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Abstract
We propose in this paper a new enhancement algorithm dedicated to dark computed tomography (CT) scan based on discrete
wavelet transform with singular value decomposition (DWT–SVD) followed by adaptive gamma correction (AGC). Discrete
wavelet transform (DWT) is considered to decompose the input darkCT image in four sub-bands. Singular value decomposition
(SVD) is used in order to compute the corresponding singular value matrix of low–low (LL) sub-band image. The enhanced
LL sub-band is determined by scaling the singular value matrix of original LL sub-band by an adequate correction factor,
followed by inverse SVD. For a further contrast improvement, the new enhanced LL sub-band image is processed using an
AGC algorithm. Finally, the obtained LL sub-band image undergoes inverse DWT together with the unprocessed sub-bands to
generate the final enhanced image. This proposed method has the advantage of being fully automatic and could be applied for
dark input images with either low or moderate contrast. Different dark CT images are considered to compare the performance
of our proposed method to three other enhancement techniques using both objective and subjective assessments. Simulation
results show that our proposed algorithm consistently produces good contrast enhancement, with best brightness and edges
details conservation and with minimum added distortions to the enhanced CT images.

Keywords Dark CT scan · Contrast enhancement · SVD · AGC

1 Introduction

Different medical imaging modalities like computed tomog-
raphy and magnetic resonance imaging are nowadays avail-
able. CT imaging is widely used for providing detailed
morphological reconstructions of tissues and organs and
therefore helping clinicians in diagnosis. In fact, in some
cases, it is possible to visualize different tissues using CT
imaging. However, for some other cases, it is difficult to iden-
tify the interface between two adjacent tissues (between liver
and tumor tissues for example) or soft tissues (clot for exam-
ple) in contact with physiological fluids [1]. Consequently,
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when CT imaging is used, contrast imaging agents are fre-
quently considered to better show the tissue of interest and
display the presence of disease or injury. Nevertheless, con-
trast imaging agents are sometimes hurtful or even deadly
for some patients due to the occurrence of anaphylaxis [2].
To avoid the use of contrast imaging agents, low-contrast
CT images could be processed using an adequate contrast
enhancement algorithm. The main goal in this case is to
enhance the contrast of consideredmedical image and simul-
taneously preserve its edge information [3]. Indeed, small
degradations of edge information degrade the quality of the
image and could distort the clinician’s interpretation.

Differentmethods are proposed in the literature to enhance
the contrast and brightness of damaged images [4,5]. The
global histogram equalization (GHE) method is a simple
and effective method widely considered to enhance the
image’s contrast. The main idea behind using GHE is to
transform the histogram of the input image by spreading
and stretching its dynamics range to reach an overall con-
trast enhancement. In fact, the whole image is divided into
equidistant levels defining different limits. These limits are
recursively updated by introducing new limits between the
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old ones [6]. The overall contrast of the input image could
be more efficiently enhanced using local histogram equal-
ization (LHE) algorithm, but it presents the main drawback
of higher computational complexity since it is based on
using of fully overlapped sub-blocks [7,8]. Somemore robust
contrast enhancement algorithms using HE are proposed in
the literature [9,10] like brightness preserving bihistogram
equalization (BBHE), dualistic sub-image histogram equal-
ization (DSIHE) [11] and brightness preserving dynamic
histogram equalization (BPDHE) [12,13]. The main idea of
these mentioned algorithms is to decompose the histogram
of the input image into two sub-histograms according to a
specific calculated threshold and therefore to process each
sub-histogram individually. For BBHE, the threshold is cal-
culated based on the intensity of the input image. For DSIHE,
the threshold is calculated based on the median intensity
value of the input image. For BPDHE, the threshold is com-
puted according to the local maximum of the smoothed
histogram.

HE-based contrast enhancement algorithm is considered
by different researchers in order to improve the contrast
of medical image. Sundram et al. used a LHE method to
enhance the contrast of mammogram image. This tech-
nique is able to improve the contrast of considered images
and simultaneously conserve its local information [14]. Al-
Juboori presented another technique to enhance the contrast
of mammographic image. This algorithm combined both
contrast limited adaptive histogram equalization and retinex
techniques [15]. Ganesan et al. presented a seed-dependent
adaptive region growing approach for contrast enhance-
ment of CT images [16]. Yang et al. presented a contrast
enhancement algorithm dedicated to medical images. This
algorithm used both wavelet and Haar transforms for image
decomposition and soft thresholding andnonlinear histogram
equalization methods for contrast enhancement [17]. Kaur
and Singh proposed an adaptive histogram equalization
algorithm for contrast improvement of medical cephalomet-
ric images. This enhancement algorithm used biorthogonal
spline wavelets in order to detect the edge pixels and discard
the pixels in homogeneous regions during image histograms
computing process [18]. Wang and Shi presented a contrast
enhancement algorithm based on DWT which simultane-
ously accomplishes the exact histogram specification and
good image enhancement performance [19].

Although these adaptive and improved contrast enhance-
ment methods are visually more pleasing than classical HE,
they are not able to adjust the level of enhancement. In order
to surmount the limits of HE methods, different researchers
considered SVD technique for low- contrast image enhance-
ment [20,21]. Two main categories of SVD-based contrast
enhancement algorithms are proposed. For the first category,
SVD is used on the pixel domain like singular value equal-
ization algorithm [21]. Indeed, the singular value matrix,

obtained by SVD includes the illumination information of
a considered image. The contrast enhancement based on the
singular value equalization method processes this singular
matrix, and other information will be conserved as same as
before. For the second category, SVD is used on the fre-
quency domain of an image. In this case, low-contrast image
is processed using DWT [22] or discrete cosine transform
(DCT) [23] followed by SVD, conducting, respectively, to
DWT–SVD and DCT–SVD enhancement algorithms.

For DWT–SVD algorithm, the input image is processed
using DWT in order to be decomposed into four frequency
sub-bands: low–low (LL), low–high (LH), high–low (HL)
and high–high (HH) sub-bands. In order to preserve the edge
information (corresponding to the high frequency details)
of the input low-contrast image from possible degradation,
SVD technique is therefore applied only on the LL sub-band
[23]. The same processing is considered for DCT–SVD algo-
rithm except that the low sub-band image is obtained using
DCT [20,23]. A newLL sub-band is determined bymultiply-
ing the obtained singular value matrix by a correction factor.
The enhanced output image is generated using the inverse
discrete wavelet transform (IDWT). The performances of
DWT–SVD method are evaluated and compared to GHE,
BPDHE, and SVD contrast enhancement algorithms, and
simulation results indicated better performances for DWT–
SVD over the others. Atta and Abdel-Kader presented an
improved DWT–SVDmethod for contrast enhancement [24]
where the enhanced singular value matrix is computed using
the singular matrices of both input image and processed
image using GHE. As mentioned above, the SVD-based
methods enhance the low-contrast images by scaling its sin-
gular value matrix. Although these techniques may preserve
the mean brightness better than HE techniques, they may be
unsuccessful in achieving a better contrast enhancement.

Some other methods based on classically traditional
gamma correction are also proposed. Gamma correction fac-
tor is setmanually for such algorithm, but they did not give an
appropriate enhancement for different types of images [25].
Bhandari et al. presented a simple method to improve the
contrast of dark image based on knee function and gamma
correction using DWT–SVD [26]. Frosio proposed a contrast
enhancement algorithm of cephalometric radiographs based
on gamma correction and soft tissue filter using histogram
clustering [27]. Adaptive gamma correction algorithms are
also proposed, and the gamma correction factor is computed
for each input image according to its characteristics. Huang
et al. presented a transformation technique that enhances the
brightness of low-contrast images using adaptive gamma cor-
rection and probability distribution of luminance pixels [28].
Somasundaram and Kalavathi proposed an AGC method for
contrast enhancement of medical image [29]. The gamma
correction factor is estimated according to the cumulative
histogram. Tiwari and Gupta presented an efficient method
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to enhance the contrast of medical images based on gamma
correction and homomorphic filtering [13]. Rahman et al.
proposed an AGC algorithm to enhance the low-contrast
satellite image. The parameters of gamma correction are
adaptively calculated according to the statistical mean and
standard deviation of the respective image [30].

In this paper, we propose a new approach to enhance
the dark CT image using DWT–SVD technique followed by
AGC algorithm. A great type of dark images collected from
different body sites and using different equipments could be
processed and improved using our proposed enhancement
algorithm. In effect, we decompose in a first step the input
image into four sub-band images using DWT. Only the LL
sub-band is therefore processed by SVD technique in order
to enhance its contrast. The contrast of obtained LL sub-band
cannot conduct to the desired dynamic range expansion, and
consequently, a poor contrast enhancement is observed. That
is why the obtained LL sub-band image is processed in a
second step using AGC transformation. The gamma correc-
tion factor is automatically computed for each input image
according to its statistical information. Our proposedmethod
gives better compromise between contrast improvement and
edge conservation than DWT–SVD or AGC algorithms con-
sidered separately.

The rest of this paper is organized as follows: The princi-
ple of gamma correction technique is detailed in Sect. 2.
Section 3 discusses the proposed AGC algorithm using
DWT–SVD technique. Finally, simulation results and con-
clusion are, respectively, given in Sects. 4 and 5.

2 Gamma correction transformation

The gamma correction transformation is given as [25].

Iout = c · I γ
in (1)

where Iin and Iout represent, respectively, the input and out-
put image intensities. Both c and γ parameters are used to
adjust the shape of the transformation function. In effect, a
set of parameters (γ, c) could produce high performances for
some considered images but not for someothers [28]. In order
to overcome this problem, Rahman et al. proposed a new
method where γ and c parameters are determined dynam-
ically and automatically for each input image according to
its statistical characteristics [30]. Indeed, authors proposed
to classify an original dark image I into either low-contrast
class C1 or moderate-contrast class C2 according to the con-
trast of considered image using Eq. (2).

g(I ) =
{
C1 if D ≤ 1/τ
C2 otherwise

(2)

where D = diff((μ + 2σ), (μ − 2σ)) and τ is a con-
stant considered to define the contrast of an input image.
Experiments showed that τ = 3 is an optimal choice to
characterize the contrasts of different images. The standard
deviation and the mean of the considered image intensity
are, respectively, denoted by σ and μ [30]. According to
Eq. (2), we classify an image as a low-contrast (class C1)

if 4 σ ≤ 1/τ , meaning that the major pixel intensities of
considered image are grouped within a small range. Oth-
erwise, the image is classified as moderate contrast (class
C2).

2.1 Dark images with low-contrast

The majority intensities of a dark input image from the
first class are grouped in a small range of dark gray lev-
els around the mean intensity of the considered image. In
order to improve the contrast of like input image, the trans-
formation curve requires to flaunt the dark intensities to the
higher intensities. Therefore, the main constraint in this case
is to generate a transformation function that lies above the
line Iout = Iin. As a response to this constraint, Rahman et
al. showed that the value of γ could be calculated using Eq.
(3) [30].

γ = − log2 (σ ) (3)

The parameter c is also dynamically computed for different
images according to Eq. (4).

c = 1

1 + Heaviside(0.5 − μ) · (k − 1)
(4)

where k is determined using Eq. (5).

k = I γ
in + (1 − I γ

in) · μγ (5)

and theHeaviside function is defined as given by Eq. (6) [31].

Heaviside(x) =
{
0, if x ≤ 0
1, if x > 0

(6)

The output image Iout is determined using Eq. (1). Figure 1a
shows that the transformation curves of low-contrast dark
images for different values of μ and σ fall effectively above
the line Iout = Iin. Additionally, the obtained curves are
more steepness for the lower contrast, as desired. Figure 1b
displays the original low-contrast dark image (μ = 0.0528
and σ = 0.0434), the enhanced image using AGC algorithm
(γ = 4.5267) and their respective histograms.
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(a)

(b)

Fig. 1 Gamma correction for low contrast image: a Transformation
curves for different values of μ and σ , bOriginal and enhanced images
and their corresponding histograms

2.2 Dark images withmoderate contrast

The intensities of a dark input image from the second class are
scattered over the available dynamic range. In this case, Iout
and c are calculated similarly using Eqs. (1) and (4). How-
ever, the correction factor γ is expressed differently using
Eq. (7), not to make much stretching of the contrast [30].

γ = exp

[
(1 − (μ + σ))

2

]
(7)

Figure 2a illustrates the transformation curves for moderate-
contrast dark images generated for different values of μ and
σ . Figure 2b shows the input dark image with a moderate
contrast (μ = 0.20337 and σ = 0.18529), the enhanced
image using AGC algorithm (γ = 1.3575) and their respec-
tive histograms.

3 Proposed contrast enhancement method

SVD is considered to deal with an illumination problem and
therefore to improve the contrast of dark images. SVD of

(a)

(b)

Fig. 2 Gamma correction for moderate contrast image: a Transforma-
tion curves for different values of μ and σ , b Original and enhanced
images and their corresponding histograms

given input image I can be expressed as the product of three
matrix [21].

I = UI

∑
I
V T
I (8)

where �I is the singular value matrix which includes the
sorted singular values on itsmain diagonal,UI andVI are two
orthogonal square matrices labeled as hanger and aligner and
T is transpose operator. The singular valuematrix denotes the
intensity information of the input image. Any modifications
on the singular values will affect the intensity of the consid-
ered image; that is why SVD may be considered for image
contrast enhancement. The enhancement process based on
SVD utilizes a correction factor corresponding to the ratio of
highest singular value of generated normalized matrix, with
mean zero and variance of one, over a normalized image as
given by Eq. (9).

ξ = max
∑

N (μ=0,σ=1)

max
(∑

I

) (9)

where �N (μ=0,σ=1) is the singular value matrix of the syn-
thetic intensitymatrix. The equalized image Iequalized is hence
calculated using Eq. (10).
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(a) (b)

Fig. 3 a Original image, b Corresponding LL, LH, HL and HH sub-
band images

Iequalized = UI

(
ξ

∑
I

)
V T
I (10)

In theDWT–SVD technique, SVD is applied only on the low-
frequency sub-bands witch are calculated using DWT [3].
Indeed, as shown in Fig. 3, enlightenment information is sur-
rounded in LL sub-band but the edges are concerted in other
sub-bands (i.e., LH, HL, and HH). Therefore, separating the
high-frequency sub-bands and applying a contrast enhance-
ment on only LL sub-band will protect the edge information
from possible degradation. In this case, the input dark image
I is processed using GHE algorithm in order to compute ‘ Î .’
Both images are decomposed into LL, LH, HL, and HH for
‘I ’, and L̂L, L̂H, ĤL, and ĤH for ‘ Î ’ using DWT. In order
to calculate the correction factor ξ , we considered the max-
imum element in ULL and VLL, from LL and the maximum
element in ÛLL and V̂LL from L̂L as given by Eq. (11) [26].

ξ =
max

(
ÛLL

)
+ max

(
V̂LL

)
max (ULL) + max (VLL)

(11)

The enhanced singular value matrix �̄LL and the enhanced
LL sub-band image using SVD algorithmLLSVD are, respec-
tively, determined using Eqs. (12) and (13) [26].

∑
LL

= ξ x �̂LL (12)

LLSVD = ÛLL
∑̄

LL V̂ T
LL

(13)

After that, the enhanced LL sub-band using SVD approach,
LLSVD, is classified according to Eq. (2) into either low-
contrast class (C1) or moderate-contrast class (C2) depend-
ing on its statisticalmean and standard deviation. The gamma
correction factor for LL sub-band images from class C1 and
class C2 is, respectively, computed using Eqs. (3) and (7).
Adaptive gamma correction is applied on LLSVD sub-band
according to Eq. (14) to produce the final enhanced LLγ

sub-band image.

LLγ = c · (LLSVD
)γ

(14)

where c is computed using Eqs. (4) and (15).

k = (
LLSVD

)γ +
(
1 − (

LLSVD
)γ

)
· μγ (15)

The generated enhanced LL sub-band using gamma correc-
tion, LLγ , is recombined with others sub-band images of the
original image (LH, HL and HH) using IDWT to generate
the resultant equalized medical image ‘ Ī ’.

Ī = IDWT
(
LLγ ,LH,HL,HH

)
(16)

4 Experimental results

Miscellaneous experiments were conducted to assess and
compare the performance of the proposed method with those
of DWT–SVD technique [3], AGC [30] and knee and gamma
correction using DWT–SVD technique (DWT–SVD–KGC)
[26]. We considered the Meyer (dmey) wavelet as a mother
waveletwith one level for images decomposition usingDWT.
The comparison is performed using both subjective and
objective assessments.

4.1 Material

For objective evaluation, we considered a dataset including
300 high-resolution dark CT images of different sites of the
body (the lungs, the brain, the liver, the pancreas and the
kidneys). The dark CT images are selected from different
medical databases like ctisus.com (http://www.ctisus.com)
and radpod.org (http://www.radpod.org).

4.2 Subjective evaluation

Four dark CT images are chosen from the considered dataset
for subjective evaluation. The original dark CT images and
their corresponding histograms are, respectively, illustrated
in Fig. 4(a1–a4) and (f1–f4). We note that the histogram of
each original dark CT scan has a limited dynamic range and
is not uniform.

Figure 4(b1–b4) and (g1–g4) shows the enhanced images
using AGC algorithm and their corresponding histograms,
respectively. The AGC algorithm enhances the contrast of
considered dark CT images. It extends also their dynamic
range and improves the uniformity of histograms. However,
this enhancement algorithm adds some artefacts to the output
images. In effect, an over-contrast enhancement is observed
for some parts of the enhanced image, indicated by some
peaks at the end of the grayscale range of the histogram.
Moreover, a significant number of peaks remain at the begin-
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Fig. 4 Subjective evaluation of different contrast enhancement algo-
rithms using dark CT images. (a1–a4) and (f1–f4): original dark CT
images and their corresponding histograms, respectively, (b1–b4) and
(g1–g4): enhanced CT images using AGC method and their corre-
sponding histograms, respectively, (c1–c4) and (g1–g4) enhanced CT
images using DWT–SVD method and their corresponding histograms,
respectively, (d1–d4) and (h1–h4): enhanced CT images using DWT–
SVD–KGC method and their corresponding histograms, respectively,
(e1–e4) and (i1–i4): enhanced CT images using proposed algorithm and
their corresponding histograms, respectively

ning and the end of the grayscale range, which leads to noise
amplification.

Figure 4(c1–c4) and (h1–h4) shows the enhanced images
using DWT–SVD algorithm and their corresponding his-
tograms, respectively. Figure 4(d1–d4) and (i1–i4) illustrates
the enhanced images using DWT–SVD–KGC and their cor-
responding histograms, respectively. DWT–SVD and DWT–
SVD–KGC contrast enhancement algorithms present similar
performances. Gamma correction has not a significant effect
on the enhancement process in this case. Enhanced dark CT
scans using both algorithms preserve the average brightness
level and better enhance with overall image quality, but some
edge details are lost in low and high intensity ranges. How-
ever, the low intensity range was not sufficiently enhanced
and this could be explained by singular value constraint of
the considered image. Additionally, both of considered con-
trast enhancement algorithms extend the dynamic range of
the histogram slightly. In addition, histogram is uniformwith
reduced peaks and without any gaps, but some grayscale
range, especially at the end, still uncovered.

Finally, Fig. 4(e1–e4) and (j1–j4) shows the enhanced
images usingour proposed algorithmand their corresponding
histograms, respectively. In our proposed contrast enhance-
ment algorithm, we considered a second processing step in
addition to DWT–SVD technique, leading to an additional
improvement in image quality. The proposed algorithm pro-
vides the best results since enhanced images are naturally
looking with higher contrast and sharper edges. In fact, a
higher overall contrast enhancement with lower degradation
and better conservation of edge details is observed. Further-
more, our proposed contrast enhancement algorithm covers
the entire dynamic range, makes the histogram uniform,
reduces the peaks and retains the shape similar to the original
image.

4.3 Objective evaluation

Objective performance measures are very important in order
to compare different contrast enhancement techniques. The
performance of our proposed contrast enhancement method
is evaluated and compared with different others contrast
enhancement algorithms using image quality measurement
tools. In this paper, we considered the Absolute Mean
Brightness Error (AMBE) metric to evaluate the degree
of brightness preservation, and better performances corre-
spond to the enhancement algorithm with the small value of
AMBE [24]. We considered also the Measure of Enhance-
ment by Entropy (EME) as a second evaluation metric and
better performance corresponds to higher value of EME [32].
The discrete entropy (H) is also considered for objective
evaluation. In fact, the entropy is a measure of richness of
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Fig. 5 Average values (±standard error) of AMBE, EME and H eval-
uation metrics

information in a given image after contrast enhancement
and it is employed to assess the degree of contrast enhance-
ment [24]. The Quality-Aware Relative Contrast Measure
(QRCM) metric is also used for objective image quality
assessment and better image quality is obtained with the
QRCMvalue closest to unity [33]. Finally, we considered the
Feature Similarity Index Measurement (FSIM) to compare
the features of original and enhanced images [11]. FSIM∈
[-1,1], and better performances are obtained with higher
FSIM values.

The totality of dark CT images included in considered
database are processedusingDWT–SVD,DWT–SVD–KGC,
AGC and proposed contrast enhancement algorithms. Mean
results for AMBE, EME and H evaluation metrics are sum-
marized in Fig. 5.

The average AMBE values are, respectively, equal to
11.68, 8.47, 6.84 and 4.32 for DWT–SVD, DWT–SVD–
KGC, AGC and proposed contrast enhancement algorithms.
We note that AMBE value of our proposed algorithm ismuch
lower than all other enhancement methods. Therefore, the
proposed enhancement algorithm best conserves the image
brightness.

The details of image are more visible when its overall
contrast is increased, and this is indicated by higher EME
values. Obtained average values of entropy are, respectively,
equal to 7, 8.46, 7.97, 12.87 and 9.86 for input dark image
and enhanced images using DWT–SVD, DWT–SVD–KGC,
AGC and proposed contrast enhancement algorithms. In fact,
simulation results showed that AGC enhancement algorithm
gives much higher EME values than DWT–SVD, DWT–
SVD–KGC, and proposed enhancement algorithms. How-
ever, due to severe augmentation in contrast, the enhanced
images could present an unnatural look. Furthermore, the
proposed algorithm gives improved EME value than DWT–
SVD and DWT–SVD–KGC methods; but the change in
EME is not as high as AGC method. Therefore, the images
enhanced by the proposed algorithm are natural looking with
better contrast and hence improved visibility of details.

Fig. 6 Average value (± standard error) of QRCM evaluation metric

The average value of entropy of original dark images is
equal to 4.33. Simulations results indicated that the proposed
contrast enhancement algorithm preserves and improves the
edges. This is confirmed by the most important average
value of entropy (H = 7.26). The AGC contrast enhance-
ment algorithm gives the second highest values of entropy
(H = 6.38). Simulation results indicated also that average
value of entropy for DWT–SVD contrast enhancement algo-
rithm (H = 5.89) is slightly lower than DWT–SVD–KGC
(H = 6.17).

We considered also the QRCM metric to assess and
compare the performances of considered enhancement algo-
rithms. Mean results are summarized in Fig. 6. We note
that the proposed contrast enhancement algorithm offers the
highest QRCM value (QRCM = 0.116) compared to oth-
ers enhancement methods (average QRCM values are equal
to 0.06, 0.0743 and 0.062 for DWT–SVD, DWT–SVD–
KGC and AGC methods, respectively). Simulation results
indicated also that both contrast enhancement algorithms
developed by combining DWT–SVD with gamma transfor-
mation technique (DWT–SVD–KGCand proposedmethods)
performed better than DWT–SVD algorithm. This empha-
sizes that intensity transformation using gamma correction
is a significant tool to improve the quality of enhanced
image processed using only DWT–SVD method. Further-
more, computing adaptively and dynamically the gamma
transformation parameters according to the statistical infor-
mation of the image explains the higher performances of
our proposed method compared to DWT–SVD–KGC where
gamma transformation parameters are defined manually for
each original image.

The average FSIM values are shown in Fig. 7. The pro-
posed contrast enhancement algorithm presents the most
important value of FSIM (FSIM = 0.948) signifying that the
structure of original dark CT image is well conserved. The
DWT–SVD–KGC contrast enhancement algorithm gives the
second best value of FSIM (in this case, FSIM is equal to
0.86) and which is slightly higher than the FSIM value of
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Fig. 7 Average value (± standard error) of FSIM evaluation metric

DWT–SVD method (where FSIM is equal to 0.838). How-
ever, AGC enhancement algorithm gives the lowest FSIM
value (FSIM is equal to 0.75) indicating that some struc-
tures of original image are lost during the enhancement
process. We can explain this ascertainment by the fact that
when DWT–SVD-based methods are considered, only low
frequency details of original dark CT image are processed
(high-frequency image details are approximately not mod-
ified) which allow a preserving of the edge information of
original image, contrary to AGC enhancement algorithm
where the input image is processed in its totality.

Finally, we conclude that in addition to subjective eval-
uation, objective assessment approved that our proposed
contrast enhancement algorithm consistently produces better
results compared to other enhancement techniques.

5 Conclusion

In this paper, we proposed an adaptive gamma correction
usingDWT–SVDalgorithm for darkCT image enhancement.
The input image is processed using DWT–SVD method fol-
lowed by gamma correction technique. Parameters of gamma
transformation are adaptively computed according to the sta-
tistical information of the input image. Both subjective and
objective experimental results showed higher performances
for our proposed algorithm compared to others considered
conventional enhancement methods. Furthermore, the pro-
posed algorithm can enhance the contrast of dark input image
with a higher preservation of brightness and with minimum
loss of structural details and introduction of artifacts. This
algorithm is well appropriated to improve the contrast of
dark CT scan.
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