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Abstract
A new Bayesian-based method is developed for unmixing of hyperspectral images. Endmembers are assumed variable based
on the Gaussian distribution. A semi-supervised scenario is considered, and as a practical aspect, the abundance vectors are
assumed sparse. We propose the Dirichlet prior to represent the sparsity and derive the corresponding posteriors in Bayesian
sense. Numerical results are used to evaluate different methods for both simulated and real data. It is shown that the proposed
method achieves a lower error in abundance estimation and image reconstruction.
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1 Introduction

Hyperspectral images (HSI’s) constitute the main database
for remote sensing problems [1] such as agricultural and
environmental monitoring [2], mineral exploration [3], and
military surveillance [4]. In the HSI, each pixel is presented
by a three-dimensional data cube whose third dimension
contains the spectral information. To do so, the hyperspec-
tral cameras collect 2-D spatial photographs over many
adjacent spectral bands commonly containing the visible,
near-infrared, and shortwave infrared spectral bands in the
range 0.35–2.5µm [2]. However, due to the low spatial res-
olution of imaging sensors, each single pixel represents a
mixture of different materials located in the field of view [5].
In some applications of remote sensing, we are interested
in identifying the materials involved in each pixel which
motivates more research on unmixing techniques. For this
purpose, each pixel of hyperspectral images is decomposed
into a group of pure spectral signatures and their correspond-
ing proportions, known as endmembers and abundances,
respectively [6]. In practice, this is performed under two
physical limitations on abundances, i.e., the non-negativity
and sum-to-one constraints. From the first one, the mean of
each abundance vector should be larger than zero, while the
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second constraint implies that the sumof abundance fractions
should be equal to one. Moreover, an encountered difficulty
that arises in unmixing problems is variability of the mea-
sured spectral signatures of endmembers which is due to
the unstable atmospheric, illumination, and temporal condi-
tions [7]. A number of methods have addressed the spectral
variability [8] among which the multiple endmember spec-
tral mixture analysis (MESMA) is well known [7]. However,
when the spectral library becomes large, the MESMA leads
to extremely large computations due to the requirement of
exhaustive search over all possible combinations of endmem-
bers. The support vector machines (SVMs) have also been
incorporated for spectral unmixing with addressing spectral
variations [9].

On the other hand, the endmember spectral variability
may be modeled statistically using the Gaussian and beta
distributions. Accordingly, the normal compositional model
(NCM) and beta compositional model (BCM) [10,11], and
alsoBayesian estimators are developed. To do so, the uniform
prior has already been considered over a set of proportion val-
ues that satisfy the non-negativity and sum-to-one constraints
[10–13]. However, this prior is essentially more suitable for
supervised unmixing scenarios, in which exact endmem-
bers are assumed known. In contrast, in the semi-supervised
unmixing problems, a few endmembers are chosen from a
large spectral dictionary and thus the abundance vector is
assumed sparse. Although the sparse property along with the
endmember variability condition has already been studied for
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reducing the unmixing error [14–17], still developing more
drastic tools is of interest to researchers.

In this paper, we propose a new method for unmixing
of hyperspectral images in Bayesian sense referred to as
the normal compositional model with the sparse Dirichlet
prior (NCM-SDP). We consider a semi-supervised scenario
with the NCM and use the Dirichlet prior to represent the
abundance vector sparsity. The Markov Chain Monte Carlo
(MCMC) sampler is used to generate posteriors.

2 NCM-SDPmethod

To introduce the proposed NCM-SDP method, we elabo-
rate on the NCM definition, prior selection, and the posterior
derivation as follows.

2.1 Normal compositional model

In mixing approaches, the spectral variation of endmembers
is randomly defined as:

er ∼ F (.|θr ) , (1)

where F shows the conditional probability density function
(pdf) of a material and θr is the vector of hyper parameters of
the distribution corresponding to the rth endmember. Also, a
random vector of L-spectral band pixel y = [y1, . . . , yL ]T

with a stochastic linear mixture of endmembers is given by
[18]:

y =
R∑

r=1

erαr , (2)

where er is the spectral signature of the r th endmember
defined by (1), R is the number of endmembers, and αr
denotes the abundance of the r th endmember. To define each
endmember in Bayesian sense, the Gamma and beta priors
have already been applied [18,19]. In such cases, however,
the exact knowledge of endmember distributions is required,
which may not be available in practice. The Gaussian dis-
tribution may also be considered in which the unknown
parameters can be jointly estimated together with the abun-
dance fractions. In the NCM, endmembers are defined by
independent multivariate Gaussian vectors. We assume that
the mean of each endmember is known and the covariance
matrix of endmembers can be written as a scalar matrix. The
pdf of the r th endmember is defined as:

er ∼ N
(
mr , σ

2 I L
)

, (3)

where mr = [
mr ,1, . . . ,mr ,L

]T is the known mean of er for
r = 1, . . . , R, I L is an L × L identity matrix, and σ 2 shows
the unknown variance of endmembers in each spectral band.
Since the endmembers spectra are independent from each
other, the likelihood function of each hyperspectral mixed
pixel is expressed as:

f
(
y|α, σ 2

)
= 1

(
2πσ 2c (α)

)L/2 exp

(
−‖y − μ (α) ‖22

2σ 2c (α)

)
,

(4)

where ‖·‖2 defines the standard �2 norm, c (α) = ∑R
r=1 α2

r ,
μ(α) = ∑R

r=1 mrαr , and α = [α1, . . . , αR]T shows the
abundance vector. Using a hierarchical Bayesian algorithm,
the unknown parameters α and σ 2 are estimated.

2.2 Prior selection

2.2.1 Endmember variance prior

As in [12], a conjugate inverse gamma distribution is chosen
as a prior distribution for the endmember variance as:

f
(
σ 2|δ

)
∼ IG (ν, δ) , (5)

where ν and δ show the shape and scale parameters, respec-
tively.We assume ν = 1, and the hyperparameter δ is defined
by the non-informative Jeffreys’ prior as:

f (δ) ∼ 1

δ
1R+ (δ) , (6)

where 1R+(.) is the indicator function defined on R
+ as:

1R+(δ) =
{
1, if δ ∈ R

+;
0, otherwise.

(7)

2.2.2 Abundance prior

The abundance vector should be estimated under the non-
negativity and sum-to-one constraints shown as:

αr ≥ 0, r = 1, . . . , R,

R∑

r=1

αr = 1. (8)

Then, the fractional abundance vector α will be in the stan-
dard (R − 1)-simplex. Under such circumstances, choosing
an appropriate prior for the abundance vector becomes
harder. To fulfill the above constraints, in most recent works
the uniform distribution is considered over a set of fractional
values [11]. However, since the number of endmembers con-
tributing in a mixed pixel is usually much smaller than that
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of the dictionary, this distribution cannot describe the abun-
dance vector properly. In turn, we may exploit the sparse
property of the abundance vector due to its small number of
nonzero elements [19].

In this paper, we propose the symmetric Dirichlet distri-
bution as the abundance prior defined as [20]:

f (α) ∼ D (α;β) = Γ (βR)

Γ (β)R

R∏

r=1

αβ−1
r , (9)

where Γ (·) is the Gamma function and β determines the
concentration of the Dirichlet distribution and accordingly
the abundance vector sparsity. This distribution satisfies the
abundance vector non-negativity and sum-to-one constraints.
For β = 1, it corresponds to the uniform distribution over the
standard (R − 1)-simplex, and for β > 1, becomes denser
around its mean. On the other hand, for β < 1, the Dirich-
let prior tends to concentrate close to zero in which case
most of the elements of α would be extremely small. This
case can properly describe the sparse behavior of an abun-
dance vector in a semi-supervised scenario. Clearly, if the
uniform prior (β = 1), which would be more appropriate for
a supervised scheme, as used in [11–13], is applied to a semi-
supervised scheme, wemight encounter with large unmixing
errors. Here, we consider a semi-supervised scheme which is
more encountered in practice and propose to incorporate the
sparse Dirichlet prior, and we will show its outperformance
later.

2.3 Derivation of posterior distribution

Based on Bayes’ theorem, the joint posterior distribution of
the unknown variables is defined as:

f
(
α, σ 2, δ| y

)
∝ f

(
y|α, σ 2

)
f
(
α, σ 2|δ

)
f (δ) , (10)

where by assuming independency between unknown param-
eters, we get f

(
α, σ 2|δ) = f (α) f

(
σ 2|δ). Then, by using

(4), (5), (6), and (9) in (10), f
(
α, σ 2, δ| y) is obtained as:

f
(
α, σ 2, δ| y

)
∝ 1R+(δ)

∏R
r=1 α

β−1
r

(
σ 2c(α)

) L
2 σ 2

× exp

(
−‖y − μ (α) ‖2

2σ 2c (α)
− δ

)
. (11)

Due to the complexity of (11), it is intractable to obtain
the MMSE or MAP estimates in closed form for the abun-
dances and endmember variance.A solution is to generate the
samples according to (11) and then to approximately apply
Bayesian estimators to these samples [21].

3 MCMC sampling

The MCMC methods are used for iterative sampling from a
probability distribution based on generating a Markov chain
[21]. To do so,we should derive f

(
α| y, σ 2

)
, f

(
σ 2| y,α, δ

)
,

and f
(
δ|σ 2

)
to estimate the unknown parameters α, σ 2,

and the unknown hyperparameter δ. Using (4) and (9) in the
Bayes’ theorem, the posterior f (α| y, σ 2) is given by:

f
(
α| y, σ 2

)
∝ 1

(
σ 2c (α)

) L
2

× exp

(
−‖ y − μ (α) ‖2

2σ 2c (α)

) R∏

r=1

αβ−1
r . (12)

According to (12), the samples of abundance vector are gen-
erated using the MCMC [12]. Using (4), (5), and (6), the
posteriors of σ 2 and δ are also calculated, respectively, as:

f
(
σ 2| y,α, δ

)
∝ IG

(
L

2
+ 1,

‖ y − μ (α) ‖2
2c (α)

+ δ

)
, (13)

and

f
(
δ|σ 2

)
∝ G

(
1,

1

σ 2

)
. (14)

The required procedure for using the NCM-SDP is summa-
rized in Alg. 1.
Algorithm 1. NCM-SDP procedure.

1. Input vectors: [ y1,..., yN ], [e1,...,eR]
2. Output estimates: α̂, σ̂ 2

3. Initialization:

a. Sample δ(0)
b. Sample σ(0)

4. Iterations:

a. Sample α(t) according to (12) using MCMC
b. Sample σ 2(t)
c. Sample σ(t)

4 Experimental results

To evaluate the performance of the NCM-SDP, our experi-
ments are performedonboth simulated and real hyperspectral
images as follows.

4.1 Simulated data

We first compare the performance of the NCM-SDP method
to that of the classical Bayesian NCM algorithm with the
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Fig. 1 Endmember spectral signatures for “asphalt” and “brick”[22]

uniform prior [12], which we call the “NCM uniform.”
Ten endmembers are randomly selected from the USGS
digital spectral library each one consisting of 2151 spec-
tral bands in the wavelength range of 0.35–2.5µm [22] to
build up our spectral dictionary. The materials are “asphalt,”
“brick,” “cedar,” “concrete,” “fabric,” “fiberglass,” “nylon,”
“pipe,” “plastic,” and “polyester.” Hyperspectral pixels are
mixed of asphalt and brick shown in Fig. 1 with proportions
[0.3, 0.7]. Then, α = [0.3, 0.7, 0, 0, 0, 0, 0, 0, 0, 0] shows
the abundance vector with the sparsity level of 0.2. Also, the
endmembers variance is set to σ 2 = 0.05 for all spectral
bands of all 10 endmembers.

To choose a proper value of β in the NCM-SDP, we repeat
the unmixing algorithm for 0 ≤ β ≤ 1 and compare the
absolute values of the abundance estimation errors using:

|e| = ‖αr − α̂r‖1. (15)

where âr denotes the MAP abundance estimate of the r th
endmember.

To define the sparsity level, we generate thousands of
Dirichlet distributed samples for each specified β and con-
sider the percentage of significant values to thewhole number
of samples.

The results shown in Table 1 clearly show a salient reduc-
tion in |e| for the smaller values of β. However, note that, in
practice, the number of participant endmembers formodeling
of a hyperspectral pixel is unknown, a priori, and choosing a
very small β can lead to a large error. In fact, there is a trade-
off between the sparsity level of the prior and the generated
abundance estimation error. By including these considera-
tions, we have chosen β = 0.1 and later will show that this
value is appropriate for our unmixing problem. Note that for
different sizes of dictionaries, proper values of β should be
reselected correspondingly. This subject can be regarded as
an open problem for future research.

For β = 0.1, the posteriors of abundances are gener-
ated by the NCM-SDP method for 300 independent trials

Table 1 Abundance estimation errors for different β ′s

β 0.001 0.01 0.05 0.1 0.2 0.5 1

Sparsity level 0.01 0.04 0.12 0.18 0.24 0.32 0.37

|e| 0.05 0.04 0.08 0.06 0.13 0.27 0.42

of the experiment. The averages of the generated posteriors
for the first and second abundances are illustrated in Fig. 2a,
b, respectively. Considering that α contains 10 entries, in
Fig. 2c, we have only shown the distribution of the third
entry which is very similar to those of the fourth to tenth
ones. As seen, the peaks of the posteriors obtained from the
NCM-SDP are more concentrated around the real values.

From the MAP estimation theory, the first and second
abundances are estimated as 0.31 and 0.68, respectively,
which are very close to the corresponding real values in α,
i.e., 0.3, and 0.7. These estimates from theNCMuniform [12]
are 0.47 and 0.47, respectively, showing the lower accuracy
of the method. Moreover, for the other 8 entries of α (zero
values), the NCM-SDP generates negligible values of order
10−11, while they are of order 10−4 for [12]. Also, the val-
ues of |e| achieved by the NCM-SDP and [12] are 0.137 and
0.484, respectively. This enhancement is effectively achieved
due to applying the Dirichlet prior with a proper value of β.

Next, the posteriors of the variance of endmembers esti-
mated based on the Gaussian prior are plotted in Fig. 3. As
seen, the resulted posterior by the NCM-SDP is much closer
to the real value compared to that of [12] which logically
leads to a lower estimation error.

4.2 Real hyperspectral data

The performance of NCM-SDP is now compared to that of
[12] for the real hyperspectral image shown in Fig. 4a. This
image has been collected by the airborne visible/infrared
imaging spectrometer (AVIRIS) over Cuprite, Nevada, USA
[23]. A square patch of 50×50 pixel of the image is cropped
as the region of interest (ROI), as shown in Fig. 1b. The
reconstructed images using the NCM uniform and NCM-
SDP methods are shown in Fig. 4c, d, respectively.

By comparing Fig. 4c, d to b, one can observe that the
NCM-SDP reconstructs the real image more similarly. To
inspect this matter quantitatively, the MSEs of both methods
are shown in Table 2 using (16).

MSE = 1

N

N∑

n=1

∥∥∥∥∥ yn −
R∑

r=1

erαr ,n

∥∥∥∥∥

2

2

(16)

To more evaluate the NCM-SDP, in another experiment,
we utilize the real data set “Gulfport hyperspectral image”
collected fromLong beachMS [11]. A block of 13×19 pixel
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(a)

(b)

(c)

Fig. 2 Estimated posteriors of the a first, b second, and c third abun-
dance values

of this image is cropped for which the accurate endmembers
are available. Also, for each endmember of this region, there
exist 10 different samples. Note that for the NCM-SDP, only
oneof these samples is sufficient to be used as themeanof that
endmember signature, while for the BCM algorithms more
samples are needed for extraction of the beta distribution
parameter. Here, we use the average of samples as the mean
of eachGaussian distributed endmember. NCM-SDP is com-
pared to the FCLS [24], BCMQP [25], BCM sampling [25],

Fig. 3 Estimated posteriors of the variance of endmembers

Fig. 4 a Cuprite image [23], b ROI, c reconstructed image by [12], and
d reconstructed image by the NCM-SDP

Table 2 MSEs of reconstructed images

NCM uniform [12] NCM-SDP

MSE 1.94 1.52

Proposed result shown in bold

BCM-spatial QP [11], BCM-spatial sampling [11], NCMQP
[10], NCM sampling [10], and NCM uniform [12].

The maps of estimated abundances for 4 endmembers are
depicted in Fig. 5. We use the ground truth of data addressed
in [11] for 4 endmembers including “asphalt,” “yellow curb,”
“grass,” and “oak leaves” as shown in Fig. 5j, respectively.
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Fig. 5 Abundance maps of “asphalt,” “yellow curb,” “grass,” and “oak leaves” in the Gulfport image for a FCLS, b BCM-spectral QP, c BCM-
spectral sampling, d BCM-spatial QP, e BCM-spatial sampling, f Gaussian QP, g Gaussian sampling, h NCM uniform, i NCM-SDP, and j ground
truth

In each figure, the yellow and blue parts correspond to the
abundance values equal to 1 and 0, respectively. For a better
evaluation, the average per pixel per endmember proportion
error is defined as [11]:

PError = 1

NR

N∑

n=1

‖αn − α̂n‖2 (17)

whereαn is the true abundance vector of pixel n,αn is the cor-
responding estimated abundance vector, N shows the number
of pixels, and R is the number of endmembers. Each method
is run 10 times, and the average of total errors is calculated.
The results are presented in Table 3. It is vital to note that in
this experiment all the above comparativemethods are super-
vised schemeswith a dictionary of 4 endmembers as opposed
to the NCM-SDP which is a semi-supervised scheme with
30 endmembers in the dictionary. It is interesting to note that
although this scenario is intrinsically appropriate for super-
vised cases, still the corresponding techniques are unable to
reconstruct the images as accurate as the NCM-SDP. From
Table 3, one can conclude that the NCM-SDP has estimated
the abundance vector more accurately than the BCM- and
NCM-based unmixing methods.

All the enhanced results achieved by theNCM-SDP reveal
that incorporation of the sparse property of abundance vec-
tors based on the sparse Dirichlet prior into themixingmodel
is a rational and realistic proposition.

Table 3 Average per pixel per endmember proportion error for the
Gulfport hyperspectral image

Method PError

FCLS [24] 0.1527

BCM-spectral quadprog [25] 0.1497

BCM-spectral sampling [25] 0.1498

BCM-spatial quadprog [11] 0.1507

BCM-spatial sampling [11] 0.1433

NCM quadprog [10] 0.1517

NCM sampling [10] 0.1619

NCM uniform [12] 0.1425

NCM-SDP 0.1325

Proposed result shown in bold

5 Conclusions

A new hierarchical Bayesian method was derived for unmix-
ing of hyperspectral images. Endmembers were consid-
ered variable based on the Gaussian distribution. Also, we
assumed that the abundance vectors are sparse. The sparse
Dirichlet priorwas proposed for sparsemodeling and accord-
ingly the NCM-SDP method was developed. Using the
simulated data, it was shown that the error of the estimated
abundance vector is approximately 7 times smaller than that
of the uniform prior. Also, by repeating the simulations for
real data, 20% improvement in the MSE sense was achieved.
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