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Abstract
In this paper, we improve the performance of gait recognition by modeling human’s motion with spatiotemporal gait features.
Since existing methods often use average of silhouettes, i.e., gait energy image to model the gait, temporal information of
walking may not be preserved under covariate factors. To handle such features in different conditions, we study the gait model
from energy viewpoint. In the proposedmethod, energy of a gait, i.e., spatiotemporal feature, is derived from a newly designed
filtering approach and the energies within a period will be aggregated into a single template that is called gait spatiotemporal
image. The required features are truly extracted from spatial and temporal impulse responses that are redesigned and optimized
for the gait.Moreover, to recognize the gait under covariate factors, a hybrid decision-level classifier based on random subspace
method has been utilized for the given templates. Experimental results on well-known public datasets demonstrate the efficacy
of our model. The proposed gait recognition system achieves the recognition rate of 72.25% for Rank1 and 85.64% for Rank5
on the USF dataset that is improved by at least 2% in Rank1 and 0.3% in Rank5with respect to recent template-basedmethods.

Keywords Gait biometrics · Motion-based filtering · Spatiotemporal representation · Ensemble classification

1 Introduction

Gait recognition is one of the most challenging problems in
the field of pattern recognition. Unlike the other biometrics
such as face and fingerprint, gait has some advantages [1, 2].
It can be collected at a distance in an unobtrusive and hidden
manner, and the low-resolution images can be used for repre-
senting gait traits. However, there are some covariate factors
that can affect the performance of a gait recognition system
[3]. To represent the appearance of gait in a videowithout any
predefined model, robust features should be computed from
the appearance (i.e., silhouette) [1, 4, 5]. Han et al. [2] intro-
duce gait energy images (GEIs), or average of silhouettes,
over one period of walking. Moreover, the augmented tem-
plate features can be achievedwith Gabor filter. For example,
Xu et al. [1] introduce Gabor-based patch distribution fea-
ture (Gabor-PDF) combined with locality-constraint group
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sparse representation (LGSR) to improve recognition rates.
It is important to mention that the temporal ordering of gait
will be lost during the conversion of silhouettes to a single
gait template [4–6]. To preserve such information in the final
template, a walking model based on spatiotemporal features
should be considered within the averaging process. Hence,
Wang et al. [5] develop a colored gait image named chrono-
gait image (CGI), and Lam et al. [6] propose gait flow image
(GFI). Atta et al. [4] recently apply lifting 5/3 wavelet filters
to the contour of silhouettes to preserve temporal information
of walking in final template. This template named 5/3 gait
image (5/3GI) is able to handle different covariate factors
under walking conditions.

All of the mentioned features have some privileges in gait
modeling, but lack of efficient human’s motion is notice-
able in their features. To compute motion features within a
timing duration, it is suggested to apply a filtering approach
to the input video [7, 8]. Ghaeminia et al. [9] develop gait
salient image (GSI) by applying opponent-based filtering and
extracting salient gait features. They show that the quality of
gait representation can be significantly improved by forming
a template with a simplemotion-based filtering. In this paper,
we discuss on the method of action filtering and develop a
filtering approach to compute required energy. Following the
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Fig. 1 The schematic of the proposed approach

idea in GSI method, we simplify the motion filtering process
and propose two impulse responses to extract spatial and tem-
poral energies from the gait motions. With consideration of a
suitable filtering approach, the related templates can be com-
puted by aggregating the responses and averaging them over
a period [9, 10]. The block diagram of proposed approach to
extract desired features is shown in Fig. 1.

Once the gait templates have been computed, it could be
recognized with a robust classification method [3, 11].

In this regard, a classifier ensemble method, i.e., random
subspace model (RSM), based on tensor representation of
templates has been used as an efficient tool in face and gait
recognition [3]. In RSM, the effect of covariate factors on
final template can be significantly reduced by generating
weak classifiers through random sampling from full feature
space. In this paper, we apply RSM method to classify the
proposed gait templates on publicly gait datasets such asUSF
[12] and OU-ISIR-B [13].

By summarizing the state-of-the-art methods, the main
contributions of the paper are highlighted here:

1. A gait energy model based on spatio-temporal filtering is
being conceptualized to handle different gait conditions.

2. A robust template-based feature is computed based on
the responses of filtering.

3. The ensemble technique is applied to classify new tem-
plates in the feature search space.

4. The effect of the defined parameters on the final template
and corresponding recognition rate is also evaluated.

In the rest of the paper, we will discuss on the pro-
posed template in Sect. 2. The classifier ensemble method
is overviewed in Sect. 3, and the experimental results are
presented in Sect. 4. The conclusion of paper is also summa-
rized in Sect. 5.

2 The proposed energymodel

In this section, we discuss thoroughly on the proposed
method which encodes energy of gait into single template.
The proposed filtering has two basic steps as shown in Fig. 1,
computing spatial and making temporal impulse responses
over a period. By convolving the gait sequence with both
responses, the motion-based features (or motion energies)
will be computed. Afterward, the local energies are being
stacked over the sub-periods and averaged in a gait period to
form a template-based feature.

2.1 Preprocessing and silhouette extraction

Since the gait is a periodic and rhythmic action, some pre-
processing steps are needed in computing the period and
silhouettes from the raw input video. After computing the
background [with Gaussian mixture model (GMM)], the
gait silhouettes can be derived with subtraction of input
video from the backgroundmodel [12]. Finally, the silhouette
images have been aligned and resized according to the center
of the image. Considering the periodical human’s walking,
we have to calculate the period to synchronize starting phase
of the filtering. The periodT could be easily derived by count-
ing the number of foreground pixels (or leg regions) in the
aligned-binary silhouettes [12]. The number of counted pix-
els has local extremums when two legs are nearest or farthest
to each other. By computing such extremums, the period of
a gait is the median of distances between two consecutive
minimums (or maximums) [10, 12].

It is clear that the gait is a periodic activity, and hence in
each period, there are sub-cycles with similar motion pat-
terns. In our approach, we compute the features in each
sub-cycles (i.e., 1/2 period) separately to achieve best per-
formance. In the next subsection, we explain the filtering
process in detail.

2.2 Spatiotemporal filtering

According to the Shabani’s model [8], a video signal v0 can
be observed as a circuit network, in which each pixel X �
(x, y) connects to its spatially and temporally neighbors by
a resistance [8]. The brightness v of each pixel is also con-
sidered as the charge of capacitor connected to each node,
and the diffusion within the nodes is its flux at time t. Fol-
lowing the Kirchhoff’s laws of assumed network and using
the Fourier transform, we will have the set of spatiotemporal
impulse responses to extract energy of input video signal as
follows [8]:

v(x, y, t ; s) � G ∗ k ∗ v0,

{
G(x, y; σ ) � 1

2πσ 2 exp
(
− x2+y2

2σ 2

)
k(t ; τ ) � sinc(t − τ ) · S(t) ,

(1)
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where S(t) denotes the Heaviside step function. Equation (3)
means that 2D Gaussian and 1D Sinc functions are suitable
to extract energy of a video signals. To make responses, R,
invariant to the phase of motions, the video signal is fur-
ther convolved with the even and odd parts of the temporal
function [7, 8]:

R � (v ∗ G ∗ kev)
2 + (v ∗ G ∗ kod)

2, (2)

where kev/kod are set of even/odd temporal Sinc filtering and
“*” denotes the convolution process.Although thementioned
filters are suitable for the action, they are not applicable for
modeling of gait for at least two reasons: (1) The spatial
energy of a gait sequence is focused on the edge of sil-
houettes, and hence, a high-pass filter can detect the edges,
respectively (e.g., like the features in [4, 5]). The Gaussian
kernel fromEq. (3) as smoothing spatial filter is a kind of low-
pass filter. (2) Thewalking process is a rhythmic and periodic
activity [2, 12] in temporal domain in which single-tone fil-
tering is needed formodeling. The Sinc kernel fromEq. (3) is
an ideal low-pass filtering, i.e., rectangle filter in frequency
domain, which contains different harmonics to handle all
types of actions fromwalking to running. Therefore, to apply
the Sinc filter to the gait, one may filter out different harmon-
ics and keep just a few of them.

To design spatiotemporal filtering for the gait, some con-
straints should be added to the action model in Eq. (1). In
the first step, the higher-order derivative of spatial signal can
extract the edges of gait silhouettes properly. For this pur-
pose, we suggest Laplacian of Gaussian (LoG) operator [5]:

LoG ≡ �(G(x, y; σ ))

� ∂2

∂x2
G(x, y; σ ) +

∂2

∂y2
G(x, y; σ ), (3)

In second step, the temporal part of the proposed filter
is derived by applying a low-pass filter to remove different
harmonics of the Sinc signal. Here, we represent a periodic
Sinc signal by Fourier series:

Sincev(t) � 1

2
a0 +

∞∑
n�1

an cos(nωτ t) +
∞∑
n�1

bn sin(nωτ t)

Sincev(t + T ) � Sincev(t) t ≥ 0, (4)

where ωτ is π /T (T the gait period) and bn �0 for an even
signal. Afterward, we keep two first harmonics, i.e., DC and
first-order harmonic (related to simple walking motion), and
filter out other harmonics in the frequency domain (related to
other type of actions). The resulting impulse responses can
be generalized as follows:

kev(t, τ ) � 1

2
a0 + a1 cos(ωτ (t − τ)) for t ≥ 0, (5)

where a0 and a1 are the Fourier coefficientswhich can be eas-
ily computed by integral of Fourier cosine series. We called
our temporal impulse responses as truncated cosine (Trunc.
Cos.) in this paper. Once the suitable impulse responses are
being computed, there are convolved with the input gait
sequence [8] to extract energy of gait in a period [accord-
ing to Eq. (2)]. It should be noted that the proposed kernels
are sampled above the critical sampling rate (6σ in spatial
and T in temporal domain) [9]. But to simplify the notations,
we show the signals in continuous notation form.

2.3 Template generation

As discussed above, the proposed filtering is computed for
each silhouette within a period. Now, the final template is
easily computed by averaging the responses. Since there are
similar patterns of walking within a period, it is better to
aggregate the responses over the 1/2 [5, 10] sub-period in
advance:

GSTE �
tmax−1∑
k�0

Rk, (6)

where Rk is a response of spatiotemporal filtering, tmax is the
number of silhouettes in a sub-period and gait spatiotemporal
energy (or GSTE) is sum of such responses. The outputs of
the filtering process should be normalized prior to computing
the final template:

GSTE′ � GSTE − min(GSTE)

max(GSTE) − min(GSTE)
. (7)

The final template, named gait spatiotemporal image (or
GSTI), can be computed by averaging the normalized GSTE
over one period. Assume there are p sub-periods (p�2 in this
paper) in each period of gait, the proposed GSTI is expressed
as:

GSTI � 1

p

p∑
i�1

GSTE′
i . (8)

Figure 2 shows an example of the primary steps in comput-
ing a GSTI template. The proposed filtering is applied to the
silhouettes in Fig. 2a to generate the responses in Fig. 2b. The
GSTE features in Fig. 2c is derived by stacking the responses
in first and second half of period separately. The final GSTI
template is then computed by averaging the GSTE features
over a period (Fig. 2d).

3 Classifier ensemble method

The GSTI template, which is introduced in the previous sec-
tion, is computed for each sequence in a given dataset. These
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Fig. 2 The steps of generating GSTI templates: a input silhouettes, b
responses of filtering, c GSTE features and d final GSTI template

templates will be further classified with RSM. In this section,
we review the RSM which is consisting of three main steps
[3]: random subspace sampling, enhancing dimensionality
of generated features and making final decision.

3.1 Random subspace sampling

Assume there are n gait templates Ai (i �1…n) (or GSTI)
in the training set (gallery). In the first step, we compute
2DPCA projection matrix leading to d eigenvectors with
nonzero eigenvalues, U � [u1, u2, . . . , ud ] [3]. Afterward,
the K random subspace T k

PCA (k �1…K) can be computed
by random selection of N (N ≤d) unique eigenvectors from
subsets U and repeating the process K-times. As a result,
the random feature sets of ith template in kth subspace will
be generated in lower dimension space as Xk

i � Ai T k
PCA. It

can be proved that random sampling of eigenvectors can pre-
serve the covariate factors in lower dimension feature space
efficiently [3]. However, some redundant information still
remains in feature vector XK

i thatmay affect the performance
of final decision. To improve the recognition rate, another
classification step will be applied in RSM.

3.2 Dimensionality enhancing

The randomly generated features have still redundant infor-
mation that may affect quality of decision. To obtain more
discriminant features for weak classifiers, an additional
dimensionality reductionmethod should be performed.Here,
two known techniques, i.e., 2D linear discriminant analysis
(2DLDA) [14] and incremental dimension reduction algo-
rithm via QR decomposition (IDR/QR) [14] can be used
alternatively [3]. The features for final decision are then
extracted from each method separately.

Following the 2DLDA algorithm [3], we obtain K transi-
tion matrix T k

LDA (k �1…K) where each one hasM selected
eigenvectors. As an alternative solution, in IDR/QR tech-
nique, the T k

QRD (k �1…K) will be derived based on QR
decomposition of eigenvectors to extract discriminant fea-
tures. It should be noted that in IDR/QR, the random features
should bevectorizedbefore training themodel thatmayaffect
quality of generated features. Once the transitionmatrices are
computed, two-staged dimensionality reduction techniques

as 2DPCA+2DLDA (or 2DLDA) and 2DPCA+IDR/QR (or
IDR/QR) will be derived for each subspace. The feature vec-
tor of ith template in training/testing sets in kth subspace

for the methods is derived as Y k
i,LDA � (

T k
LDA

)T
Xk
i and

Y k
i,QRD �

(
T k
QRD

)T
Xk
vec,i [3]. The hybrid decision level

is then achieved based on the outputs of random classifiers
which are discussed in the following subsection.

3.3 Classification

Now, each feature sets in kth subspace can make weak deci-
sion in according to the covariate factors. Suppose there are c
classes in the training set (gallery) and each of them has ni (i
�1,…,c) samples. For the kth subspace, letmk

i (i � 1, . . . , c)
be the mean of the samples in each class and Rk (i.e., Y k

LDA or
Y k
QRD) be the feature samples of probe set (including np gait

samples). The Euclidean distance between Rk and the mean
of ith class of the gallery mk

i can be expressed as:

d
(
Rk,mk

i

)
� 1

n p

np∑
j�1

∥∥∥Rk
j − mk

i

∥∥∥, i � 1, . . . , c. (9)

The minimum distance of a given probe template to each
class, {ωi }ci�1 in the gallery set is considered as weak deci-
sion:

Ωk(Rk) � argmin
ωi

d(Rk,mk
i ), i � 1, . . . , c. (10)

The distance criteria in Eqs. (9) and (10) are computed
for both of 2DLDA and IDR/QR in each subspace to gen-
erate weak classifiers. A hybrid decision-level fusion (HDF)
among K subspace in each set of weak classifiers can be
achieved simply by majority voting of all K classifiers [3].
More precisely, for a probe gait query R � {Rk}Kk�1, the
mode of K labels in all of the subspaces is considered as
the final decision. Let ΩLDA(R) and ΩQRD(R) be the final
decision corresponding to the 2DLDA and IDR/QR-based
features for a query gait R. The hybrid classifier (HC) can be
performed by [3]:

ΩHC(R) �
⎧⎨
⎩

ωi , if ΩLDA(R) � ωi ,

ωi , if ΩQDR(R) � ωi ,

0, Otherwise
i ∈ [1, c]. (11)

It is inferred from Eq. (11) that HC decision is guaran-
teed if one of the corresponding classifiers recognizes given
individual correctly.

4 Experimental results

In this section, we verify the efficiency of the proposed
approach by doing comprehensive experiments on publi-
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Table 1 The set of experiments for probe sets in USF gait dataset

Experiment A B C D E F

#People 122 54 54 121 60 121

Covariates V H VH S SH SV

Experiment G H I J K L

#People 60 120 60 120 33 33

Covariates SHV B BH BV THC STHC

V view, H shoe, S surface, B briefcase, T time, C clothing

cally datasets. The parameters of ourmodel and classification
framework are discussed and the performance is compared
with other state-of-the-art methods. The Rank1 and Rank5
correct classification rates (CCR) [12] are two metrics to
evaluate the performance of our method. Moreover, due to
random nature of the RSM, each of the experiments has been
repeated 10 times and mean value of correct classification
rates is considered as final performance (similar to [3]).

4.1 Gait Datasets

We evaluate our method on two benchmark datasets: USF
HumanID gait dataset [12] and OU-ISIR gait dataset (dataset
B) [13]. The USF dataset is including 122 individuals that
are captured in an outdoor environment under five different
situations. Camera viewpoint (right or left), walking surface
(concrete or grass), shoe type (A or B), carrying condition
(with or without a briefcase) and the elapsed time are five
covariate factors. Considering such gait conditions, the set
of “grass, shoe type A, right viewpoint, no briefcase, time t1
(May)” covariates is defined as gallery and 12 experiments
are developed as probe sets. The number of individuals in
each probe set and the differences of conditions to the gallery
set are shown in Table 1.

Another benchmark is OU-ISIR gait dataset (dataset B).
The OU-ISIR-B dataset [13] has been published recently to
study effect of clothing conditions. This dataset includes of
48 individuals walking on a treadmill with 32 types of dif-
ferent clothing. Table 2 presents the clothing combinations
provided in the database. The gallery set includes 48 individ-
uals with standard clothes (i.e., type 9), while the probe set
consists of 856 gait sequences with other 31 clothing con-
ditions. As such, the silhouettes in the OU-ISIR-B dataset
is aligned on their horizontal centroid and cut to 128×88
silhouette images.

4.2 Parameters selection

To recognize a GSTI template in given dataset, two sets of
parameters are being defined: template parameters and RSM
variables. The first set of parameters affect quality of final

Table 2 Clothing conditions in the OU-ISIR-B dataset

Type→clothes Type→clothes Type→clothes

0→CP/CW C→RP/DJ/Mf N→SP/HS

2→RP/HS D→CP/HS P→SP/Pk

3→RP/HS/Ht E→CP/LC R→RC

4→RP/HS/Cs F→CP/FS S→Sk/HS

5→RP/LC G→CP/Pk T→Sk/FS

6→RP/LC/Mf H→CP/DJ U→Sk/PK

7→RP/LC/Ht I→BP/HS V→SK/DJ

8→RP/LC/Cs J→BP/LC X→RP/FS/Cs

9→RP/FS K→BP/FS Y→RP/FS/Cs

A→RP/Pk L→BP/Pk Z→SP/FS

B→RP/DJ M→BP/DJ –

RP regular pants, BP baggy pants, SP short pants,HS half shirt, FS full
shirt, LC long coat, CW casual wear, RC rain coat, Ht hat, CP casual
pants, Sk skirt,Pk parker,DJ down jacket,Cs casquette cap,Mf muffler
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Fig. 3 Continuous profile of different truncated signals used as temporal
impulse responses

template, while the others affect the performance of recog-
nition.

In following subsections, we will review environmental
settings and the optimal solution for better recognition is
being discussed.

4.2.1 Template parameters

The temporal part of the proposed filtering plays an impor-
tant role in computing the template. Here, to evaluate the
efficacy of proposed temporal kernel, different signals such
as Gabor [7], Trunc. Exp., Poison, Trunc. Sinc [8] and Trunc.
Cos. signals are selected as different temporal kernels. The
profiles of the even and odd parts of the mentioned kernels
(in continuous form) over a gait period are shown in Fig. 3.

In our experiments, each silhouette in a gait period has
been convolved with second-order derivate of Gaussian ker-
nel (with σ �5) and one of the temporal signals [according
to Eq. (2)]. The final template is then computed and the GSTI
templates are compared with 1-NN in the USF dataset. The
Rank1 and Rank5 recognition rates across different tempo-
ral impulse responses are listed in Table 3. From Table 3,
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Table 3 Comparisons of the
recognition performance of final
template using different
temporal signals and 1-NN
classifier on the USF dataset

Exp. Rank1 performance (%) Rank5 performance (%)

Gabor
[7]

Trunc.
Exp. [8]

Poison
[8]

Trunc.
Sinc [8]

Trunc.
Cos.

Gabor Trunc.
Exp.

Poison Trunc.
Sinc

Trunc.
Cos.

A 87 88 87 87 88 97 97 97 97 97

B 89 91 89 91 93 95 95 95 95 95

C 78 78 80 80 80 91 89 91 91 93

D 26 25 25 27 29 54 56 55 58 60

E 27 27 25 29 30 45 47 44 45 50

F 15 15 15 15 16 36 35 35 35 43

G 10 14 10 14 15 42 37 42 40 39

H 74 74 73 74 76 90 90 91 92 93

I 69 69 67 67 69 85 87 84 85 87

J 66 67 65 65 64 81 83 82 82 82

K 10 0 7 4 10 25 19 22 22 28

L 4 4 4 4 10 22 19 22 22 22

Avg. 50.33 50.47 49.71 50.6 52.01 68.02 67.91 68.04 68.54 70.63

in 11 out of 12 gait challenging conditions, the Rank1 and
Rank5 performance of the proposed filtering has the highest
one. Therefore, an optimum solution for gait modeling can
be achieved by selecting a truncated cosine signal as tempo-
ral impulse response.Wewill also get similar performance in
OU-ISIR-B dataset with the same setting of parameters.

4.2.2 Parameters of the RSM

Given GSTI templates from previous subsection, the main
parameters of the RSM are as: (1) the number of random sub-
spaces (i.e., K), (2) the dimension of the random subspaces
(i.e.,N) and (3) the dimension of second-stage classifier (i.e.,
M in 2DLDA or IDR/QR).

Generally, it is proved that the performance of recognition
in not too sensitive to theM, unless it is too small and hence,
the RSM is not depended to theM [3].

Tohave abetter performance, it is suggested to increase the
number of subspaces (orK) [3].Moreover, small or large val-
ues of N may cause underlearning or overlearning problems
[3]. We choose values of K and N empirically by fixing one
parameter and changing another one and computing accura-
cies in each run. It is found that settingK �500 and changing
the value of N in the range 2–20 will lead to better accuracy
rates. By running the experiments, average of Rank1 on the
USF dataset for different values of N is shown in Fig. 4a.

By increasing the N, the accuracy is being increased
slightly. However, by increasing N excessively, the compu-
tational overhead will be increased exponentially. Here, we
choose N �10 as an optimal value in our experiments. With
setting theN to 10, we run the experiments again with differ-
ent values of K in the range 100–1000. The averaged Rank1
for different values of K is shown in Fig. 4b. The accuracy is
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Fig. 4 Evaluating performance of the RSM with different parameters
on the USF dataset: a fixing K �500 and altering N, b setting N �10
and changing the K

improved by increasing the number of subspaces. However,
to preserve the computational resources, we choose 500 for
K in our experiments.

4.3 GSTI templates

To demonstrate the effectiveness of the proposed spatiotem-
poral template, a simple 1-NN classifier is used to directly
compare the GSTI templates. Direct matching of gait tem-
plates using 1-NN has some advantages such as: (1) The
robustness of templates against noises can be examined,
and (2) the performance of the recognition into a lower-
dimensional feature space is guaranteed with considering
redundant data in high-dimensional data. We compare the
proposed template with recently published methods, namely
baseline [12], GEI [2], CGI [5], GSI [9] and 5/3GI-Contour
(or 5/3GI) [4] on USF dataset. The results of Rank1 and
Rank5 identification rates are shown inTable 4. FromTable 4,
our feature template has the highest average of Rank1 and
Rank5 with respect to the GEI, CGI and 5/3GI templates.
More precisely, the results of Rank1 on GSTI are higher than
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Table 4 Comparisons of the recognition performance on the USF dataset using 1-NN classifier

Exp. Rank1 performance (%) Rank5 performance (%)

Baseline
[12]

GEI
[2]

CGI
[5]

GSI
[9]

5/3GI
[4]

Proposed
model

Baseline GEI CGI GSI 5/3GI Proposed
model

A 73 84 87 86 90 88 88 93 96 99 96 97

B 78 87 94 93 91 93 93 94 94 95 97 95

C 48 72 72 78 76 80 78 93 93 93 94 93

D 32 19 17 31 24 29 66 45 41 64 54 60

E 22 18 25 33 27 30 55 53 45 61 57 50

F 17 10 12 17 12 16 42 29 32 50 40 43

G 17 13 13 17 20 15 38 37 35 49 43 39

H 61 56 78 76 86 76 85 77 91 97 95 93

I 57 55 80 76 79 69 78 77 97 98 97 87

J 36 40 54 59 58 64 62 69 82 91 89 82

K 3 9 6 19 12 10 12 15 30 40 30 28

L 3 3 9 13 9 10 15 15 27 28 30 22

Avg. 41.0 41.1 48.6 52.6 51.9 52.01 64.5 61.4 66.8 76.5 72.2 70.63

GEI and CGI in hard situations such as surface (D–G) and
elapsed time (K–L).

In comparisonswith theGSI and 5/3GI, theGSTI template
provides better Rank1/Rank5 results in some gait conditions
while it has totally similar performance. Although the pro-
posed method is sensitive to the surface conditions (probes
D–G), it provides proper gait features with a simple filtering
approach.

4.4 Performance on clothing covariates

The effects of clothing on the gait are the most common
covariates in a human’s walking. In USF dataset, such factor
is only considered in probes K and L with a few number of
individuals testing the cloth. To study effect of clothing on
gait recognition, the OU-ISIR-B dataset is released recently
[13] with 32 types of clothing as listed in Table 2. However,
to cover all possible combinations of clothing, OU-ISIR-B
dataset provides additional training set to make clothing-
invariant recognition system [13]. In this paper, there is no
need for predefined conditions which may lead to unrealistic
performance. To investigate the performance of gait recog-
nition system in OU-ISIR-B dataset, we compare the Rank1
results of 31 cloth types with GEI [2], Gabor+RSM-HDF
[3] and VI-MGR [15] which is shown in Fig. 5.

It is clear from Fig. 5 that the proposed method outper-
forms the Rank1 in comparisons with GEI and VI-MGR in
most of the conditions. More precisely, in 5 out of 31 condi-
tions (i.e., probes D, F, G, K and N), the VI-MGR has better
Rank1 while in others the GSTI-HC generates better result.

However, the results of the proposed method are still
comparable with a simple filtering scheme in comparison
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Fig. 5 Performance of gait recognition system for 31 probe types in
OU-ISIR-B dataset

with Gabor+RSM-HDF. The Gabor+RSM-HDF has bet-
ter Rank1 in 24 out of 31 clothing conditions due to using
40 Gabor kernel functions which needs more computational
overhead.

The experimental results shown in Fig. 5 indicate that the
proposed method can outperform the conventional methods
on the OU-ISIR-B dataset. The results on the USF dataset
(from Sect. 4.3) and OU-ISIR-B prove that our approach
can extract energy of gait in a template-based feature more
efficiently.

4.5 Experiments on USF

The performance of our method on USF dataset is being
evaluated thoroughly in this section. To investigate efficacy
of our method, we compare GSTI-HC with recently pub-
lished methods including: Baseline [12], GEI [2], CGI [5],
sparse bilinear discriminant analysis (SBDA) [16], Gabor-
PDF+LGSR (LGSR) [1], VI-MGR [15], GEI+RSM-HDF
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Table 5 Comparisons of the recognition performance on the USF dataset

Probe Set A B C D E F G H I J K L Avg.
Probe Size 122 54 54 121 60 121 60 120 60 120 33 33

Rank1 CCRs

Baseline 73 78 48 32 22 17 17 61 57 36 3 3 40.96

GEI 90 91 81 56 64 25 36 64 60 60 6 15 57.66

CGI 91 93 78 51 53 35 38 84 78 64 3 9 61.69

SBDA 93 94 85 51 50 29 36 85 83 68 18 24 61.35

LGSR 95 93 89 62 62 39 38 94 91 78 21 21 70.07

VI-MGR 95 96 86 54 57 34 36 91 90 78 31 28 68.13

GeRSM 98 95 88 54 60 37 44 90 93 83 33 21 70.16

GbRSM 100 95 94 73 73 55 64 97 99 94 42 42 81.15

5/3GI 92 91 81 42 35 21 25 87 80 63 9 6 61.59

GSTI 97 95 93 53 49 41 46 96 97 92 33 21 72.25

Rank5 CCRs

Baseline 88 93 78 66 55 42 38 85 78 62 12 15 64.54

GEI 94 94 93 78 81 56 53 90 83 82 27 21 76.23

CGI 97 96 94 77 77 56 58 98 97 86 27 24 79.12

SBDA 98 98 94 74 79 57 60 95 95 84 40 40 79.93

LGSR 99 94 96 89 91 64 64 99 98 92 39 45 85.31

VI-MGR 100 98 96 80 79 66 65 97 95 89 50 48 83.75

GeRSM 99 99 97 71 68 49 56 98 97 91 40 38 79.01

GbRSM 100 98 98 85 84 73 79 98 99 98 55 58 88.59

5/3GI 96 96 94 74 72 57 59 94 97 87 27 30 78.39

GSTI 100 96 97 78 76 72 74 99 99 99 42 36 85.64

(GeRSM) [3], Gabor+RSM-HDF (GbRSM) [3] and 5/3GI-
Contour (5/3GI) [4].

The Rank1 and Rank5 accuracy rates are presented in
Table 5. From Table 5, we can see that the average of Rank1
(or Rank5) in our method has been improved by 2% (or
0.3%) with respect to GEI+RSM-HDF [3] (or Gabor-PDF+
LGSR [1]). Meanwhile, the results of GSTI-HC are near to
the Gabor+RSM-HDF [3].

In Gabor+RSM-HDF, Gabor-based templates are being
used as gait features which the dimensionality of such tem-
plates is much higher than our feature template (according to
different Gabor scales and orientations). Our method suffers
from surface conditions where most of the related algorithms
have weak performance too. To compute GSTI-HC, we need
to define just a few parameters that indicate simplicity of the
method.

4.6 Time complexity analysis

The complexity issues of the proposed method (GSTI-HC)
can be further evaluated and compared with the recent meth-
ods such as (GEI and Gabor)+RSM-HDF [3]. Here, the
timing costs of the gait recognition system compose of two

main parts, complexity of the filtering (or feature extrac-
tion) step and those of the classification step. To make a fair
comparison with the methods in [3], we only compare the
feature extraction step since the complexity of the classifica-
tion step is the same. In the first step, the filtering of the input
image takes the order of O(Ispatial_filt +2 I temporal_filt) due to
convolution with the spatial and oven/odd temporal impulse
responses. Assuming the size of the input image as W ×H
and size of the proposed kernels as w ×h, the complexity of
the filtering will be in the order of O(Ifilt)≈O(WHwh) [9].
Moreover, the size of the temporal kernels (wt ×ht �1×
T ) are smaller than the size of the spatial kernels (ws ×hs
�6σ ×6σ ) [9] and hence, O(Ispatial_filt)�O(2I temporal_filt).
With this assumption, the time complexity of the comput-
ing GEI, GSTI and Gabor templates is in the order of O(1),
O(WHwshs), O(40WHwshs) (due to using 40 set of Gabor
kernel functions). It is clear that the computational over-
head of the proposed filtering is 40 times faster than Gabor
features. But the proposed filtering is slower than GEI fea-
ture while the performance of recognition has been improved
(Table 5). More precisely, computational running time of a
GSTI template is about 21.28 ms and hence 47 frames per
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second1 which is acceptable for real time gait recognition
systems.

5 Conclusion

In this paper, a robust spatiotemporal template (i.e., GSTI)
has been introduced for gait recognition. Template features
are generated through an efficient filtering scheme in which
the spatial and temporal information is extracted using appro-
priate impulse responses. To encode such information into
final template, the computed features are aggregated and
averagedover the gait cycles. In order to classify the proposed
templates under challenging conditions, a hybrid decision
level from the random classifiers has beenmerged to generate
a robust classifier. The experimental results on two well-
known datasets such as USF and OU-ISIR-B reveal that the
proposed method improves the recognition rate in most chal-
lenging conditions in comparison with other state-of-the-art
methods. The achieved recognition rate is 72.25% for Rank1
and 85.64% for Rank5 on the USF dataset which is promoted
by at least 2% in Rank1 and 0.3% in Rank5 compared with
the previous works. The available results demonstrate that
the proposed method can be further improved to meet more
real-life gait conditions.
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