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Abstract
This paper presents an optimized wave kernel signature (OWKS) using a modified particle swarm optimization (MPSO)
algorithm. The variance parameter and its setting mode play a central role in this kernel. In order to circumvent a purely
arbitrary choice of the internal parameters of the WKS algorithm, we present a four-step feature descriptor framework in
an effort to further improve the classical wave kernel signature (WKS) by acting on its variance parameter. The advantage
of the enhanced method comes from the tuning of the variance parameter using MPSO and the selection of the first vector
from the constructed OWKS at its first energy scale, thus giving rise to substantially better matching and retrieval accuracy
for deformable 3D shape. The special choice of this vector is to extremely reinforce the stability for efficient salient features
extractionmethod from the 3Dmeshes. Experimental results demonstrate the effectiveness of our proposed shape classification
and retrieval approach in comparison with state-of-the-art methods. For instance, in terms of the nearest neighbor (NN)metric,
the OWKS achieves a 96.9% score, with performance improvements of 83.5 and 90.4% over the baseline methods WKS and
heat kernel signature, respectively.

Keywords Shapes and features classification · Shape matching · Shape retrieval ·Optimized wave kernel signature ·Heuristic
optimization

1 Introduction

Ashapedescriptor should bediscriminative and insensitive to
deformations and noises. Most of them are constructed from
the spectral decomposition of the Laplace–Beltrami opera-
tor (LBO) associated with the shape [1–4]. These descriptors
accomplish state-of-the-art performances in many shape
analysis tasks, such as segmentation, registration, shape
matching, and retrieval [5–7].

An example of spectral shape analysis is the global point
signature (GPS) of a point on a shape, as proposed by Rus-
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tamov [8], which computed by associating each point with
the scaled eigenfunctions of the LBO. The GPS signature is
invariant under isometric deformations, but is limited by the
eigenvalues “switching” when the involved eigenvalues are
close to each other.

A different approach was suggested by Sun et al. [1] who
introduced the heat kernel signature (HKS), and indepen-
dently by Gebal et al in [9]. It is based on the solution of the
heat equation. TheHKS is invariant to inelastic deformations,
insensitive to topological transformations and robust under
perturbations of the shape. The two main disadvantages of
HKS are the lack of scale invariance and its excessive sen-
sitivity to low-frequency information. As a remedy to these
drawbacks, Bronstein and Kokkinos [10] introduced a scale-
invariant version of HKS (SI-HKS). The SI-HKS descriptor
is obtained by sampling the time scales logarithmically lead-
ing to a shape scaling that corresponds to a translation, and
therefore it is characterized by the scale invariance.

Aubry et al. exhibited in [2] another physically inspired
descriptor, which is called the wave kernel signature (WKS).
It was proposed as a solution to rectify the poor feature local-
ization of HKS, as well as to resolve the severe sensitivity of
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the HKS to low-frequency information. However, the capa-
bility of the WKS for features classification and matching
accuracy between shapes depends on its parameters. Apart
from the fact that the parameters could affect the features
of the descriptor, they are also related to the sensitivity of
the signature to global or local properties around an interest
point [11].

A discriminative 3D shape descriptor needs to be robust,
and its internal parameters require proper tuning. For this
reason, stochastic methods like the genetic algorithm (GA)
[12], the particle swarm optimization (PSO) [13,14], the ant
colony optimization (ACO) [15] and the shuffled frog leaping
algorithm (SFLA) [16] could be used. In fact, a popular and
a widely used algorithm is PSO, where it is used as a solu-
tion of optimization problems. Then it is so-called standard
PSO (SPSO). SPSO is an evolutionary algorithm that is based
on swarm intelligence, as it is inspired by the birds’ forag-
ing behavior. Lately, a modified particle swarm optimization
(MPSO) [17,18] has obtained increasing attention due to its
simple implementation, solution’s accuracy and excellence in
performance. Moreover, the MPSO variant provides particu-
lar qualities in termsof reliability and speed convergence than
SPSO and GA [18], since it uses an adaptive inertia weight.
MPSO can be applied in several domains, such as combi-
national optimization, neural network training and pattern
recognition.

1.1 Contributions

This paper focuses on the construction of an optimized wave
kernel signature (OWKS) to improve classification results
and obtain reliable feature points across a collection of
shapes, to improve the retrieval accuracy rate and to enhance
robustness under unfavorable circumstances. In our case,
OWKS is done by invoking MPSO, for searching and select-
ing the optimized value of the variance parameter for the
WKS. This enables us to obtain a beneficial shape feature and
to make the shape signature as significant as possible. The
algorithm improves the solution according to a fitness func-
tion. The objective function to minimize is the mean square
error (MSE). The OWKS is then used as local shape descrip-
tor for shapes classification, recognition and point matching.
We observe, as exemplified in Fig. 1, that the gap between
two signatures of the same point on the two nearly isometric
shapes becomesmarginal as soon aswe useOWKS.Note that
while remaining nearly stable under perturbations and robust
to deformations of the shape, theOWKS remains informative
over the energy scale e.

The rest of the paper is structured as follows. After a short
overview of the WKS descriptor and the modified particle
swarm optimization in Sect. 2, we introduce the OWKS-
based shape recognition and matching concept in Sect. 3.
The superiority of the proposed framework is shown exper-
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Fig. 1 Comparison of the wave kernel signature (second column) and
the optimized wave kernel signature (third column) on two different
poses of an animal shape (first column) at three different points (marked
in red, green, and blue). Solid and dotted lines represent the shape on
the top and bottom, respectively (color figure online)

imentally for several tasks on 3D shapes analysis in Sect. 4.
Finally, the conclusion is in Sect. 5.

2 Background

2.1 The Laplace–Beltrami operator (LBO)

Given a real function f defined on a Riemannian manifold
M, the LBO [19] is defined as

�M f = div (grad f ), (1)

where grad f is the gradient vector field of f and div f is
the divergence operator of f on the manifold. The LBO is
a linear differential operator and can be calculated in local
coordinates. The Laplacian eigenvalue equation is consid-
ered as follows

�Mφ = λφ, (2)

where λ representing the eigenvalues of�, these values con-
stitute a discrete non-negative set and they are ordered as
λ0 = 0 < λ1 < λ2 < · · · < λn−1; the solution is called
eigenfunctions of � corresponding to the scalars λ. For each
normalized eigenfunction�i corresponds one eigenvalue λi .

For all the n vertices S = (s1, s2, . . . , sn) of a mesh,
the Laplace–Beltrami matrix L is symmetric, semi-positive
definite and its spectral decomposition is given by

L = ���T, (3)

where � is the matrix of eigenvalues with λn = diag (�).
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2.2 Wave kernel signature

The wave kernel process over the surfaceM is governed by
the Schrödinger equation defined as

∂u

∂t
(s, t) = i�MψE (s, t) , (4)

where �M is the LBO ofM and ψE (s, t) is the solution of
Schrödinger equation. ψE (s, t) describes the evolution of a
quantum particle with unknown position on the surface M
that can expressed in the spectral domain by

ψE (s, t) =
∞∑

k=0

eiλk tφk fE (λk), (5)

where E denotes the energy of the particle at time t = 0,
fE expresses the initial distribution of energy, λk is the kth
eigenvalue and φk is the kth eigenvector’s entry associated
to one point. |ψE (s, t) |2 is the probability to find a particle
of energy level E at point s ∈ M [2,20]. The energies are
directly related to the eigenvalues of the LBO, which implies
λk = Ek . The reason is simply behind the replacement of the
time parameter in (5) by energy. The wave kernel signature
at a point s on the mesh is then defined in the logarithmic
scale ek by

WKS (s, e) = Ce

∑

k

φ2
k (s) e

− (e−log(Ek ))
2

2σ2 , (6)

with Ce = 1

∑
k e

−(e−log(Ek ))
2

2σ2

is a normalization constant,

while σ is the variance of the wave distribution.
By confining the wave kernel into a logarithmic energy

scale domain and fixing the spatial variables, we can obtain
the wave propagation in energy scale for each point s on
the manifold by computing WKS(s, e). We present in Fig. 2
an example of wave propagation over energy scale on the
right hand shape, as well as the wave distribution for three
different points on themesh inFig. 3.Aubry et al. [2] formally
proved that the wave kernel signature is isometric invariant,
scale invariant, informative, multi-scale, and stable against

Increasing energy scale

Fig. 2 Wave distribution over time scale. The colors range from blue
(low values) to red (high values). The wave values on every point on the
shape change according to the energy parameter in WKS(s, e) (color
figure online)

Fig. 3 Wave kernel signatures at three different points. Note that the
wave distribution over time corresponds to the behavior shown in Fig. 2

Fig. 4 Displacement of swarms in particle swarm optimization

perturbations of the surface, but at the same time tends to
generate noisier matches [20].

2.3 Introduction to SPSO andMPSO

A graphical explanation of SPSO’s operation is depicted in
Fig. 4. Let N be the number of particles in a swarm popu-
lation. Each individual particle Xi may represent a possible
solution for optimization problems in a d-dimensional space
carrying position vector xi = {xi1, xi2, . . . , xid} and veloc-
ity vector vi = {vi1, vi2, . . . , vid}, where i = 1, 2, . . . , N ,
randomly initialized in the search space. During the t th itera-
tion, the next velocity and direction vector of the i th particle
vi (t) are determined by its current vector vi (t − 1), its best
previous position pi , and the global best position pg obtained
by any other particles in the population at iteration t , updating
by formula (7) and position vector is updated by formula (8)

vi (t + 1) = ω · vi (t) + c1 · ϕ1 (t)
(
pi − xi (t)

)T

+ c2 · ϕ2 (t)
(
pg − xi (t)

)T
,

(7)
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Fig. 5 Flowchart of the proposed method

xi (t + 1) = xi (t) + vi (t + 1) , (8)

where ω is the fixed inertia weight and controls the explo-
ration search, c1 and c2 are the acceleration factors, t is the
current iteration number, ϕ1 (t) and ϕ2 (t) are random vec-
tors in the range [0, 1], formulated by

ϕ1 (t) = {ϕ11 (t) , ϕ12 (t) , . . . , ϕ1d (t)}
ϕ2 (t) = {ϕ21 (t) , ϕ22 (t) , . . . , ϕ2d (t)} (9)

The personal best position is defined using formula

pi (t + 1) =
{
pi (t) if f (xi ) > f

(
pi (t)

)

xi (t + 1) if f (xi ) ≤ f
(
pi (t)

)
,

(10)

and the global best position is defined as

pg (t + 1) = argmin
pi

f
(
pi (t + 1)

)
, 1 ≤ i ≤ N . (11)

Interestingly inMPSO, the fixed inertiaweight,whichwas
used in SPSO, has been replaced by another evolutionary
parameter. In fact, during initial exploration, a large inertia
weight factor is used and gradually reduced as the search pro-
gresses.We define the concept of time-varying process of this
inertial weight by ωiter = (ωmax − ωmin) × itermax−itermin

itermax
+

ωmin, where itermax is the number of maximum iterations.

3 OWKS-based shape recognition concept

In this section, we introduce the idea of optimizing the wave
kernel signature using MPSO. The overall illustration of our

framework is presented in Fig. 5 and is detailed in the fol-
lowing steps:

Step 1Computation of theLaplacianmatrix L , using [21].
Step 2 Spectral decomposition of L .
Step 3 Invoking MPSO to search a new value instead of
the considered fixed value α = 7 as done in [2]. This is
equivalent tofinding the global optimumvalueof the vari-
ance σopt along all iterations so that σopt = α jδ, where
the linear increment δ in e is δ = emax−emin

M . The values

of e ranging from emin = log (E1) to emax = log(Ek )
1.02 ;

k = 300 eigen-decomposition pairs of L and M = 100
is the number of evaluated values of WKS.
Step 4 Let S1 and S2 be two shapes to be compared.
Two matrices WKSS1 and WKSS2 , each one is of size
equal to (n × M), are constructed. These two matri-
ces are the descriptors that are being optimized. At this
stage, we are merely interested to extract the first finite-
dimensional vector fromeachmatrix for representing and
characterizing each shape in a compact and in an intelli-
gent way. WKSS1 (sn, e1) and WKSS2 (sn, e1) are these
vectors both of size equal to (n × 1). This means, in par-
ticular, that we consider the necessity of extracting them
from the first energy scale e = e1 over M aiming to iden-
tify a few significant salient points on the shape. Because
the first feature vector extracted from each OWKS corre-
sponds to the low frequencies of the mesh, whose small
energy corresponds to properties induced by the global
geometry. Note that the extrema of this vector are con-
sidered as main salient points. On the other side, when
we choose e > e1, the interest points detection’s algo-
rithmcreates scatter and insignificant salient points on the
mesh. H1 and H2 represent the normalized histograms
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of those vectors, and they have b = 10 bins. Let i be
the index of bins into the histograms. We are now ready
to compare these histograms; we calculate the global
best solution, on minimizing a certain objective func-
tion. The fitness function proposed for MPSO algorithm
is the mean square error (MSE) between two shapes dis-
tributions and that expresses, via a corresponding value,
how well both of them match. The above insights in this
step have to be reiterated in a systematic way to finally
find the optimized value of the variance parameter that
yields to obtain the proper OWKS descriptor for a class
of shapes. MSE is calculated by the following equation

MSE = Fitness = 1

b

b∑

i=1

H2
i , (12)

whereH (i) = H1 (i) − H2 (i) is the difference between
two distributions on the shape converted into histograms.
This fitness function is thus proposed to find the better
solution in a minimum computation time (to accelerate
the convergence of MPSO) and accuracy.

Still referring to Fig. 5, we briefly detail the bottom part
of the remain flowchart. Once OWKS of two shapes are
computed (this instruction would be repeated for the whole
database by considering a chosen reference model), files are
registered such that each one contains only the first vector for
the corresponding optimized shape descriptor. These files are
then loaded automatically to the workspace of MATLAB by
coupling C++ withMATLAB environment. The data vectors
are now available to be assessed relying on the computation
of a dissimilarity measure between pairs of 3D shapes in
the database. 1-distance, also known as city-block metric or
Manhattan, which gives numerical results that express how
well each pair of 3D shapes match.

Unlike WKS, our optimized descriptor can be applied
to better identify, distinguish and differentiate between the
salient feature points detected on the shape under condi-
tion that we choose the first vector of OWKS descriptor
which corresponds to the first energy scale e = e1. We thus
adopt the OWKS method proposed in this paper to detect
a set of key-points on a 3D shape as the local maxima of
the function OWKS(s, e1). In practice, to find the feature
points on the mesh, we proclaim a point s as a key-point if
OWKS(s, e1) > OWKS (sn, e1) for all sn in the two ring
neighborhood of s. Almost a similar observation is men-
tioned in [1].

To summarize, our OWKS descriptor encompasses highly
valuable properties which are: as local shape descriptor,
the OWKS is isometry-invariant (two isometric shapes have
equal OWKS), and thus captures local features since its

vector-mapping on the shape is selected at the first energy
scale e1 to pick up only sharp edges.

4 Experimental results

To evaluate the performance of our OWKS framework,
we present qualitative and quantitative extensive results for
non-rigid shape classification, matching and retrieval. The
effectiveness of our approach is validated by carrying out
a comprehensive comparison with several state-of-the-art
methods.

4.1 Experimental settings

MPSO depends on factors such as the swarm size, number of
iterations, inertia weight factor and some other parameters
that determine its behavior. The recommended parameters
values of MPSO are tabulated in Table 1. These values
were selected and validated through several trials in refer-
ence to several works focusing on the convergence analysis
of the MPSO variants and are then fine-tuned considering
few shaded conditions. This is also in order to speed up
the convergence, to reach the best possible solution and to
give result in faster CPU time [18]. Then, they are involved
within MPSO to find the globally optimized parameter for
WKS. It means that the precise choice of MPSO parameters
allows MPSO itself to achieve its satisfactory performance
and, thereafter, for readily obtaining the OWKS descriptor.
As a result, Table 2 compares the average computational time
of the OWKS against WKS for some models shown in the
paper.

Table 1 Recommended parameter values for MPSO

Parameters Values

Swarm size 10

Max iteration 50

Inertia weight factors ωmax = 0.9 and ωmin = 0.4

Acceleration coefficients c1 = c2 = 2

Table 2 Time for WKS and OWKS computations on a computer with
2GHz 2 Duo CPU and 3G RAM

Model #vertices (k) Matrix Eigen WKS OWKS

Armadillo 9.43 1.10 47 15 8345

Centaur 9.45 1.14 48 15 8362

Elephant 10.0 1.28 52 16 8851

The third, fourth, fifth and sixth columns show the time (in second) for
constructing the Laplacian matrix, solving eigenpairs, computingWKS
and OWKS at all points with k = 300
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Fig. 6 Sample shapes from SHREC-2015 dataset

4.1.1 Dataset

The performance of the proposed framework is tested for
three different tasks, i.e., for features classification, shapes
classification and shapes matching; as well as it is evalu-
ated on a recent challenging SHREC: we use SHREC 2015
3D shape database [22], which contains 1200 3D water-
tight triangle meshes that are derived from 50 categories,
where each category contains 24 objects with distinct pos-
tures. Each shape in the dataset has approximately n = 9400
vertices. Sample shapes from this benchmark are shown
in Fig. 6. This large-scale database is also freely available
at http://www.icst.pku.edu.cn/zlian/shrec15-non-rigid/.

4.2 Features classification

We emphasize the superiority of our proposed OWKS over
the non-optimizedWKS in features classification.When con-
structing OWKS, we refer to MPSO as described in Sect. 3,
in order to pick up the suitable value α̂opt. In fact, this value is
obtained on an average of many experiments. We note from
Fig. 7a that this algorithm converges rapidly to an optimal
mean value α̂opt for the Armadillo class from the 28th gen-
eration with a mean square error rate nearly equal to 10−3 as
plotted in Fig. 7b. The algorithm tends to minimize the fit-
ness function and therefore the distance between histograms
and then to increase the matching accuracy. In the case of
changing the model, the parameter is likewise changed as
shown in Table 3.

The method of detecting the salient feature points is like-
wise adopted to obtain the key-points on the shapes. It can
be seen from the top of Fig. 7 that the same number of inter-
est points is detected equal to 7, for each pose. This figure
proves the effectiveness, the precision and the consistency of
our method to detect repeated structure within a collection
of poses belonging to the same class of shapes, such as the
head, the hands and the feet. Figure 7c, d presents a com-
parative example between the classification of all 28 feature
points embedded in R2 which are derived from the first vec-
tor of the classical WKS and the OWKS, respectively. This
latter descriptor tends not only to maximize large between-
class scatter but also to minimize the within-class scatter and
therefore is well suited for handling features.
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Fig. 7 Top: Feature points detected on the four poses of the Armadillo.
a, b Evolution of MPSO to determine a precise value of α̂opt , and the
attempts to minimize the distance between the shapes to be effectively
recognized. c, d Classical MDS embedding of the feature points based
on their OWKS at the first time scale. The color of each point projected
on the 2D plan corresponds to the pose fromwhich it is taken. a Search-
ing for α̂opt, b fitness function evolution, c α = 7, d α̂opt = 14.03 (color
figure online)

Table 3 Evaluation of the recognition parameters

Recognition
method

Standard
WKS

OWKS

Reference
model

Parameters

Fitness for fixed
α = 7 in [2]

Mean
fitness

Mean
value α̂opt

Armadillo 0.196 0.0015 14.03

Elephant 0.200 0.0011 03.43

Centaur 0.033 0.0005 12.29

Cat 0.590 0.1790 15.93

Comparison between the fitness values related to the fixed α used in
[2], the mean fitness’s and the average optimized α̂opt

4.3 Shapes classification

The classification for six selected shape classes from the
database is also illustrated in Fig. 8, which clearly illus-
trates the OWKS’s ability to maximize extra-class distances,
thus ensuring a better separability. Remarkably, the WKS
descriptor failed to make an accurate classification, almost
all models are clustered together. Differently, we observe that
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Fig. 8 Shapes classification result. Classical MDS embedding of shape
similarities as computed using, from left to right, the standard WKS
and the OWKS, respectively

Table 4 Comparaison between intra-class and extra-class distances
before and after the invocation of MPSO for the woman category

Descriptors Distances

Extra-class scatter Intra-class scatter

WKS 33.67 3.599

OWKS 38.28 2.294

Unlike WKS, OWKS yields short distance between intra-class scatter
and large distance between inter-class scatter

ourmethod can distinguishmodels belonging to different cat-
egorieswell. OWKS-based shape classification is likewise an
asset to approximate between the shapes that nearly having
the same features. For instance, the classical MDS embed-
ding shows that the classification result is almost alike for
the Man and the Woman class against the Centaur’s class.
In other words, since the Centaur is a half human shape, it
is very logical that both classes of the Man and the Woman
are the closest to the Centaur’s class, and vice versa. To val-
idate our method further, all these observations and findings
are confirmed by the calculation of the extra- and intra-class
distances in Table 4.

4.4 Global shapematching and retrieval

4.4.1 Matching performance

We propose to use the 1-distance to compare a reference
shape to all the objects in the database. The performance
of the proposed framework is also evaluated on the chal-
lenging benchmark SHREC-2015 database. Actually, each
given query is compared to the other shapes that exist in
the database in an effort to find the most closest shapes to
the query. To validate our method, an example of the top
6 matches returned for a complete Spectacle and Octopus
query by OWKS, WKS, GPS and HKS methods is shown in
Table 5. Remarkably in this table, except our approach that
returns correct results, the WKS, GPS, and HKS methods
yield poor retrieval results.

As shown in Table 6, the proposed approach is effective
and yields correct matching results. The matching perfor-

mance of the proposed approach is evaluated by performing
a pairwise comparison between the OWKS(s, e1) vector of
a given query and all the OWKS(s, e1) vectors of the shapes
in the SHREC-2015 dataset using the 1-distance, and then
finding the closest shape to the query. Shapes belonging to the
same category have very weak values for the OWKS descrip-
tor, where a low value (displayed in boldface) corresponds
to the correct match when compared to the WKS. Again we
show that the proposed approach decreases the value of the
1-distance between the Centaur class and the Woman class.
However, it increases this value between the Woman class
and the two classes of Hand and Bird. It means, in particular,
that the use of MPSO beside WKS tends to rearrange classes
such that the distance between the most similar classes takes
the smallest value of the 1-distance. Let us take the example
of the Women-Centaurs classes before the introduction of
MPSO: they are very far apart although they should be more
similar because when using OWKS, these two classes come
closer, which better corresponds to reality.

4.4.2 Retrieval evaluation results

We adopt the standard measures for shape retrieval using
code from [22]. The proposed OWKS descriptor is com-
prehensively evaluated using six commonly used evaluation
metrics: we show Precision/Recall (P/R) curves, and tabled
values for nearest neighbor (NN), First-Tier (FT), Second-
Tier (ST), E-Measure (E) and Discounted Cumulative Gain
(DCG).

Firstly, to evaluate the retrieval performance of the pro-
posedmethod,we computed the dissimilaritymatrix between
all the first feature vectors extracted from each OWKS of
the shapes in the SHREC-2015 dataset using 1-distance.
We portrayed P/R curves of OWKS against several baseline
methods in Fig. 9. It can be seen that the OWKS descriptor
outperforms the baseline approaches (see [22] and references
therein) for surface area (SA), HKS, WKS, multi-feature,
time series analysis for shape retrieval (TSASR), sphere
intersection descriptor (SID), geodesic distance distribution
(SNU), spectral geometry (SG) and Fisher vector encod-
ing framework-heat kernel signature (FVF-HKS). OWKS is
therefore more relevant and more discriminative.

Then, the five performance criteria, i.e., NN, FT, ST, E and
DCG, are employed to evaluate OWKS under SHREC-2015
dataset in global shape retrieval tasks. The results are sum-
marized in Table 7, which shows the scores of the evaluation
metrics for the proposed framework and the baseline meth-
ods. As can be seen in this table, the proposedOWKS obtains
better results. For instance, in terms of the NN metric, the
OWKS achieves a 96.9% score, with performance improve-
ments of 0.9 and 3.3% over the best performing baselines
FVF-HKS and SG, respectively. In addition, OWKS outper-
forms the SID approach by 17.4% inNN, 24.8% in FT, 19.6%
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Table 5 Retrieval results for a
complete query-shaped
spectacle and octopus models by
our algorithm, WKS, GPS and
HKS

Yellow denotes the correct retrievals

Table 6 Matching results under
SHREC-2015 dataset before and
after optimizing WKS. Each
shape is matched against all the
other shapes in the database.
Each cell shows the dissimilarity
measure between two shapes
selected from the database. The
smallest value corresponds to
the correct match
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Fig. 9 Overall averageP/R curves of ourmethod (OWKS) against other
approaches evaluated under SHREC-2015 dataset

in ST, 19.7% in E and 15.8% in DCG. This better perfor-
mance is likewise consistent with all the retrieval evaluation
metrics.

For fair comparison, we compared OWKS to baseline
methods of the same category (i.e., BoF-based methods).
In addition, sparse coding-based approaches generally suf-
fer from the long running time especially for constructing
the Laplacian matrix and solving eigenpairs. Although SPH-
SparseCoding, HAPT and SV-LSF [22] perform slightly
better thanOWKS, the proposed framework consistently out-
performs the baseline methods in most cases, as evidenced
by our experimental results.

5 Conclusions and future work

In this paper, we proposed an optimized descriptor method
for the 3D shape matching and retrieval called OWKS. The
experimental results indicate that the strengthening of WKS
descriptor with optimized variance parameter using MPSO
achieves better performances compared with state-of-the-art
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Table 7 Comparison of retrieval results of our method (last row) with
the state-of-the-art on the SHREC-2015 dataset

Methods Retrieval evaluation measures

NN FT ST E DCG

SA 0.065 0.067 0.128 0.078 0.393

HKS 0.065 0.063 0.124 0.074 0.391

WKS 0.134 0.074 0.137 0.083 0.408

Multi-feature 0.450 0.186 0.262 0.184 0.525

TSASR 0.813 0.463 0.544 0.420 0.749

SID 0.795 0.484 0.614 0.459 0.778

SNU 0.898 0.563 0.669 0.516 0.832

SG 0.936 0.668 0.736 0.587 0.875

FVF-HKS 0.960 0.725 0.809 0.644 0.913

OWKS 0.969 0.732 0.810 0.656 0.936

Bold fonts indicate the best retrieval results

retrievalmethods. The effectiveness and the usefulness of our
method was demonstrated on the SHREC-2015 dataset for
computing shape matching and discriminate between shapes
in retrieval tasks. In our ongoing research, we would like to
extend our approach to partial matching and retrieval using
strongly denatured 3D objects.
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