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Abstract
In this paper, we propose a novel method to detect anomaly from videos based on sparse reconstruction. Different from the
traditional methods, two kinds of dictionaries are employed for anomaly detection with one representing the global dictionary
and the other indicating the online one. The global dictionary is first trained on training samples, and then used for the local
online dictionary learning and anomaly detection. A novel updating scheme is proposed in the local online dictionary learning
for an accurate anomaly detection. Experiments on the public databases show that our method can effectively detect abnormal
events in complex scenes.

Keywords Sparse coding · Anomaly detection · Two kinds of dictionaries

1 Introduction

With an increasing of videos in the real word, video-based
surveillance systems are being increasingly used for traf-
fic violations, accidents, crime, terrorism, vandalism and
other suspicious activities. Since manual analysis of such
large volumes of data is prohibitively costly, it is neces-
sary to develop effective algorithms to aid in the auto-
matic or semi-automatic interpretation and analysis of video
data.

Conventional methods [1–3] intend to detect testing sam-
pleswith lower probability as anomaly byfitting a probability
model over the training data. We propose to detect anoma-
lies in videos based on templates in [4] and [5], where
the templates represent the maximum and minimum motion
distribution. Recently sparse coding scheme is applied to
anomaly detection [6–9] and shows great potential. The
sparse-based approaches can detect abnormal events effec-
tively under the assumption that the normal events can be
constructed from the normal basis. However, the proposed
sparse coding methods mainly use only one kind of dic-
tionary either obtained from the training data or a number
of former frames of the testing video, which can not make
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fully use of the training and testing samples. Motivated
by the class-specific dictionary and shared dictionary pro-
posed in [10], we propose a novel method based on sparse
coding using two kinds of dictionaries with one obtained
from the global training samples and the other gained from
the testing video. Our method not only considers the nor-
mal events in the training data, but also takes into account
the online information of the testing videos, which can
improve the detection result. Our contributions are as fol-
lows:

– One novel framework using two kinds of dictionaries
for anomaly detection is proposed in this paper, which
can make fully use of the training and testing sam-
ples.

– We present one scheme to update the online dic-
tionary using the trained global dictionary and the
selected testing samples, which can improve the detec-
tion result.

The rest of this paper is organized as follows. Section 2
provides a brief overview of previous works on anomaly
detection. The detailed explanation of our method is pro-
vided in Sect. 3. Section 4 demonstrates the effectiveness of
the proposed algorithm in the published datasets, followed
by conclusions in Sect. 5.
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2 Related works

Many methods are proposed in anomaly detection. Accord-
ing to whether or not abnormal samples are needed for
training, the method can be classified into two types: one
type needing abnormal samples and the other only needing
normal samples.

The first type of anomaly detection method requires the
labels for both normal and abnormal samples in the train-
ing process. This kind of method also predefines a special
abnormal behavior for detection, such as fight, human fall and
traffic violation. Esen et al. [11] proposed a novel motion fea-
ture named Motion Co-occurrence Feature (MCF) for fight
detection in surveillance videos. Vishwakarma et al. [12] first
used an adaptive background subtraction to detect the mov-
ing objects and then designed a fall model to confirm the
fall action. Fu et al. [13] proposed to detect traffic abnormal
events based on vehicle motion trajectories using their pair-
wise similarity. These methods are constrained due to the
quantity limitation of abnormal samples.

The other type mainly focuses on normal events, which is
the most popular technique employed by researchers. For
example, trajectory based method is usually employed in
anomaly detection [14]. However, object tracking is not reli-
able in densely crowed scenes and it is far likely to lead to
unsatisfactory anomaly detection results. Model basedmeth-
ods usually design a local normal model based on low level
feature for anomaly detection. For example, Kim and Grau-
man used a space-time Markov Random Field (MRF) model
to detect abnormal activities in videos [1]. Kratz and Nishino
employedhiddenMarkovmodels (HMM) for anomalydetec-
tion [2]. Mehran et al. introduced a novel method to detect
and localize abnormal behaviors in crowded videos using
social force model (SFM) [3]. These methods work well
when applied to the crowded scenes due to the dense motion
patterns extracted from the videos. Sparse coding based
approaches are developed in [6,9,15,16], which can detect
abnormal events effectively under the assumption that the
normal events can be constructed from the normal basis. This
method usually employs a kind of low level feature of the
normal training samples to train a normal global dictionary
and uses the trained dictionary to compute the reconstruc-
tion error for anomaly detection. Deep learning method is
also employed in anomaly detection [10,17,18]. For example,
Sakurada and Yairi [10] demonstrated that the auto encoders
can be useful as nonlinear techniques to detect subtle anoma-
lies. Sabokrou et al. [17] employed a sparse auto encoder
to capture the local and global descriptors for the video
properties. Medel and Savakis [18] developed a generative
model based on a composite Convolutional Long Short-Term
Memory (Conv-LSTM) for anomaly detection. A review
modelling representation of video feature for anomaly detec-
tion is proposed in [19]. Deep learning methods are popular

in video-based tasks, owing to its ability to produce good
representations with raw input. But this method requires a
high computer hardware and the training process needsmuch
more training data and time for one representation. In this
paper, we propose a novel method based on two kinds of dic-
tionaries, which can make fully use of training and testing
data to make the detection results more accurate.

3 Our work

In this paper,we propose a novelmethod based on sparse cod-
ing. Different from the traditional sparse codingmethods, we
use two different dictionaries in our method, with one repre-
senting the global motion distribution and the other standing
for the local patterns. First,weobtain a global dictionary from
training samples using a kind of effective low-level motion
feature. Second, in the testing process, we divide the testing
video into several parts every some frames and estimate the
anomaly using the global dictionary for the first part. Then,
we use the most trusted low-level motion features obtained
from the estimated anomaly detection to obtain a local online
real-time dictionary, and update it using the global and local
dictionaries in the following parts. Last, the abnormal events
are detected by the global and online dictionaries, respec-
tively, and the final detection results are the combination of
the detected anomalies. The top algorithmflowchart is shown
in Fig. 1.

3.1 Low-level motion feature

The low-level motion feature is important in anomaly detec-
tion due to its effectiveness and practicability [6,15,20].
Similarly to [20], we also develop a simple but effective
motion feature for anomaly detection. Different from the tra-
ditional well-known descriptor, such as HOG [21], our new
descriptor not only considers the appearance, but also the
motion. The low-level feature is also used in [4,5], but the
low-level feature used in these twomethods does not consider
the adjacent cubes.

To compute the representation of each spatio-temporal
volume extracted on a regular grid, we define a descriptor
based on three-dimensional gradients computed using the
luminance values of pixels. The gradient is first computed
using finite difference approximations and represented as
Gx ,Gy,Gt at each pixel (x, y, t) in the t th frame I as follows:

Gx = I (x + 1, y, t) − I (x − 1, y, t)

Gy = I (x, y + 1, t) − I (x, y − 1, t)

Gt = I (x, y, t + 1) − I (x, y, t − 1)

(1)

123



Signal, Image and Video Processing (2018) 12:983–989 985

Training samples Low-level features Global dictionary

Online dictionary Low-level features Testing samples

Fig. 1 The top flowchart of our method

Algorithm 1 Online updating framework.
Require: The global dictionary Dglb and the testing video X =

[X1, X2, · · · , XN ]
Ensure: Anomaly detection result E f nl
1: Set D0 = Dglb
2: for i=1 to N do
3: Calculate the sparse coefficients αi and α

glb
i by l1 minimization

with the updated Di−1 and global dictionary Dglb using Eq. (3).

4: Compute SRC Ei and E
glb
i based on the updated Di−1 and global

dictionary Dglb with Eq. (4).

5: Calculate the final detection result using E f nl
i = max(Ei , E

glb
i )

based on Xi .
6: Update dictionary Di−1 from the current video part Xi using

Algorithm 2.
7: end for
8: Combine video abnormal detection results E f nl =

[E f nl
1 , E f nl

2 , · · · , E f nl
N ].

Then, we compute the magnitude M3D and the angles φ

and θ using the computed gradients as follows:

M3D =
√
G2

x + G2
y + G2

t

φ = tan−1(Gt/

√
G2

x + G2
y)

θ = tan−1(Gx/Gy)

(2)

The feature descriptor for each cube includes the his-
tograms of calculated angles φ and θ which are quantified
into 8 bins with the magnitude M3D as weight over space and
temporal regions. We first divide the video into 10 ∗ 10 ∗ 3
cubes and then combine the neighborhood 2∗2 cubes as one
block. The dimension for each cube is 8 + 8 = 16, and the
final descriptor for one block is 2 ∗ 2 ∗ 16 = 64. There are
two differences between our method and [20]:

– The computation of histogram for one block is differ-
ent. We first divide the video into 10*10*3 cubes, and
then calculate every histogram in each cube using Eq. (2)
and finally stack all histograms within one block in some
order. While the method [20] computes the histogram in
each subregion.

– We consider the low-level motion feature selectively. In
our method, the motion cubes whose summation of gra-
dients Gx and Gy are greater than one threshold are
computed for motion feature. While the method [20]
computes the histogram densely.

3.2 Online updating scheme framework

From the training samples, we can easily obtain the global
dictionary using sparse coding scheme. We argue that it is
useful to update the dictionary during the testing process for a
more accuracy anomaly detection result. To achieve this goal,
we design a simple but effective scheme to update the online
dictionary. Let X beone testing video, and suppose the testing
video is divided into N parts. Therefore, we can denote the
testing video as X = [X1, X2, . . . , XN ]with Xi representing
the low-level motion feature set of the i th part. For the i th
divided part, we first compute the sparse coefficients αi and
α
glb
i based on the last updated dictionary Di−1 and the global

dictionary Dglb, and then calculate the sparse reconstruction

cost (SRC) Ei and Eglb
i . Last, we obtain the final detection

result E f nl
i using max pooling operation. This process is

repeated for N times and the final abnormal detection result
is achieved from the combination of each E f nl

i . This online
updating scheme framework is shown in Algorithm 1.
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3.3 Online updating scheme for one video part

In this section, we introduce the core online updating scheme
of step 6 in Algorithm 1 for Di−1 with one divided video part
Xi = [x1i , x2i , · · · , xni ], where x j

i stands for the j th cube’s
low level feature in the i th part Xi and n is the total number
of cubes for part Xi . This scheme first calculates the sparse
coefficients αi using the last updated dictionary Di−1 with
Eq. (3) and computes the current SRC Ei with Eq. (4).

αi = argminα

1

2
||Xi − Di−1α||22 + λ||α||1 (3)

Ei = 1

2
||Xi − Di−1αi || + λ||αi ||1 (4)

where α is the sparse coefficients and λ is a regularization
parameter. Then, the method selects the samples from Xi

to update the dictionary Di−1 using an adaptive threshold ρ

based on the computed Ei .

ρ = m(Ei ) − C(Ei ) (5)

where m(Ei ) is the mean of Ei and C(Ei ) is the variance
of Ei . Finally, we update Di−1 using the selected samples
based on Eq. (6) according to [22].

Di =
∏
C

[Di−1 − η

i
∇Dl(Xi , Di−1)] (6)

where l(Xi , Di−1) = 1
2

∑
j=1,··· ,ni ||X j

i − Di−1α
j
i ||22, η is

the learning rate,
∏

C is the orthogonal projection onto C.
For the details, please refer to [22]. The details of updating
process using one video part Xi are shown in Algorithm 2.

Algorithm 2Online updating scheme in step 6 of Algorithm
1.
Require: Last updated dictionary Di−1 and current testing video part

Xi = [x1i , x2i , · · · , xni ]
Ensure: Updated dictionary Di
1: for i=1 to n do
2: Pursuit the sparse coefficient αi by l1 minimization with the last

Di−1 using Eq. (3) based on Xi .
3: Compute the SRC Ei using Eq. (4).
4: Select samples X

′
i from Xi by an adaptive threshold ρ, which is

computed with Eq. (5).
5: Use X

′
i to update Di−1 with Eq. (6).

6: end for

3.4 Anomaly detection

As briefly mentioned in previous section (refer to Algorithm
1), given the newly observed frames X

′
and the global dictio-

nary Dglb, we can compute the detection result E f nl as the

abnormality. Intuitively, A high SRC value implies a high
reconstruction cost and a high probability of being an abnor-
mal sample. Similarly to [15], the detected unusual events
can be further located with Eabs = E f nl > ε, where ε is
a user defined threshold that controls the sensitivity of the
algorithm to unusual events.

4 Experiments

In this section, we show the experimental performance of
the proposed anomaly detection algorithm, both qualitatively
and quantitatively on the published datasets UCSD Ped1 and
UMN [23].

4.1 Parameters setting

In our experiments, the parameters include the regularization
parameter λ, dictionary size K in Eq. (3) and the learning
rate η in Eq. (6). In our implementation, we set η = 104,
λ = 1.2/

√
m and K = 256, where m is the patch size. The

parameter settings are the same as in [22]. We find that the
results are not sensitive to the parameters.

4.2 Experiments on UCSD ped1

TheUCSDPed1 dataset contains the training and testing two
sets. The training set contains 34 short clips for learning of
normal patterns, and there is a subset of 10 clips in testing
set provided with pixel-level binary masks, which identify
the regions whether containing abnormal events or not. Each
clip has 200 frames, with a 158 × 238 resolution. We first
resize each video frame into 120 × 160, and then split the
video frames into 10×10×3 cubes with no overlap along the
temporal direction to obtain a 64 dimension motion feature
using the method of Sec. 3.1. The whole testing video is
divided into 5 parts with each part size n = 40.

4.2.1 Necessity of the updated dictionary

Intuitively, the ability of the global dictionary is restricted
due to the limitation of training samples, it is necessary
to update global dictionary according to the online video
frames. In our case, we find that the accuracy of the sparse
coding is improved with the updating steps in Algorithm 2.
Fig. 2a shows an example for this case. In this comparison,
we first random select one testing video, and then compute
the SRC based on one online dictionary and the global dic-
tionary respectively, and last plot the random selected 1000
cubes in the comparison. In Fig. 2a, the red line stands for the
SRC with global dictionary and the blue is the SRC with the
online updated scheme. It is obvious that the SRC value of
the online method is smaller than the global dictionary based
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Fig. 2 a Comparison of sparse reconstruction cost between the method with updated dictionary and the one without. b Comparison of different
measurements

Table 1 Area under ROC of different measurements

Method Area under ROC

Online dictionary 0.9500

global dictionary 0.7094

Concentration function similarity 0.7298

Entropy 0.7647

method in most cases, except the cubes which are possibly
abnormal. It suggests that the online updated scheme can not
only reduce the SRC of the normal points, but also enlarge
the SRC of the abnormal cubes, which can greatly benefit the
subsequent anomaly detection.

4.2.2 Comparison with different methods

Similarly to [6], we use receiver operating characteristic
(ROC) curve where the x-axis is false positive rate (FPR)
and y-axis is true positive rate (TPR) for the comparison.
In Fig. 2b, the ROC curves by frame-level measurement
are shown to compare SRC using online updating scheme

to three other measurements, which are (1) SRC measure-
ment using global dictionary. (2) Entropy metric: SE =
−∑

i pi log(pi ), where pi = |α(i)|/||α||1. Here α(i) is the
i th value of sparse coefficient α, |α(i)| and ||α||1 is the
absolute value and l1 norm of α, respectively. Intuitively,
the sparse coefficients will lead to a small entropy value.
(3) Concentration function (CF) which is similar to [24],
Ss = Tk(α)/||α||1, where Tk(α) is the sum of the k largest
positive coefficients of α (the greater the Ss the more likely
a normal testing sample).

The red line stands for the SRC with online updating
method, the green represents entropy measurements with
global dictionary, the black line is the CF measurement with
global dictionary, and the blue indicates the SRC measure-
ment with global dictionary. Table 1 shows the area under
ROC curve. We can see that the method using online updat-
ing scheme outperforms other methods.

Figure 3a shows the comparison with different methods
including sparse method [6], MDT [25], SFM [3], MPPCA
[25], Adam [26], Sparse 150 [16], Grid Template [4] and
MAP method [5]. Our method outperforms the methods
MPPCA+SF, MPPCA, SF, MDT and Sparse 150, and has
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Fig. 3 a Comparison of different methods on UCSD Ped1. b Comparison of different measurements in UMN dataset

123



988 Signal, Image and Video Processing (2018) 12:983–989

Table 2 Running time comparison on the UCSD Ped1

Method Second/frame Platform CPU Memory

[25] 25 – 3.0GHz 2G

[6] 3.8 – 2.6 GHz 2G

[27] 5∼10 Matlab – –

[16] 0.00697 Matlab 2012 3.4GHz 8G

Ours 0.0714 Matlab 2012a 3.4GHz 6G

a similar performance to MAP [5] and Grid Template [4]
methods, and is comparable to sparse method [6].

4.2.3 Time cost of our method

In this section, we provide the time cost of our method on
UCSD Ped1 dataset. The code is implemented using mat-
lab 2012a on the desktop computer with 3.4Hz double-core
CPU and 6G memory. 20 videos are randomly selected from
UCSD Ped1 dataset to run the code and the final time cost
is computed as the mean. The comparison of running time is
shown in Table 2.

4.3 Experiments on UMN dataset

The UMN dataset consists of 3 different scenes of crowded
escape events, and the total frame number is 7740 with a
320 × 240 resolution. Analogously to the experiments on
UCSD Ped1 dataset, we first resize each video frame into a
120 × 160 resolution and then extract the low-level motion
feature from the first 400 frames of each scene to train the
global dictionary, and leave the others for testing.

In our implementation, the testing video is divided into
several subparts with each part including 20 frames. Cong
et al. [6] employed different measurements including SRC,
entropy and concentration to detect abnormal events based
on sparse representation. We compare our method with the
sparsemethod proposed by [6] in Fig. 3b.Ourmethod is com-
parable to method [6] and better than the other methods. It
is necessary to note that our method detects abnormal events
with the same feature in all experiments while the method
[6] detects abnormal events with different features for differ-
ent videos. For example, they used spatial feature in UMN
dataset while employed spatio-temporal basis in UCSDPed1
dateset.

5 Conclusion

In this paper, we propose an algorithm to automatically detect
abnormal events from video sequences based on sparse cod-
ing with two kinds of dictionaries. A global dictionary is first

trained with the training data, and a online dictionary is also
trained with the most trusted online data obtained from the
global dictionary, and updated in the following sequences.
The max-pooling method is employed to combine the detec-
tion result obtained from the global and online dictionary.
Experimental results on two public datasets demonstrate the
effectiveness of our algorithm.Ourmethod detects anomalies
from each cube one by one, does not consider the continuity
between each cubes. It is the fact that the anomaly usually
happens in continuous cubes, so it is necessary to consider
anomaly continuity in the future.
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