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Abstract
Texture classification plays an important role in computer vision, and Gabor filtering (GF) is a promising direction of
texture classification for its desirable characteristics. However, traditional GF methods are too coarse to achieve satisfactory
classification performance. To address this problem, this paper presents an effective texture classification method by combing
multi-resolution global and local Gabor features in pyramid space. First, a pyramid space for each image is constructed via
upsampling and downsampling to represent the images with different resolutions. Second, GF is applied to each image at
different scales and orientations, and then the magnitude and phase components of filtered images are calculated. Third, the
global and local Gabor features are extracted, where the global Gabor feature is represented by the mean and variance of the
magnitude component, and the local Gabor feature is represented by the joint coding of bothmagnitude and phase components
in a histogram form. Finally, the fusion of global and local Gabor features and the texture classification are implemented in
the framework of nearest subspace classifier. Experimental results on CUReT and KTH-TIPS databases demonstrate that the
proposed method significantly improves the performance of GF-based texture classification methods.

Keywords Texture classification · Feature extraction · Gabor filtering · Multi-resolution analysis

1 Introduction

Texture classification is an active research topic in the fields
of pattern recognition and computer vision. It has been
applied tomedical image analysis [1], fingerprint recognition
[2], image retrieval [3], object tracking [4], material classifi-
cation [5], etc. However, texture classification in real-world
images is a challenging task because the texture of objects
varies significantly due to viewing and illumination changes,
scale variations, etc. Therefore, it is one of the most urgent
tasks to extract the discriminative features for texture classi-
fication.
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Many texture classification methods have been proposed
in the literature. The local binary pattern (LBP) algorithm
[6] has gained huge success in texture classification due
to its tolerance against illumination changes, computational
simplicity, and good performance. Many LBP variants were
later proposed. The completed LBP (CLBP) [7] extended the
conventional LBP operator by combining the information of
difference sign, difference magnitude and the center pixel to
capture more discriminative local features. The completed
local binary count (CLBC) [8] achieved good classification
accuracy with lower computational complexity. Recently,
Guo et al. [9] proposed the scale selective LBP (SSLBP) to
address the scale variation for texture classification. Besides
the LBP-based methods, the texton learning-based method is
also an important research direction. The VZ-MR8 method
[10] first learned a set of textons via the MR8 filter bank
and K-means clustering algorithm, and then used the learned
textons to describe the texture features for texture classifi-
cation. Later on, Varma and Zisserman [11] proposed the
VZ-Joint method where the textons were learned directly
from the patches of original images instead of the MR8 fil-
ter responses, which could lead to slightly better results.
Recently, Xie et al. [12] proposed an effective texton learning
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and encoding scheme, where the l2-norm regularization was
used to learn the texton dictionary, and the texton encoding-
induced statistical features (TEISF) were adopted for texture
classification.

Apart fromLBP-basedmethods and texton learning-based
methods, another promising and popular approach to tex-
ture classification isGF-basedmethods.Gaborwaveletswere
introduced to image analysis due to their biological relevance
and computational properties. The Gabor wavelets, whose
kernels are similar to the two-dimensional (2-D) receptive
field profiles of the mammalian cortical simple cells, exhibit
desirable characteristics of spatial locality and orientation
selectivity, and are optimally localized in the space and
frequency domains. Therefore, the Gabor wavelet represen-
tation can capture the features corresponding to different
spatial frequencies (scales) and orientations. Inspired by the
characteristics of Gabor wavelets, some GF-based methods
have been proposed [13–15], but these traditional GF-based
methods used only the mean and variance of magnitude
of Gabor-filtered images to describe the texture feature.
Recently, Hadizadeh [16] proposed the local Gabor wavelets
binary patterns (LGWBP) descriptor by combining the GF
and LBP for texture classification, where the LBP encoding
was implemented on the Gabor-filtered images to capture
discriminative features.

Asmentioned above, the Gabor wavelets have some desir-
able characteristics that should produce desirable texture
classification results. However, most traditional GF methods
use only mean and variance of magnitude of filtered images
for texture classification, which is too coarse to achieve
satisfactory classification performance. Therefore, in this
study, we aim to further explore the potential of GF method
in texture classification, which may achieve comparable or
even better texture classification performance comparedwith
the LBP-based methods and texton learning-based meth-
ods.

Themain contributions of this paper could be summarized
as follows:

(1) The joint coding of both magnitude and phase compo-
nents of Gabor-filtered images is proposed to represent
the local Gabor feature of texture image, and then, the
global and local Gabor features are fused in the frame-
work of NSC to improve the performance of GF-based
method.

(2) A pyramid space for each image is constructed and the
proposed joint coding scheme is implemented on each
level, and then the local GF feature is obtained by tak-
ing the maximum values across all the levels, which is
simple and effective to address the scale and resolution
variation issue.

(3) The proposed GF-based method achieves better texture
classification performance than traditional GF-based

methods, some state-of-the-art LBP-basedmethods, and
some state-of-the-art texton learning-based methods.

The rest of this paper is organized as follows: Sect. 2
briefly reviews the related Gabor filter bank design and GF.
Section 3 presents the proposed method in detail. Section 4
describes the databases used to evaluate the proposedmethod
and gives the experimental results. Section 5 draws conclu-
sions.

2 Gabor filter bank design and GF

A2-DGabor function g(x, y) is a complex exponential mod-
ulated by a 2-D Gaussian function, which can be defined as
[13, 16]:

g(x, y) � 1

2πσxσy
exp

[
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2
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σ 2
x
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)]
exp(2π j Fx),

(1)

where σx and σy are the standard deviations of the 2-D
Gaussian function in the horizontal and vertical directions,
respectively, and F is the spatial frequency of the complex
exponential. In the spatial frequency domain, theGabor func-
tion is simply a Gaussian function centered on the frequency
of interest (i.e., F) as follows:
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where G(u, v) is the Fourier transform of g(x, y), σu �
1/(2πσx ) and σv � 1/

(
2πσy

)
. Then, a set of self-similar

Gabor wavelets (kernels, filters) can be obtained by appro-
priate scaling and rotation of g(x, y), which form a complete
but non-orthogonal basis set for signal analysis.

As the Gabor wavelets are non-orthogonal, to reduce the
redundant information in the Gabor-filtered images, Manju-
nath and Ma [13] proposed a strategy to design a bank of
Gabor filters. This design strategy ensures that the half-peak
magnitude supports of the filter responses in the frequency
domain touch each other with no overlap. This yields the fol-
lowing formulas for computing σu and σv (and thus σx and
σy):
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, (3)

where Fh and Fl denote the maximum and minimum center
frequencies of interest, S is the total number of scales, K is
the total number of orientations. Figure 1 shows the real part
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Fig. 1 The real part of the Gabor filter bank at four scales and six ori-
entations. Each row shows one scale with six orientations

of the Gabor filters at four scales and six orientations. The
Gabor filter bank exhibits desirable characteristics of spatial
frequency and orientation selectivity.

The GF of an image can be implemented by the convolu-
tion of the image with the Gabor filter bank designed above
as follows:

Ws,k(x, y) � I(x, y) ∗ gs,k(x, y),

s � 1, 2, . . . , S, k � 1, 2, . . . , K , (4)

where ∗ denotes the convolution operator, I(x, y) is a
grayscale image, Ws,k(x, y) is the Gabor-filtered image
corresponding to the Gabor filter gs,k(x, y) at scale s and
orientation k. In traditional GF-based methods, the mean and
variance ofWs,k(x, y) at different scales and orientations are
used to represent the texture feature.

3 Proposedmethod

3.1 Framework of the proposedmethod

To cope with the resolution variation of texture images, a
pyramid space for each original image is first constructed
via downsampling and upsampling to imitate the imageswith
different resolutions. Second, the GF is implemented by the
convolution of the Gabor filter bank with each image in the
pyramid space, and then the magnitude and phase compo-
nents of filtered images are calculated. Third, the global and
local Gabor features are extracted, respectively, where the
global Gabor feature is represented by the mean and variance
of the magnitude component, and the local Gabor feature is
represented by the joint coding of both magnitude and phase
components in a histogram form. Finally, the NSC is used for
the global and local Gabor feature fusion and texture clas-
sification. Figure 2 shows the framework of the proposed
method.

3.2 Image pyramid space construction

Resolution variation exists in many texture images, which
makes the texture classificationmore challenging. To address
this problem, we construct a pyramid space for each original
image to imitate the resolutionvariationof the original image.

In the pyramid space construction, the image with lower
resolution is generated by downsampling its adjacent high
resolution image, and the image with higher resolution is
produced by upsampling its adjacent low resolution image.
The downsampling and upsampling ratios are set to 2. To
determine the number of pyramid levels, we consider two
factors: (1) the size of texture image is usually relatively
small. Too many times downsampling produces too small
images that have little texture information. Therefore, the
times of downsampling is set to 2, i.e., only two levels are
produced by downsampling from the original image. (2) The
upsampling operation is time-consuming. To maintain the
high efficiency, only one level is produced by upsampling.
Moreover, the nearest neighbor interpolation is used, and
only the central one-fourth of the original image is cropped
and used for upsampling, which further reduces the time con-
sumption. Therefore, there are four levels in the proposed
pyramid space including the original image, two images with
lower resolution produced by downsampling, and one image
with higher resolution produced by upsampling. The left part
of Fig. 2 shows the proposed sampling scheme and the result-
ing image pyramid space for an image.

3.3 Global and local Gabor feature extraction

After the Gabor filter bank design and image pyramid space
construction, we implement the GF to each image in the
pyramid space. For an original image, there are 4 × S × K
Gabor-filtered images.

In our method, both global and local Gabor features are
extracted from the Gabor-filtered images. For the global
Gabor feature, we use the mean and variance of magnitude
of Gabor-filtered images at different scales and orientations,
which is based on the traditional GF method. However, our
proposed global Gabor feature differs from traditional Gabor
feature in that our method introduces the image pyramid
space that can address the resolution variation issue. Letμs,k

i

and σ
s,k
i are the mean and standard deviation (equivalent to

the variance) of the filtered image at scale s, orientation k, and
level i of the pyramid space, then the global Gabor feature
can be represented as follows:
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Fig. 2 The framework of the proposed method

The globalGabor featuremainly describes the holistic fea-
ture, which is too coarse to characterize the detailed feature
difference. In our study, we found that both magnitude and
phase of Gabor-filtered images have discriminative informa-
tion. In other words, they characterize the texture images in
themanner of different combinations. Therefore, we propose
to use the joint coding of magnitude and phase of Gabor-
filtered images to describe the local feature of texture images.
Our experimental results (refer to Sect. 4.3.1) show that the
joint coding of magnitude and phase components is able to
provide better performance than using only the magnitude or
phase component in texture classification.

To extract the local Gabor feature of an original image,
we implement the following procedures:

Step 1 Calculate the magnitude and phase components of
each Gabor-filtered image as follows:

Ms,k �
√
X2 + Y2,

�s,k �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan(Y/X), X > 0
arctan(Y/X) + π, X < 0, Y > 0
arctan(Y/X) − π, X < 0,Y < 0
π/2, X � 0,Y > 0
−π/2, X � 0,Y < 0

,

s � 1, 2, . . . , S, k � 1, 2, . . . , K , (6)

where Ws,k is the filtered image at scale s and orientation
k, X � Re

{
Ws,k

}
is the real part of Ws,k , Y � Img

{
Ws,k

}
is the imaginary part of Ws,k , Ms,k is the magnitude com-
ponent, �s,k is the phase component, and all the values are
calculated by point-wise operation. The phase component is

in the range of [−π, π ]. Then, the magnitude and phase are
normalized as follows:

Ms,k � Ms,k − min
(
Ms,k

)
max

(
Ms,k

) − min
(
Ms,k

) , �s,k � �s,k − (−π)

π − (−π)
,

s � 1, 2, . . . , S, k � 1, 2, . . . , K . (7)

Step 2 Jointly encode the magnitude and phase compo-
nents of each filtered image by 8 bits, where the magnitude
is encoded by the high 4 bits and the phase is encoded by the
low 4 bits. Specifically, the normalized magnitude and phase
components are first quantized into 16 levels with the range
of 0–15, respectively, and then, the joint coding image can
be obtained as follows:

Js,k � 16 · Ms,k
q + Ps,k

q , s � 1, 2, . . . , S, k � 1, 2, . . . , K ,

(8)

whereMs,k
q andPs,k

q are quantizedmagnitude andphase com-
ponents, respectively, and Js,k is the joint coding image at
scale s and orientation k. The joint coding value is in the
range of 0–255.

Step 3 Calculate the histogram of each joint coding image
Js,k , which is denoted as hs,k . The obtained histogram hs,k

can be considered as the local feature of a filtered image at
scale s and orientation k.

Step 4 Take the maximum value at each bin among
all the K histograms at K orientations of one scale, i.e.,
hs � maxk

{
hs,k

}
bin , where the subscript bin denotes the

bin-wise operation. The obtained maximum histogram hs

can be viewed as the local feature of a filtered image at scale
s.
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Step 5 Concatenate all the maximum histograms at S
scales to represent the local feature of a filtered image, i.e.,
hi�

[
h1i ,h

2
i , . . . ,h

S
i

]
, where the subscript i denotes the ith

image corresponding to the original image in the pyramid
space. For an original image, there are four corresponding
images in the pyramid space, and these four images corre-
spond to four histograms hi , i � 1, 2, 3, 4.

Step 6 Take the maximum value at each bin of four his-
tograms hi , i � 1, 2, 3, 4 as follows:

hlocal � max
i

{hi }bin, i � 1, 2, 3, 4. (9)

The obtained hlocal is used to represent the local Gabor
feature of the original image.

3.4 Feature fusion and classifier

For a test image y, we extract its global Gabor feature hy
global

and local Gabor feature hy
local , respectively. To exploit the

discriminative information from both hy
global and hy

local , we
fuse them in the framework of NSC [12]. Suppose there
are C classes of textures and n training samples per class.
Hglobal � [hglobal,1,hglobal,2, . . . ,hglobal,n] and Hlocal �
[hlocal,1,hlocal,2, . . . ,hlocal,n] denote the sets of global and
local Gabor feature histograms for one class, respectively.
We project hy

global and hy
local into the subspaces spanned by

Hglobal and Hlocal , respectively, as follows:

ρglobal �
(
HT

globalHglobal

)−1
HT

globalh
y
global ,

ρlocal �
(
HT

localHlocal

)−1
HT

localh
y
local , (10)

where the superscript T denotes the transpose operation.
The projection residuals can be computed as

errglobal �
∥∥∥Hglobalρglobal − hy

global

∥∥∥
2
,

errlocal �∥∥Hlocalρlocal − hy
local

∥∥
2. (11)

Then, we adopt the weighted average method that is very
simple and efficient for fusion:

err f � w · errglobal + (1 − w) · errlocal , 0 ≤ w ≤ 1,
(12)

where w is the weight parameter that can be determined
empirically.

Finally, we classify the test texture image y to the class
with the minimal residual as follows:

yLabel � arg min
k

{
err f (k)

}
, k � 1, 2, . . . ,C . (13)

4 Experiments and results

4.1 Texture databases

To evaluate the performance of the proposed method, exper-
iments are conducted on two challenging and benchmark
databases, namely CUReT and KTH-TIPS. The CUReT
database contains 61 texture classes and 92 images per class.
The images were captured under unknown viewpoint and
illumination. The CUReT database is challenging because
it has both large inter-class similarity and low intra-class
similarity. The KTH-TIPS database contains images with a
total of 9 different scales, 3 different poses and 3 different
illumination conditions. This database contains 10 texture
classes, and each class includes 81 images. Compared with
the CUReT database, the scale variations make the KTH-
TIPS a more challenging database.

4.2 Parameter setting

In our experiments, we used the scheme proposed in [13] to
design the Gabor filter bank, therefore we set Fl � 0.03,
Fh � 0.4, the size of Gabor filter support Ng � 15, S � 4,
and K � 6. For the global and local Gabor feature fusion,
we set the weight w � 0.8 empirically.

The proposed approach was implemented with MATLAB
R2016b, using a PC (Intel Core i3-6100 CPU @ 3.70 GHz,
4 GB RAM) on a Microsoft Windows 10 environment.

4.3 Experimental results

4.3.1 Classification performance using different
components of Gabor-filtered images

Different components of Gabor-filtered images can be
used as texture feature for classification. To determine
the most effective feature description, we conducted an
experiment on KTH-TIPS database to compare the classi-
fication performance using different components of Gabor-
filtered images, where the proposed image pyramid space
was always used. The results are listed in Table 1. In
Table 1, M8 and P8 represented that only the magni-
tude or phase component was encoded by 8 bits and then
used to construct the local Gabor feature, M8P8 repre-
sented that both magnitude (8 bits) and phase (8 bits)
were encoded separately, and then their encoding his-
tograms were concatenated as the local Gabor feature.

From Table 1, we could observe that: (1) our proposed
method achieved the best performance of 99.36%, which
demonstrated the superiority of our method in texture clas-
sification. (2) In the proposed framework of image pyramid
space, nomatter which componentwas adopted, all themeth-

123



168 Signal, Image and Video Processing (2019) 13:163–170

Table 1 Classification results using different components of Gabor-
filtered images

Components used Result (%)

Traditional GF [13–15] 91.48

Global Gabor feature 98.43

Local Gabor feature 93.62

Global Gabor feature+M8 98.53

Global Gabor feature+P8 98.95

Global Gabor feature+M8P8 99.03

Our method 99.36

ods consistently outperformed the traditional GF method,
which demonstrated the effectiveness of the proposed image
pyramid space in coping with the resolution variation. (3)
Our proposed method significantly outperformed the tra-
ditional GF-based method. The classification accuracy of
traditional GF-based method was 91.48%, but our proposed
method achieved 99.36%, which was a huge improvement.
(4) For the localGabor feature description, our proposed joint
coding of magnitude and phase components had better per-
formance than that of M8, P8, and M8P8. The reason was
that M8 employed only the magnitude information and P8
employed only the phase information, which also revealed
that both magnitude and phase components had useful infor-
mation for texture classification. Though M8P8 used the
magnitude and phase components, the features of magni-
tude and phase were extracted separately, which lost the
corresponding location information between magnitude and
phase components of each point. Our proposed joint coding
of magnitude and phase components integrated the magni-
tude, phase, and their corresponding location information to
acquire more discriminative feature that resulted in better
classification performance.

4.3.2 Our method versus some other state-of-the-art
methods

To further evaluate the classification performance of our pro-
posed method, we compared our method with some other
state-of-the-artmethods based onLBP and texton learning on
CUReT and KTH-TIPS databases. For the CUReT database,
N=46 images per class were randomly selected for train-
ing data, while the remaining 92−N=46 images per class
were used as testing data. For theKTH-TIPS database,N=40
images per class were randomly selected for training data,
while the remaining 81−N=41 images per class were used
as testing data. We repeated this random partition 100 times
and calculated the average precision as the final classification
accuracy. The results are listed in Table 2.

From Table 2, we could observe that: (1) our method
consistently outperformed all the other compared methods

Table 2 Classification results (%) of different methods

Method CUReT KTH-TIPS

Traditional GF [13–15] 94.89 91.48

LBPriu2 [6] 95.84 92.44

CLBP [7] 97.39 97.19

CLBC [8] 97.16 97.03

SSLBP [9] 99.51 99.39

VZ-MR8 [10] 97.31 93.50

VZ-Joint [11] 97.71 95.46

TEISF_f [12] 99.54 98.90

LGWBP [16] 97.66 96.87

COV_LBPD [17] 94.23 98.00

DRLBP [18] 96.41 96.78

TRICo-LBD [19] 98.90 99.30

Our method 99.60 99.36

Table 3 Classification results (%) on KTH-TIPS with different number
of training samples

N 40 30 20 10

Traditional GF 91.48 88.56 83.45 73.03

LBPriu2 [6] 92.44 88.73 85.76 74.01

CLBP [7] 97.19 95.80 92.81 85.78

CLBC [8] 97.03 95.16 92.37 85.61

LGWBP [16] 96.87 95.26 91.90 83.18

DRLBP [18] 96.78 93.71 90.31 82.73

Our method 99.36 98.73 97.11 91.86

on CUReT database. Our method provided the best perfor-
mance of 99.60%, which was even better than that of some
recently proposed methods, such as TEISF_f, LGWBP, and
SSLBP. (2) The SSLBP method gave the best performance
of 99.39% on KTH-TIPS database, but our method achieved
the performance of 99.36%, which was very close to that
of SSLBP method. Except for SSLBP method, our method
outperformed all the other compared methods on KTH-TIPS
database. Therefore, the results clearly suggested that our
proposed method could achieve comparable or even better
texture classification performance compared with the LBP-
based methods and texton learning-based methods.

4.3.3 Robustness to the number of training samples

Wealso evaluated the performance of ourmethodwith differ-
ent number of training samples. On the KTH-TIPS database,
N � (40, 30, 20, 10) samples were randomly chosen to form
the training set. The results are listed in Table 3.

FromTable 3, we could observe that ourmethodwasmore
robust to the number of training samples. When the number
of training samples decreased, the classification accuracy of
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Table 4 Average running time (s)

Method CUReT KTH-TIPS

Traditional GF [13–15] 0.16 0.07

CLBP [7] 0.50 0.08

CLBC [8] 0.33 0.07

LGWBP [16] 0.37 0.12

DRLBP [18] 0.35 0.11

VZ-MR8 [10] 7.3 4.2

TEISF_f [12] 13.6 8.0

Our method 0.43 0.38

our method did not drop significantly. This was probably
because: (1) the extracted global and local Gabor features
were highly discriminative and (2) we constructed an image
pyramid space for each original image; therefore, four images
with different resolutions were used to characterize a single
original image, which compensated for the decrease of the
number of training samples. Therefore, our method is very
promising, especially when the number of available training
samples is limited.

4.3.4 Time cost

The efficiency of a texture classification method is an impor-
tant issue. We listed the average running time of our method
and some other methods on the CUReT and KTH-TIPS
databases in Table 4.

From Table 4, we could observe that the proposed method
had a moderate computational cost. In comparison with the
traditional GF method and LBP-based methods, our method
was somewhat slower. However, the computational com-
plexity of our method was much lower than that of texton
learning-based methods. Therefore, the proposed method is
an efficient texture classification method that can be used for
many practical applications.

5 Conclusion

In this study, we proposed an effective texture classification
method by combing multi-resolution global and local Gabor
features in pyramid space. In this method, a pyramid space
for each original image is constructed to address the resolu-
tion variation issue. The global and local Gabor features are
extracted and fused to implement the texture classification in
the framework of NSC. Experimental results on CUReT and
KTH-TIPS databases demonstrate that the proposed method
significantly improves the performance of GF-based texture
classification methods with moderate computational com-
plexity. In the future work, we will focus on the study of

the deep learning-based approaches [20, 21], which is a very
promising direction of texture classification.
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