. Signal Process. 37(8),
3136–3153 (2018)

19. Khan, N.A., Boashash, B.: Multicomponent instantaneous fre-
quency estimation using locally adaptive directional time fre-
quency distributions. Int. J. Adapt. Control Signal Process. 30(3),
429–442 (2016)

20. Li, P., Wang, D.-C., Chen, J.-L.: Parameter estimation for micro-
doppler signals based on cubic phase function. Signal Image Video
Process. 7(6), 1239–1249 (2013)

21. Li, P., Zhang, Q.-H.: An improved Viterbi algorithm for IF extrac-
tion of multicomponent signals. Signal Image Video Process. 12,
171–179 (2017)

22. Mikluc, D., Bujakovi, D., Andri, M., Simi, S.: Estimation and
extraction of radar signal features using modified B distribution
and particle filters. J. RF-Eng. Telecommun. 70(9–10), 417–427
(2016)

23. Mohammadi, M., Pouyan, A., Khan, N.: A highly adaptive direc-
tional time–frequency distribution. Signal Image Video Process.
10(7), 1369–1376 (2016)

24. Mohammadi, M., Pouyan, A.A., Khan, N.A., Abolghasemi, V.: An
improved design of adaptive directional time–frequency distribu-
tions based on the radon transform. Signal Process. 150, 85–89
(2018)

25. Mohammadi, M., Pouyan, A.A., Khan, N.A., Abolghasemi, V.:
Locally optimized adaptive directional time-frequency distribu-
tions. Circuits Syst. Signal Process. 37(8), 3154–3174 (2018).
https://doi.org/10.1007/s00034-018-0802-z

26. Rankine, L., Mesbah, M., Boashash, B.: If estimation for mul-
ticomponent signals using image processing techniques in the
time–frequency domain. Signal Process. 87(6), 1234–1250 (2007)

27. Stankovic, L., Djurovi, I., Stankovi, S., Simeunovi, M., Djukanovi,
S., Dakovi, M.: Instantaneous frequency in time–frequency analy-
sis: enhanced concepts and performance of estimation algorithms.
Digital Signal Process. 2, 1–13 (2014)

28. Stankovic, L., Dakovic, M., Thayaparan, T.: Time–Frequency Sig-
nal Analysis with Applications. Artech House, Boston (2013)

29. Wang, C., Kong, F., He, Q., Fei, H., Liu, F.: Doppler effect removal
based on instantaneous frequency estimation and time domain re-
sampling for wayside acoustic defective bearing detector system.
Measurement 50, 346–355 (2014)

30. Yang, P., Liu, Z., Jiang, W.-L.: Parameter estimation of multi-
component chirp signals based on discrete chirp fourier transform
and population monte carlo. Signal Image Video Process. 9(5),
1137–1149 (2015)

31. Zhang, H., Guoan, B., Yang, W., Razul, S.G.: If estimation of fm
signals based on time–frequency image. IEEETrans. Aerosp. Elec-
tron. Syst. 51(1), 326–343 (2015)

123

https://doi.org/10.1007/s00034-018-0802-z

	Instantaneous frequency estimation of intersecting and close multi-component signals with varying amplitudes
	Abstract
	1 Introduction
	2 Adaptive time–frequency distribution
	2.1 Quadratic time–frequency distribution
	2.2 Locally adaptive directional TFD

	3 Proposed IF estimation method
	3.1 IF estimation of the strongest signal component
	3.2 Time–frequency filtering for removal of the selected signal component
	3.3 Summary of the algorithm

	4 Results and discussion
	4.1 Experimental results
	4.2 Discussion of results

	5 Conclusion
	References




