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Abstract
Gait is a novel biometric feature that offers human identification at a distance andwithout physical interactionwith the imaging
device. Moreover, it performs well even in low resolution which makes it ideal for use in numerous human identification
applications, e.g.,visual surveillance, monitoring and access control systems. Most existing gait-based human identification
solutions extract human body silhouettes, contours or shapes from the images and construct gait features. Therefore, the
performance of such algorithms highly depends upon the accuracy of human body segmentation, which is still a challenging
problem in the literature. In this paper, we propose a new gait recognition algorithmwhich uses the spatial and temporal motion
characteristics of human gait for individual identification without needing the silhouette extraction. The proposed algorithm
extracts a set of spatiotemporal local descriptors from the gait video sequences. The extracted descriptors are encoded using
the Fisher vector encoding and Gaussian mixture model-based codebook. The encoded features are classified using a simple
linear support vector machine to recognize the individuals. The proposed gait recognition method is evaluated on five widely
used gait databases, including indoor (CMUMoBo, CASIA-B) and outdoor (NLPR, CASIA-C, TUM GAID) gait databases.
The results reveal that our method showed excellent performance on all five databases and outperformed the state-of-the-art
gait recognition approaches.
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1 Introduction

Biometrics has emerged as an important research area in
the recent years due to its vast applications in various
fields such as surveillance, authentication, etc. A number
of human physiological characteristics e.g., face, iris, fin-
gerprints, deoxyribonucleic acid (DNA) have been shown
to be unique, and therefore, they can be used for individual
identification [28,42]. Lately, the gait biometric has received
attention of research community for human identification.
It refers to the way a person walks. Gait is different from
other biometric modalities in which the person interaction is
neededwith the system for identification such as fingersmust
be placed on the scanners to get their print, face must be in
a specific position in front of a camera to be captured, DNA
requires sample of blood or skin to be used for analysis; the
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gait on the other hand does not require any interaction with
the imaging device. It works in a hiddenmanner, and the indi-
viduals are generally unaware that they are being captured by
a camera installed at some secret place. Moreover, the per-
formance of gait-based human identifiers is less susceptible
to noise as compared to other biometrics and that is why they
perform pretty well even in low-quality and low-resolution
videos. Gait may not be as precise and powerful biometric
as some other modalities are, but the aforementioned charac-
teristics make the gait an ideal choice for visual surveillance
applications.

The existing gait recognition algorithms are generally cat-
egorized into two types: model-based algorithms and model-
free approaches. In the former category, the gait recognition
algorithms use the human motion, body structures, and joint
positions to track and recognize the individuals [57]. The
structural models are usually generated based on the prior
knowledge of the shape of human body [7,23]. The motion
models [3,10] exploit the motion parameters of human body
parts like joint angle trajectories, rotation patterns of hip and
thigh. The gait recognition algorithm proposed in [3] com-
putes features from joints’ locations using elliptic Fourier
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descriptors which are used to recognize the gait. The authors
in [10] modeled a gait feature by exploiting the angular
motion of the hip and thigh using the Fourier series. Wang
et al. [53] modeled human body using fourteen rigid parts
connected to each other at joint locations and used these
locations to obtain joint angle trajectories which are used as
gait descriptor. The model-based approaches are somewhat
robust to occlusion, but they sufferwith number of limitations
such as the performance of these methods depends upon the
torso localization and also requires high-quality gait videos
[3,57]. Moreover, these methods are computationally expen-
sive too.

Themodel-free gait recognition approaches usually extract
human silhouettes from gait video and drive different infor-
mation from these silhouettes images for gait identification.
Numerous techniques construct a template image from the
segmented human body silhouettes and use it for person iden-
tification e.g., [1,8,17,24,30,37,41,51]. The technique pro-
posed in [30] computes silhouette images and averages the
results over a gait cycle to estimate the person identity, known
as gait energy image (GEI). Several improvements over
GEI have also been reported e.g., [1,24,41,46,51,60]. The
approaches [14,36,59] extract different gait-related param-
eters from the silhouette images and use them for person
identification. Goffredo et al. [14] computed the height and
width features from the normalized and scaled silhouette
region over time and used them as gait dynamics. In [59],
radial basis function network and deterministic learning is
used to classify the height and width ratio and contour cen-
troid over time to approximate the individual’s gait.

Shape analysis on the sequence of silhouettes and projec-
tion of silhouettes in different directions have also explored
in gait identification [21,44,45,49,54]. The 2D silhouette are
mapped into 1D normalized distance signal in the algorithm
described in [55]. The changes in shape of 1D silhouette over
time are used to approximate the gait patterns. The methods
in [44,45] used the normalized segmented silhouette region
and projected them in different directions. They consider a
vector of projective values in each projection as gait feature.
Motion information has also been extensively used for gait
recognition e.g., [6,9,20]. Castro et al. [6] computed the spa-
tiotemporal cuboids of optical flow from the video sequences
and fed to convolutional neural network to obtain a high-level
gait representation. The authors in [9] exploit the spatiotem-
poral motion characteristics, and and statistical and physical
parameters of silhouettes for recognition.

The model-free gait recognition techniques have achieved
better results compared to their counterpart model-based
approaches, and they are computationally efficient too.
However, the bottleneck in these techniques is the precise sil-
houette segmentation, as a poor segmentation can adversely
affect the recognition performance [59]. This paper presents
a novel spatiotemporal features-based gait representation

using dense trajectories to model the human gait. The moti-
vation in using the dense trajectories is because they contain
the local motion patterns of walk and they can be easily com-
puted from the gait video sequences using optical flow field.
The extracted motion information is encoded using Fisher
vector- and Gaussian mixture model-based codebook. These
encoded features are classified using a simple linear support
vector machine (SVM).

The proposed approach, unlike existing techniques, does
not require gait cycle estimation or human body extraction,
and therefore, it performs better in low-resolution videos
and poor-quality videos. The experimental evaluation per-
formed on CASIA-C gait database (Sect. 3.5) which consists
of low-resolution video sequences reveals the efficacy of
the proposed method in unfavorable and challenging con-
ditions, as the video sequences are recorded at night using
a thermal imaging camera. In particular, the proposed gait
features comprise the persons static appearance and the rel-
ative motion information which are capable of capturing
even a small variance in the gait. High recognition accuracy
obtained with a simple linear SVM also confirm the discrim-
inative nature of the proposed features for gait recognition.
Preliminary results of this research were presented in [19];
however, in this paper a number of improvements are pro-
posed which are summarized in the following.

– In this study, we investigated the influence of dimension-
ality reduction on feature encoding. High-dimensional
features inevitably increase the computational complex-
ity and the storage requirements. It is inferred froma large
experimentation that applying principal component anal-
ysis (PCA) after feature encoding not only improves the
recognition rate, it also reduces the classification time
and the storage requirements of the proposed algorithm.

– It is also concluded that dimensionality reduction prior
to feature encoding results in loss of few important cues
for gait recognition, which may lower the recognition
accuracy. Indeed, this information is importantwhich sig-
nificantly improves the efficiency of our method.

– In this research, an extensive experimental evaluation
is performed. The proposed technique is evaluated on
five large benchmark gait databases and the recognition
results are compared with state-of-the-art techniques.

2 Proposed gait recognitionmethod

The proposed gait recognition technique consists of four
steps. First, the dense trajectories are extracted for a set of
sample points in a video sequence using optical flow field,
and for each tracked point the appearance and motion infor-
mation of a walker is computed within a spatiotemporal
patch and saved in local descriptors. Second, we randomly
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Fig. 1 Schematic diagram of the proposed gait-based human recognition algorithm

selected one million local descriptors to build a codebook.
The codebook is constructed using Gaussian mixture mod-
els (GMM), and the local descriptors are encoded using this
codebook and Fisher vector encoding scheme in the third
step. Finally, we used a linear SVM to classify the encoded
features. The performance of the proposed algorithm is eval-
uated on five widely used benchmark gait databases, and
the results are compared with the existing techniques. The
recognition results confirm the superior performance of the
proposed method. Figure 1 shows the block diagram of the
proposed method. Each step of the proposed method is pre-
sented in the following sections.

2.1 Motion descriptor computation

Recently, dense trajectories have proven to be effective in
action recognition [33,52]. Since they encode the move-
ment patterns of a person’s walk and can be easily computed
directly from the gait video sequences, we used them to com-
pute the gait features for person identification. In order to
compute trajectories, we select a set of dense points from a
frame and they are being tracked in the subsequent frames.
The tracking is performed using displacement information in
a dense optical flow field. In particular, each selected point
Pt = (xt , yt ) in frame t is tracked in the subsequent frame
t + 1 and so forth. The concatenation of these tracked points
in the subsequent frames form a trajectory. Assuming that
S represents a sequence of displacement vector and can be
computed as,

S = (�Pt ,�Pt+1, . . . ,�Pt+L−1), (1)

where L is the trajectory length and�Pt = (Pt+1− Pt ). The
resultant vector S is normalized:

S′ = (�Pt , . . . ,�Pt+L−1)
∑t+L−1

j=t

∥
∥�Pj

∥
∥

(2)

Equation 2 describes the shape of the trajectory. The
authors in [52] proposed the computation of local descrip-
tors around the tracked points to capture the appearance
and motion information for action recognition. The local
descriptors are computed within space-time volume, and
their information is saved in two histograms, namely his-
togram of oriented gradient (HOG) and histogram of optical
flow (HOF). Furthermore, two additional descriptors are
computed by taking the spatial derivatives along horizontal
(x-axis) and vertical (y-axis) components of the optical flow
known as Motion Boundary Histogram and their informa-
tion is saved in two histograms namely, MBHx and MBHy ,
respectively. They describe the relative motion between the
pixels. We quantized the orientation information of each
descriptor into 8-bin histogram. The descriptors are normal-
ized with L2-norm. In order to assess the efficacy of these
descriptors for gait recognition, we evaluated their several
combinations in [19] and concluded that the combination
of MBH and HOG outperforms the others feature combina-
tions. The main reason for the superior performance of this
combination is that HOG captures the person’s static appear-
ance and MBH encodes the relative motion information
between the pixels; therefore, when used collectively they
have a greater impact in recognizing the individuals using
their appearances and motion information. Moreover, they
are capable of capturing small variances in the gait patterns.

2.2 Codebook generation

Usually, a set of local descriptors are used to construct a fixed
length vector to represent an image or video. We encoded
HOG and MBH descriptors using Fisher vector (FV) encod-
ing and Gaussian mixture model (GMM)-based codebook.
The FV is based on the principle of Fisher kernel [38]
which incorporates the advantages of both discriminative and
generic approaches using a kernel from generative model of
the data. The GMM defines a collection of several Gaussian
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distributions over the feature space [33] and can be expressed
as:

p(X | θ) =
K∑

i=1

wiN (x | μi ,
∑

i ) (3)

where K represents the number of components of GMM,
wi is the weight of i th component with the constraint that∑K

i=1 wi = 1, μi and
∑

i are representing the mean vec-
tor and covariance matrix of the i th component, respectively.
Additionally, θ = {wi , μi ,

∑
i , i = 1, 2, . . . , K } is the list

of parameters for all K components of GMM and N (x |
μi ,

∑
i ) represents the Gaussian distribution with D dimen-

sions:

N (x | μi ,
∑

i ) = 1
√

(2π)D| ∑i |
e
−1

2
(x−μi )

� ∑−1
i (x − μi )

(4)

For a given feature set X = {x1, . . . , xt }, we used max-
imum likelihood estimation algorithm [31] to estimate the
optimal parameters of GMM. It performs soft assignment of
a data point to each component. The assignment score which
is also known as posterior probability demonstrates the asso-
ciation of data point to the respective component in GMM
and can be defined as,

qt (i) = wiN (xt | μi ,
∑

i )
∑K

j=1 w jN (xt | μ j ,
∑

j )
(5)

We consider that each component of GMM describes a
particular appearance and motion pattern contributed by the
local descriptors. Since GMM uses an iterative expectation
maximization (EM) algorithm [11,25] which implements
soft assignment of a descriptor to all components, the descrip-
tor would be assigned to multiple components using the
posterior estimates of the descriptor.

2.3 Feature encoding

Feature encoding is the process of transforming the local
descriptors of an image or video into a fixed length vector.
Lately, FV encoding became quite popular due to its superior
performance in many image processing applications [34,38].
We chose FV to encode our local descriptors. The encoding
of FV starts by learning a GMM (Sect. 2.2). Let X = {xt |t =
1, . . . , T } be a set of local descriptors which is transformed
into a vector using (3).

FX = 1

T
∇θ log p(X |θ), (6)

where FX represents the resultant Fisher vector and ∇θ is
the gradient of the log-likelihood with respect to the model

parameters θ . Let xt be a D-dimensional local descriptor,
and its assignment to the i th Gaussian component (5) is rep-
resented as qt (i). Assuming that the covariance matrices

∑
i

are diagonal and can be represented as σi
2, the gradient vec-

tor can be represented as in [35]:

ui = 1

T
√

wi

T∑

t=1

qt (i)
xt − μi

σi
(7)

where mean μi represents the mean of the i th component.

vi = 1

T
√
2wi

T∑

t=1

qt (i)

[
(xt − μi )

2

σ 2
i

− 1

]

, (8)

where ui and vi are D-dimensional gradient vectors with
respect to the model parameters mean and variance, respec-
tively. The Fisher encoding for the set of local descriptors X
is obtained as a concatenation of u and v.

f = [u�
1 , v�

1 , u�
2 , v�

2 , . . . , u�
K , v�

K ]� (9)

The final gradient vector f consists of ui and vi vectors
for i = 1, 2, . . . , K . The size of f is 2K D. The MBHx ,
MBHy andHOGdescriptors are encoded as described above,
and they are fused using the representation-level fusion [33].
Each of the feature vectors representing a set of local descrip-
tors are computed separately and a global representation is
obtained by concatenating them.

2.4 Classification

The similarity between two samples X and Y can be mea-
sured using the Fisher kernel (FK) [38]. It is defined as
a dot-product between the feature vectors of X and Y :
FK (X ,Y ) = f ′

X · fY . Here fX and fY represent the Fisher
vectors for samples X and Y , respectively. A nonlinear ker-
nel machine using FK as a kernel is similar to a linear kernel
machine using fX as feature vector. The main advantage
of using such an explicit vector formulation is that we can
exploit any simple linear classifier which can learn very effi-
ciently. We used a simple linear SVM to solve this problem.
In the implementation of the proposed algorithm, LIBLIN-
EAR SVM library [13] is used to classify the encoded gait
features. Before the actual model is trained on full training
database, a 10-fold cross-validation is performed to validate
the model by selecting the optimal value of its parameters.

3 Experiments and results

The performance of the proposed algorithm is evaluated on
five large gait databases: TUMGAID [17], CMUMoBo [15],
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Table 1 Summary of gait databases used in performance evaluation. Size represents the number of gait video sequences in the database used in
experimental evaluation

Database Environment Size Walk scenarios

TUM GAID Outdoor 3370 Left-to-right and right-to-left walk with three variations:

normal walk, walk with coating shoes, walk with backpack

CMU MoBo Indoor 300 Slow walk, fast walk, slow walk with ball in hands, slow walk at certain slope

NLPR Outdoor 80 Left-to-right walk, right-to-left walk

CASIA-B Indoor 1240 Normal walk, walk with coat, walk with bag

CASIA-C Outdoor 1530 Normal walk, fast walk, slow walk, walk with backpack

NLPR [55], CASIA-B [58] and CASIA-C [46] databases.
Each database contains gait sequences captured in differ-
ent environment with several variations in walking style,
clothing, walking speed, etc. For example, in TUM GIAD
database, three different walking styles are captured: nor-
mal walk, walk with coating shoes, and walk with backpack.
Moreover, the database is recorded in two different seasons;
thus, the clothing and the environment are significantly dif-
ferent. A summary of the characteristics of gait databases
used in the experimental evaluation is presented in Table 1.
For each database, a codebook is separately computed using
a training set, a subset of the database, and is used to encode
the local descriptors of that particular database. In all experi-
ments, one million randomly selected local descriptors from
the training set are used to build a codebook with GMM. The
number of components K inGMMare empirically computed
and set to 28 in all experiments and the length of each local
descriptor is 96. The same distribution of databases into train-
ing and testing sets are used in evaluating the performance
of the proposed and the compared gait recognition methods.

We also assess the influence of dimensionality reduc-
tion on the classification accuracy of our computed features.
It is observed that dimensionality reduction significantly
improves the recognition accuracy of the proposed method
and reduces the computational time and the storage require-
ments. This improvement is due to the impact of PCA on
GMM, which decorrelates the different dimensions during
the projection, and since we are using a diagonal covariance
matrix in Gaussian distribution, it is considered more advan-
tageous [43]. Let d be the dimension of our feature vector
and n be the total number of instances in the training and
the testing sets. Since d � n; therefore, we have applied
PCA on our feature vectors and reduced their dimensions to
n−1 to alleviate the curse of the dimensionality problem. It is
empirically concluded that average recognition accuracy of
the proposed algorithm on five gait databases is significantly
increased (up to 27%), when the dimension of the final fea-
ture vector is reduced. Furthermore, using PCA the average
percentage saving ofmemory on all the five databases ismore
than 50% and the average speedup achieved in classification
time is more than 96%.

3.1 Evaluation on TUMGAID database

TUMGAID [17] is one of the biggest gait database, compris-
ing 3370 gait sequences of 305 subjects. The gait sequences
were recorded in two different seasons. Each subject in the
database has tenwalk sequenceswhich include six sequences
of normal walk (N ), two sequences of walk with coating
shoes (S) and two sequences of walk with backpack (B).
A subset of 32 subjects in the database who took part in
both recordings have ten more walk sequences (i.e., in total
20 sequences), and they are described as normal walk after
time (T N ), walk with coating shoes after time (T S) andwalk
with backpack after time (T B). The time variation, where the
shoes, clothing, illumination and other recording properties
are significantly changed,make this database extremely chal-
lenging. A similar division of gait sequences into the training
(i.e., gallery) and the testing (i.e., probe) sets is used, defined
in [17]. Specifically, the first four sequences of N for each
person (i.e., N1−N4) are used in the training set and N5−N6,
S1 − S2 and B1 − B2 are used in the testing sets separately,
with three different experiments, namely N , S and B. More-
over, three more experiments are conducted namely T N , T S
and T B where the sequences of N7−N8, S3−S4 and B3−B4

are used in the testing set separately, while the training set is
similar as in the previous set of experiments.

Recognition rate measure is used to assess the per-
formance of gait recognition algorithms. The recognition
results achieved by our algorithm and their comparison with
the state-of-the-art techniques [4–6,17,56] are outlined in
Table 2. The statistics show that in the first set of experiments
N , S and B, the proposed algorithm outperforms all compet-
ing methods. It achieved the recognition accuracy of 99.7%,
99.7% and 100%, respectively. In the next three experiments,
T N , T S and T B, our algorithm performs the best on T B
experiment achieving 71.9% recognition accuracy. However,
on T N and T S experiments, respectively, PFM [5] andCNN-
SVM [6] perform better than our algorithm. Overall, our
algorithm achieves the best average recognition accuracy of
96.5%.
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Table 2 Performance comparison of proposed algorithm on TUM
GAID database

Algorithm N S B T N T S T B Avg

GEI [17] 99.4 56.2 27.1 44.0 9.0 6.0 56.0

GEV [17] 94.2 87.7 13.9 41.0 31.0 0.0 61.4

SEIM [56] 99.0 96.1 18.4 15.6 28.1 3.1 66.0

GVI [56] 99.0 94.5 47.7 62.5 62.5 15.6 77.3

SVIM [56] 98.4 91.6 64.2 65.6 50.0 31.3 81.4

DGHEI [17] 99.0 96.1 40.3 50.0 44.0 0.0 87.3

CNN-SVM [6] 99.7 97.1 97.1 59.4 62.5 50.0 94.2

CNN-NN128 [6] 99.7 95.8 98.1 62.5 59.4 56.3 94.2

H2M [4] 99.4 98.1 100.0 71.9 43.8 63.4 95.5

PFM [5] 99.7 99.0 99.0 78.1 54.9 62.0 96.0

Proposed 99.7 99.7 100.0 68.8 53.1 71.9 96.5

The recognition results (%) of each experiment N , S, B, T N , T S and
T B are described in the respective columns. Avg represents the average
performance of the respective algorithm in all experiments. Best results
are marked in bold

3.2 Evaluation on CMUMoBo database

The CMUMoBo database [15] contains the gait videos of 25
subjects while they are walking on a treadmill. The database
comprises four variations of walk: slow walk (S), walk with
ball in hands (B), fast walk (F) and walk at certain slope
(I ). The sequences are recorded from six different viewing
angles. The gait sequences recorded in lateral view are used
to assess the performance of the proposed algorithm to deal
with the variations in walking surface (i.e., incline), speed
and carrying condition. In order to increase the number of
gait sequences, similar to [59] we split the sequences into
three equal parts. Two type of experiments are conducted,
(1) similar walking styles are used in the training and the
testing sets, (2) different walking styles are used in the train-
ing and the testing sets. The recognition accuracies obtained
by the proposed algorithm and their comparison with com-
peting methods are listed in Table 3. The proposed algorithm
achieved excellent results, outperformed all competingmeth-
ods in sixteen experiments and achieved the highest average
recognition accuracy of 98.5%.

3.3 Evaluation on NLPR gait database

The NLPR gait database [55] comprises the walk sequences
of 20 subjects. Each subject has four walk sequences cap-
tured from three different viewing angles: 0◦, 45◦ and 90◦.
Each subject in the database walks twice, from right-to-
left and from left-to-right. The performance of the proposed
algorithm is evaluated on the gait sequences recorded at 0◦
viewing angle. The first three recordings of each subject are
used in the training set and the rest of the forth recording is
used in the testing set. The recognition result obtained by the Ta
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Table 4 Performance
comparison of proposed
algorithm on NLPR gait
database

Algorithm Accuracy Algorithm Accuracy

ICA [29] 82.5 Partial silhouette [39] 85.0

WBP [21] 100.0 HSD [20] 100.0

NN [22] 87.5 2D polar plane [8] 92.5

3D deform. [14] 100 PSA [54] 88.8

STC + PCA [55] 82.5 GEI [32] 95.0

Proposed 100.0

The best recognition result (%) is marked in bold

Table 5 Performance comparison of proposed algorithm on CASIA-B
gait database

Algorithm nm cl bg Avg

GEI [51] 91.6 24.0 31.7 49.1

CGI [51] 88.0 43.0 43.7 58.2

AEI + 2DLPP [60] 98.4 72.2 91.9 87.5

Baseline method [58] 97.6 32.2 52.0 60.8

GEnI [2] 98.3 33.5 80.1 70.7

RF + FSS + CDA [12] 100.0 33.1 50.0 61.0

HSD [20] 94.5 58.1 62.9 71.8

DCS + H2M [4] 100.0 72.6 99.2 90.6

PFM [5] 100.0 85.5 100.0 95.2

SDL [59] 98.4 90.3 93.5 94.1

Proposed 100.0 89.9 100.0 96.6

The recognition results (%) of each experiment nm, cl and bg are
described in the respective columns. Avg represents the average per-
formance of the respective algorithm in all three experiments. The best
results are marked in bold

proposed algorithm on NLPR database and its comparison
with other competing techniques is reported in Table 4. The
proposed algorithm alongwith [14,20,21] achieves the 100%
recognition rate on NLPR gait database.

3.4 Evaluation on CASIA-B gait database

CASIA-B [58] is another large gait database comprising the
gait sequences of 124 subjects. The sequences are captured
from11different viewing angles.Each subject in thedatabase
has ten sequences of gait with three variations: six sequences
of normal walk (nm), two of walk while wearing a coat (cl)
and two of walk with bag (bg). The sequences recorded in
the lateral view are used in the evaluation, and three differ-
ent experiments namely nm, cl and bg are conducted. In all
experiments, the first four normal walk sequences from all
124 subjects are placed in the training set, and the rest of two
nm, cl and bg sequences are used in the testing set, sepa-
rately. The recognition accuracies obtained by the proposed
algorithm and their comparison with competing methods are
presented in Table 5. The results reveal that the proposed

algorithm outperforms the existing methods in nm and bg,
while SDL [59] performs slightly better than our method
in cl. Our method achieves the highest average recognition
accuracy of 96.6%.

3.5 Evaluation on CASIA-C database

TheCASIA-C database [46] comprises the gait videos of 153
subjects with four walking scenarios: normal walk ( f n), fast
walk ( f q), slowwalk ( f s) andwalkwith backpack ( f b). The
database contains low-resolution videos which are recorded
at night using a thermal imaging camera. Each subject in the
database has four recordings of f n and two recordings of
each f q, f s and f b. This database aims at evaluating the per-
formance of gait recognition methods under variations in the
walking speed, carrying condition and illumination changes.
Four different experiments namely f n, f q, f s and f b are
conducted. In all experiments, the first three walk sequences
of f n from all 153 subjects are placed in the training set.
In the first experiment, the forth remaining sequence of f n
is placed in the testing set while the rest of f q, f s and f b
sequences are placed in the testing set, separately, for the next
three experiments. The recognition results obtained by the
proposed algorithm and the competing methods are reported
in Table 6. The results demonstrate that our method outper-
form the existing methods in most experiments and obtain
the highest average recognition accuracy of 99.8%.

One can conclude from the results presented in the pre-
vious sections that the proposed gait recognition algorithm
performed consistently better than many state-of-the-art gait
recognition methods and that it is strong in resisting the
changes in walk due to variations in clothing, shoes, back-
packs, bags, jackets, and illumination. The source code of
the proposed gait recognition algorithm is publicly released
to reproduce the results reported in this paper. The source
code along with a sample database and computed features
are made available online at.1

1 http://www.pr.informatik.uni-siegen.de/en/gait-recognition-based-
spatiotemporal-features-human-motion.
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Table 6 Performance comparison of proposed algorithm on CASIA-C
gait database

Experiment f n f q f s f b Avg

AEI + 2DLPP [60] 88.9 90.2 89.2 79.7 87.0

WBP [21] 99.0 89.6 86.4 80.7 88.9

NDDP [45] 97.0 83.0 83.0 17.0 70.0

HSD [20] 97.0 89.0 86.0 65.0 84.2

HTI [46] 94.0 88.0 85.0 51.0 79.5

Uniprojective [44] 97.0 88.0 84.0 37.0 76.5

GEI [47] 90.0 80.0 – 70.0 80.0

RSM [16] 100.0 99.6 99.7 96.2 98.9

SDL [59] 95.4 92.5 91.2 81.7 90.2

PFM [5] 100.0 100.0 98.7 99.3 99.5

Proposed 100.0 100.0 99.4 100.0 99.8

The recognition results (%) of each experiment f n, f q, f s and f b
are described in the respective columns. Avg represents the average
performance of the respective algorithm in all four experiments. The
best results are marked in bold

4 Conclusions

Anew gait representation based on spatiotemporal character-
istics of humanmotion is presented in this paper. Unlikemost
existing methods which require the segmented silhouette of
human body region to compute features for gait recogni-
tion, the proposedmethod does not require such information,
and it directly operates on the video sequences. The pro-
posed method tracks a set of points in successive frames
to compute the dense trajectories which are used to specify
a spatiotemporal patch to compute the local descriptors in
order to capture the person’s static appearance and motion
information. The local descriptors are encoded using Fisher
vector encoding and classification is performed using linear
SVM. A rigorous experimental evaluation on five large well-
known benchmark gait databases showed that the proposed
algorithm is highly accurate. In future, we plan to extend the
proposedmethod for view-invariant gait recognition and also
explore the probabilistic modeling techniques to be able to
track the individual even in occlusion.
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