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Abstract
Human action recognition typically requires a large amount of training samples, which is often expensive and time-consuming
to create. In this paper,wepresent a novel approach for enhancinghumanactionswith a limited number of samples via structural
average curves analysis. Our approach first learns average sequences from each pair of video samples for every action class
and then gather them with original video samples together to form a new training set. Action modeling and recognition
are proposed to be performed with the resulting new set. Our technique was evaluated on four benchmarking datasets. Our
classification results are superior to those obtained with the original training sets, which suggests that the proposed method
can potentially be integrated with other approaches to further improve their recognition performances.

Keywords Action recognition · Limited training samples · Average sequences · Dynamic programming

1 Introduction

Recognition of single-person-oriented human actions is one
of the central functions of modern computer systems which
uses a camera tool for understanding humans with many
applications such as surveillance, human–computer interac-
tion (HCI) and motion retrieval.

1.1 Motivation

Over the last two decades, the majority of approaches (e.g.,
learning-based approaches including deep learning methods
[1–5], instance matching-based methods [6–8] and sparse
representation-based approaches [9,10]) focus on the classi-
fication of a query video after collecting a large number of (or
at best a full/completed set of) labeled training samples. In
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other words, the underlying assumption of these methods is
that a sufficient number of training samplesmust be available
per class, which makes performances of these methods dete-
riorate when only a few training samples are available. But
unfortunately, in some intelligent systems, the users often do
not have sufficient training samples for action modeling. For
instance, in vision-based surveillance applications such as
safety protection and terrorism/crime deterrence, abnormal
actions/activities are often defined as those rarely occurred
in specific monitored sites, where the users cannot collect
sufficient training samples for designing detectors [11]. To
address this problem, some researchers attempted to collect
extensive training samples by virtue of web data, e.g., [7,12].
This is, however, expensive and time-consuming to collect
such volume of data in practical usages.

Another group of studies have taken a different way to
perform action recognition only with a limited number of
training samples. In particular, Seo and Milanfar [13] pro-
posed a method of using a single example of an action as
a query to find similar matches through measuring the like-
ness of a voxel to its surroundings, which is based on the
computation of novel space-time descriptors from the query
video; Rodriguez et al. [14] proposed a method based on a
maximum average correlation height (MACH) filter which
is capable of capturing intra-class variability by synthesiz-
ing a single-action MACH filter for a given action class;
Neverova et al. [15] presented a training strategy to overcome
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the training problem when the number of labeled samples is
not atweb-scale like static image datasets by exploiting care-
ful initialization of individual modalities and gradual fusion
of modalities from the strongest to weakest cross-modality
structure. These approaches mostly enhanced action recog-
nition by improving the phase of classifiers’ training, and
thus their performances are still below those using a larger
number of samples.

On the other hand, since various variations are often
included in the training samples for many other applica-
tions, methods that apply structural analysis for the original
data before processing have been popular, as seen from [16–
18]. For example, Ahmadi et al. [19] proposed to recover
accurate surgical workflow by averaging signals recorded in
different operations of the same type taking advantages of
an enhanced version of the dynamic time warp algorithm;
Boudaoud et al. [20] presented a specific statistical tools for
shape dispersion analysis based on amean shape curvewhich
is learned according to the degree of specific polynomial time
functions; Morlini and Zani [21] proposed a new method to
estimate the structural mean of a sample of curves by mod-
ifying the classical DTW, which has been demonstrated the
priority on air pollutant data analysis; Xie et al. [22] intro-
duced a method for clustering and averaging the tracks of
people obtained in a multi-camera network using DTW and
random sampling for optimizing the work cycles. In these
works, the method of structural mean/average learning has
been proven to be a promising strategy for enhancing model
training/learning when handling training samples with vary-
ing amplitudes and phases/timings.

In the area of action recognition, Cherla et al. [18] have
also proposed a fast and view-invariant average-template
action model called “action basis” by the use of eigen-
analysis from training sequences of different people, where
the model shows great potentials to deal with action recog-
nition with fewer training samples but it uses empirical
eigenvalues to construct the average template that requires
further quantitative investigation and experimental valida-
tion. Additionally, the action basis is only appropriate for
unimodal classes where the samples are expected to gather
around their class center. However, in complex action recog-
nition tasks, unimodality is a very strong assumption that
is not valid. Indeed, even the simplest action (e.g., walk) is
rather different when performed by different persons, various
views, scales, etc.

In this paper, in line with the methods of structural
mean/average analysis, we focus on the further extension and
validation of the average templates for action recognition
when only a few training samples are available. Notice-
ably, different from [18] using PCA to generate the average
template, the method proposed in this paper uses structural
average curves analysis (SACA) to generate average tem-
plates by taking into account the variations of timing and

amplitude between sample sequences per action class. Our
method is complementary to those methods focusing on
action recognition using limited samples, e.g., [13–15,18],
and also could be potentially integrated with some of them
for further improving their recognition performances.

1.2 Overview and contribution

As illustrated in Fig. 1, rather than directly using original
training samples for action modeling and recognition, we
propose to learn structural average samples by using SACA
from these original samples, and then gather the resulting
average samples with the original ones to form a new training
set. Afterward, based on the new set, statistical distribution
of human actions can be extracted using, e.g., bag-of-words
(BoW). A query action can be finally recognized with con-
ventional classification strategies such as ANN, SVM and
k-NNC. The main contributions of this paper to the field are:

– SACA has been successfully applied to speech recogni-
tion. Here, we introduce SACA to the problem of action
recognition. To the best of our knowledge, this is the first
work that uses SACA to analyze human motions.

– Instead of using the original training samples for action
modeling directly, we propose the average samples
extracted by SACA together with the original ones to
model human actions which takes into account the vari-
ations of timing and amplitude between video sequences
in one action class.

– The proposed method of action modeling is success-
fully extended and validated on benchmarking datasets
by comparing with the baselines relying on the original
samples. In addition, it could potentially be integrated
with the existing approaches for further improving their
recognition performances.

The remainder of this paper is organized as follows. Sec-
tion 2 details the SACA-based approach for the recognition of
human actions. Experimental results are presented in Sect. 3,
followed by discussions. Section 4 concludes this paper.

2 Methodology

2.1 Frame feature extraction

As the first step of video analysis, for a given query video
F to be recognized which contains n frames, we first extract
features in each frame and concatenate the resulting features
to be a time-sequential set of features that can represent the
video as, F = { fi }, i ∈ {1, 2, . . . , n} where fi corresponds
to the features at i th frame. Here, it is worth mentioning that
feature extraction plays an important role in video description
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Fig. 1 Given a training set containing a limited number of samples,
rather than directly using them for action modeling and recognition,
we propose to learn structural average sequences from each sample

pairs in every class and then form a new set of training samples by tak-
ing together the original samples and the average sequences for action
modeling and recognition

and thus takes a direct influence in next action recognition.
While, further discussion on this procedure is beyond the
scope of the paper because our focus here is to design an
enhanced recognition framework using limited action sam-
ples. In other words, our expected framework does not rely
on specific action features but would be workable for other
features as long as they can describe the video effectively
and informatively.

2.2 Structural average curves analysis for action
modeling

2.2.1 Problem formulation

Let {Fc
i : i = 1, 2, . . . , N } be the collected training samples

for action class c, where i in Fc
i indicates the index of i th

action video and N is the number of video samples for this
class. Suppose each observed frame fi ( j) in a video Fi (i.e.,
fi ( j) ⊂ Fi , 1 ≤ j ≤ ni where ni is the number of frames in
Fi ) fit the following model as,

fi ( j) = G(ti, j ) + εi, j , j = 1, 2, . . . , ni , (1)

where G is a smoothing function, ti, j ∈ [0, 1] is the timings
with any closed interval for the i th video sequence and {εi, j }
are the independent and identical distributed (I.I.D.) errors
with zero mean, i.e., E[εi, j ] = 0.

The problem of learning averaging sequences is equiva-
lent to estimating the smoothing function G. When all video
samples in the class have the same number of frames, i.e.,
∀i, ni = n, the expectation of fi ( j) can be given by

E[ fi ( j)] = G(ti, j ) + E[εi, j ] = G(ti, j ). (2)

Assuming ergodicity of i for all samples, i.e., i ∈
[1, . . . ,m] in each frame, we can estimate each element g( j)
in G approximately by the law of large numbers as a sample
mean as

g( j) � fi ( j) = 1

m

m∑

i=1

fi ( j). (3)

This approach, however, does not take into account for tim-
ing variations but only for amplitude variations. In real-life
scenarios, action videos are often observed with a greatly
different number of video frames because of different per-
forming paces/intensities between individuals or sometimes
even in the same individual. In fact, the timing variation is
more common in automatic speech recognition where the
processed speech sequences are often varying in time or
speed [23,24]. To address this issue, an intuitive and natu-
ral alternative is to find the best match between every video
sample fi and an average sequence candidate G = {g( j ′) :
j ′ = 1, 2, . . . ,m} by alignmentsW with respect to minimiz-
ing a cost function using an accumulated error, as

inf
W

ni∑

i=1

∑

( j, j ′)∈W
|| fi ( j) − g( j ′)||, (4)

where || · || is a distance metric. Thanks to the dynamic pro-
gramming, we can obtain W = {( j, j ′)} as a warping path
connecting (1, 1) and (ni ,m). Now, the problem addressed in
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this paper is how to learn structural average sequences from
W = {( j, j ′)}. The following section gives the procedures.

2.2.2 Averaging sequences

Sequential optimize Eq. (4) for each average sequence can-
didate is extremely time-consuming or even impossible.
Therefore, some studies (see [19–22] for example) solve
this problem on the basis of a structural averaging analy-
sis. Motivated by these works, given two arbitrary action
video samples F = { f (1), f (2), . . . , f (n)} and F ′ =
{ f ′(1), f ′(2), . . . , f ′(n′)}, we learn the structural average
sequences as follows:

– Step 1: Compute the distances for all frame pairs between
F and F ′ (i.e., {( f (i), f ′( j)) : i = 1, 2, . . . , n; j =
1, 2, . . . , n′}) to form a two-dimensional square lat-
tice, and then take the optimal warping path W =
{w(k) → (i(k), j(k)) : k = 1, 2, . . . , K ; i(1) = j(1) =
1; i(K ) = n, j(K ) = n′} from the resulting square lat-
tice using dynamic programming with respect to the cost
function in Eq. (4);

– Step 2: The length K of obtained warping path W con-
tains a different number of timings (or, in other words,
sampling rates). We then normalize W to be a common
timing K by the interpolation and averaging operations
where the common timing is produced by averaging the
timings of F and F ′, i.e., K = (n + n′)/2;

– Step 3: The normalized warping path U = {u(k) : k =
1, 2, . . . , K } indicates the best matching pairs between
the two video sequences (as shown in Fig. 2).1 We finally
construct the average sequence F as

F = { f c(k) : k = 1, 2, . . . , K },
f c(k) = ( f (U−(k) + f ′(U−(k)))/2,

(5)

where U− is an inverse of U since it is strictly increasing
in temporal extent.

2.3 Practical issues

In the Step 1, the distances for all frame pairs between two
compared video sequences F and F ′ (i.e., {( f (i), f ′( j)) :
i = 1, 2, . . . , n; j = 1, 2, . . . , n′}) have to be computed
to synchronize these two sequences. Here, it is worth men-
tioning that for human actions studied in this paper, human
actions are often or almost always represented by multiple
features from different measurements, and furthermore each

1 Here, one notes that the normalized warping path do not need to be
equally spaced.

Fig. 2 Learning average sequences: a taking the optimal warping path
from a two-dimensional square lattice resulted by computing the dis-
tances for all frame pairs between two compared video sequences; b
normalizing the original warping path to be a common timing by the
interpolation and averaging operations

feature may provide different weights/cues for action dis-
crimination. For this reason, the classical distance metric,
typically the Euclidean distance, would be not suitable for
coping with such multi-dimensional sequences. To address
this problem, we employ the following procedures to com-
pute the distance between each frame pair in implementation:

– Normalize each dimension of F and F ′ separately to a
zero mean and unit variance and smooth each dimension
with a Gaussian filter;

– Compute the distance matrix D by:

D(i, j) =
H∑

h=1

| f (i, h) − f ′( j, h)| (6)

where f (i, h), f ′( j, k) are the hth features, respectively,
in f (i) and f ′( j);

– Use D to find the optimal warping path with the Viterbi
algorithm.

2.4 Actionmodeling and recognition

Assuming that we have learnt average sequences from
every pair of action samples for each action class by the
above-described procedures, we now have a set of average
sequences {Fc

i : i = 1, 2, . . . , Nc} for each class c, and
apparently the number of this set is Nc = C2

N = N (N−1)/2.
By collecting the two sets of average sequences and the orig-
inal action samples together (as shown in Fig. 3), we can
obtain a new set, i.e., Sc = {Fc

i } ∪ {Fc
i } for performing

actionmodeling.We then use the bag-of-words (BoW)model
to represent each sample in the new set Sc for modeling the
action of class c as follows:

– The codebook (i.e., vocabulary of words) is first con-
structed by clustering {Sc : c = 1, 2, . . . ,C} (C is the
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Fig. 3 Given an original set of action samples {Fc} for class c, we learn
average sequences {Fc} from every sample pair in the set. Then, action
modeling is then performed with a newly formed set of Sc by taking
together {Fc} and {Fc}

number of total classes) using k-means algorithm where
codewords are defined by the centers of resulted clusters;

– Each frame in the video sample is assigned as one code-
word by minimizing the Euclidean distance over all
codewords in the codebook;

– Last, each video sample is described as a histogram of
assigned codewords. The effect of codebook size K on
action recognition was investigated in experiments (see
Fig. 4).

Let us assume that we have a set of histograms of code-
wordswith action labels c ∈ {1, 2, . . .C}. For a newly arrived
query action video F∗ also represented by a histogram of
codewords learnt already,we can classify it for example using
k-nearest neighbors classifier (k-NNC) or a support vector
machine (SVM).

3 Experimental validation

3.1 Dataset

Since our focus is on enhancing action recognition with less
amount of action samples, we chose four small-scaled bench-
marking datasets for our evaluation as follows:

The Weizmann Dataset consists of 90 video sequences
including 10 categories of human action: bend, jack, jump,
pjump, run, side, skip, walk, wave1 and wave2, performed
by each of nine subjects.

The UT-Tower Dataset2 consists of 108 video sequences
from 9 types of actions: pointing, standing, digging, walking,
carrying, running, wave1, wave2 and jumping. Each action
is performed 12 times by 6 individuals.

2 http://cvrc.ece.utexas.edu/SDHA2010/Aerial_View_Activity.html.

The UC-3D Motion Database3 consists of 11 different
activities including 6 interactive actions and 5 single actions.
In this paper, we mainly focus on individual actions, so we
chose the 5 single actions in our investigation: bend, jumping,
running, walking and sitting/standing cycle, performed 15
times by 5 individuals.

The UTD Multimodal Human Action Dataset (UTD
MHAD)was released very recently [25]. In this dataset, each
action is performed by 8 subjects. We tested 15 actions, i.e.,
swipe left, swipe right, wave, clap, throw, arm cross, bas-
ketball shoot, draw X, draw circle (clockwise), draw circle
(counter clockwise), draw triangle, bowling, boxing, baseball
swing, and tennis swing, in our investigation.

3.2 Experimental implementation

As stated previously, frame feature extraction is the first step
for video analysis. In the experiments, we used local tempo-
ral self-similarities (LTSS) extracted from difference images
for frame representation [26] due to its relative simpleness
in implementation and its no-requirement of bounding-box
annotation and subjection detection. We used the same
parameter setting as described in [26] which brings the total
number of features up to 240 in each frame. Here, one notes
that, in the Weizmann dataset, the two actions of wave1 and
wave2 have very similar flow and they are easily confused
to each other by the flowed-based approaches, we thus in
experiments only tested the action of wave1 as made in [26].

For all datasets, in the following experiments, we tested
the codebook size K from 50 to 150 with a step of 5. We
tested two widely used classification methods of k-NNC and
SVM, for performing action recognition. They were oper-
ated, respectively, as follows:

k-NNC: we compared F∗ with k nearest action samples
in Sc for each action class c, i.e., {Fc

1 , Fc
2 , . . . , Fc

k } ⊂ Sc,
by a distance metric dist, typically the Euclidean distance.
Then the most similar class was chosen as

F∗ → argmin
c

k∑

i=1

dist(F∗, Fc
i ). (7)

SVM: we trained SVMwith RBF kernel in a one-against-
all framework to handle multi-class classification. LIBSVM
library was used in MATLAB for implementing the SVM-
based action classification.

We also compared these classification methods with the
recently proposed deep learning (DL)-based method. We
implemented the DL method based on convolutional neural
network (CNN).More specifically, the Deep Learn Toolbox4

3 http://mrl.isr.uc.pt/experimentaldata/public/uc-3d/.
4 https://github.com/rasmusbergpalm/DeepLearnToolbox.
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was used in MATLAB for accomplishing this task where we
trained a 6c-2s-12c-2s CNN to deal with multi-class classi-
fication. In this method, we feed the extracted LTSS features
directly to the DL classification.

Additionally, for all the above classification methods,
we compared the recognition performances of using orig-
inal training samples with those obtained by the proposed
scheme to investigate the effectiveness and priority. The
leave-one-person-out cross-validation was used for classi-
fication evaluation.

3.3 Results and analysis

Figure 4 shows the recognition rates for tested values of code-
book size K by using k-NNC or SVMclassification. It can be
seen that, for all datasets, the recognition performance has
been improved significantly for almost all tested values of
K with our proposed method than those obtained by original
training samples.More specifically, in Fig. 5,we summarized
the average recognition rates by using k-NNC and SVMclas-
sification as well as the recognition rate by DL. It can be seen
that, for all datasets, the recognition rates by each classifica-
tion method with using the extended samples are higher than
those using the original prototypical samples.

More details are provided in Table 1 where we can find
that, inWeizmann dataset, ourmethod achieved a recognition
rate of 98.77%(SVM, K = 145),while 93.83%wasobtained
by using the original samples (5-NNC, K = 75). UT-Tower
datasetwas 75%byourmethod (3-NNC, K = 100 andSVM,
K = 135) and 70.37% (SVM, K = 140) with the orig-
inal samples. In the UC-3D Motion dataset, it was 93.33%
(SVM, K = 150) by ourmethod,while itwas 81.33% (SVM,
K = 70) with the compared method. Last, in UTD MHAD
dataset, our method achieved 91.67% (SVM, K = 120),
while it was 84.17% (1-NNC, K = 115) with using the orig-
inal samples. Here, one interesting observation is, for each
testing dataset, the recognition rate of DL is lower than those
by using k-NNC and SVM classification. It is not surprising
because the performance of DL classification relies heavily
on the number of training samples, while, the extended num-
ber of samples by our method is still somewhat limited on the
testing datasets. In addition, there are some parameters that
can significantly affect the performance of DL, for example,
as reported in [27], the recognition rate on the Weizamann
dataset can achieve 96.67% by using 3D CNN, that is higher
than 88.89% reported in our experiment. In this regard, it
is believed that the performance of DL method by integrat-
ing our proposed scheme would be further improved through
optimizing appropriate settings. Further discussion is, how-
ever, beyond the scope of this paper as our focus in this paper
is on the extension of training samples.

In the method, we propose to use the extended training
set derived from SACA, instead of original training set, for
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Fig. 4 Recognition rates in four datasets. a Weizamann dataset. b UT-
Tower dataset. c UC-3D Motion dataset. d UTD MHAD dataset
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Fig. 4 continued

action modeling and recognition. An example of two ran-
domly selected actions in UT-Tower dataset is shown in
Fig. 6. Intuitively, we can see that the samples aremore dense
within each action class and meanwhile these two actions
have a more distinguishable classification boundary in the
extended training set, compared with those in the original
training set. These would be the main reasons why we can
achieve better recognition performances with the proposed
method.

(a) Original samples (b) Extended training samples
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wave1
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Fig. 6 PCA-2D of two randomly selected actions in UT-Tower dataset

In addition, we derived structural average sequences by
learning from each pair of video samples in every action
class, which is conducted on the basis of features obtained
previously. And we only chose two conventional classifica-
tion methods and one deep learning method for comparison.
In fact, since our proposed method is to extend the training
samples prior to action modeling and recognition, other fea-
ture extraction methods and classification methods can also
be integrated with our method to further improve their recog-
nition performances, especially in the cases where there are
a limited number of samples.

4 Conclusion

In this paper, we have proposed a new scheme for model-
ing human actions by virtue of SACA when only a limited
number of training samples are available. Rather than directly
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Fig. 5 Average recognition rates by using k-NNC and SVM classification and recognition rates by DL method

Table 1 Summary of experimental results

Dataset Original samples Our method

1-NNC 3-NNC 5-NNC SVM DL 1-NNC 3-NNC 5-NNC SVM DL

Weizmann 92.59 92.59 93.83 92.59 82.72 96.3 97.53 95.06 98.77 88.89

UT-Tower 62.96 64.81 62.89 70.37 64.81 69.44 75.00 73.15 75.00 72.22

UC-3D Motion 74.67 78.67 78.67 81.33 54.67 82.67 88.00 89.33 93.33 62.67

UTD Multimodal 84.17 79.17 76.67 80.83 45.83 90.00 89.17 89.17 91.67 69.17

Bold values are for emerging the best recognition rate either using original samples or using our method
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using the original training set for actionmodeling,we derived
structural average sequences by learning from each pair of
video samples in every action class and then combined them
with original video samples to generate a new training set.
Extensive experiments and methodological analysis on the
new training setwere provided to demonstrate the advantages
of the proposed method. In addition, the proposed method
can potentially be integrated with other approaches to fur-
ther improve their recognition performances.
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