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Abstract
A new contrast enhancement algorithm is proposed, which is based on the fact that, for conventional histogram equalization, a
uniform input histogram produces an equalized output histogram. Hence before applying histogram equalization, we modify
the input histogram in such a way that it is close to a uniform histogram as well as the original one. Thus, the proposed
method can improve the contrast while preserving original image features. The main steps of the new algorithm are adaptive
gamma transform, exposure-based histogram splitting, and histogram addition. The object of gamma transform is to restrain
histogram spikes to avoid over-enhancement and noise artifacts effect. Histogram splitting is for preserving mean brightness,
and histogram addition is used to control histogram pits. Extensive experiments are conducted on 300 test images. The results
are evaluated subjectively as well as by DE, PSNR EBCM, GMSD, and MCSD metrics, on which, except for the PSNR,
the proposed algorithm has some improvements of 2.89, 9.83, 28.32, and 26.38% over the second best ESIHE algorithm,
respectively. That is to say, the overall image quality is better.

Keywords Image enhancement · Bi-histogram equalization · Contrast enhancement

1 Introduction

Image contrast enhancement is a fundamental pre-processing
technique for many applications, such as surveillance sys-
tem [1], medical image processing [2], analyzing images
from satellites [3,4]. Conventional histogram equalization
(HE) can globally enhance the target image. However, HE
trends to over-enhance those images with a large proportion
of similar regions and results in intensity saturation or noise
artifacts effect. Therefore, the approaches of partitioning the
input histogram to several sub-histograms and enhancing
them separately [5–12] have long been attempts to overcome
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aforementioned shortcomings and to enhance the input image
locally and globally. Brightness-preserving bi-histogram
equalization (BBHE) [5] is the earliest work to preserve
mean brightness while improving the contrast. Based on the
mean brightness, BBHE divides the input histogram into
two sub-histograms and applies HE on each sub-histogram
independently. Dualistic sub-image histogram equalization
(DSIHE) [6] proposed by Wang et al. divides the input
histogram into two sub-histograms based on the median
value instead of the mean value. Other improvements of
BBHE can refer to minimum mean brightness error bi-HE
(MMBEBHE) [7], recursive mean-separate HE (RMSHE)
[8], and brightness-preserving dynamic HE (BPDHE) [9],
etc.

HE performs contrast enhancement based on the accumu-
lative distribution function (CDF). Let I1 represents an input
image of size M × N in gray scale[0, L − 1]. The CDF of
the image is defined by

C(k) =
L−1∑

k=0

h(k)

M × N
, k = 0, 1, . . . , L − 1, (1)

where h(k) is the input pixel intensity frequency with gray-
level k. Based on the CDF defined by (1), HE maps input
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gray-level k into output gray-level T (k) by the following
transform function

T (k) = �(L − 1) × C(k) + 0.5�. (2)

The operator �∗� means rounding down. From (1) and (2),
we can infer the increment in the output gray-level T (k) as

�T (k) = (L − 1) × h(k)

M × N
. (3)

To overcome the shortcomings of HE method, techniques of
splitting the input histogram into sub-histograms and apply-
ing HE on them become rational choices [5–9]. Some prac-
tices utilize nonlinear transform as gamma correction [13,
14], or clip histogram spikes as in exposure based sub-image
histogram equalization (ESIHE) [10] and median-mean-
based sub-image-clippedhistogramequalization (MMSICHE)
both by Singh and Kapoor [12], or use multiple sub-
histograms equalization as adaptive image enhancement
based on bi-histogram equalization (AIEBHE) by Tang and
Isa [11]. Some other researchers fall back on using the
2D-histogram as two-dimensional histogram equalization
(TDHE) [15], and 2D histogram equalization (2DHE) by
Kim [16], etc. They all made their way in avoiding some
of the shortcomings.

But above methods do not provide solutions to tackle with
the problem causing by histogram spikes and pits, and cannot
keep balance on enhancing the image globally and locally. By
absorbing and integrating previous research results, we pro-
pose a new image contrast enhancement algorithm combing
adaptive gamma transform, proportional histogram splitting,
and standard deviation-based histogram addition. Gamma
transform can adaptively restrain histogram spikes, his-
togram addition can fill histogram pits, and proportional
histogram splitting can preserve mean brightness. The new
algorithm can keep balance on contrast enhancement locally
and globally, feature preserving, and overall quality. The rest
of this paper is organized as follows: Sect. 2 presents the
new algorithm, Sect. 3 provides the experimental results and
discussions, and Sect. 4 concludes the paper.

2 The proposed algorithm

Equation (3) implies that the increment of gray-level �T (k)
is proportional to its pixel intensity frequency h(k). There-
fore, if there exist big histogram spikes in the input his-
togram, the corresponding output gray levels will occupy
broad grayscale bands and squeeze other gray-bins with
histogram pits, which causes the intrinsic shortcomings of
over-enhancing some regions (regions with high-frequency
bins) and contrast loss in the other regions. On the other hand,

if the input histogram h is close to a uniformly distributed
histogram [that is, h(k) is almost equal to each other for all
k],�T (k)will be almost equal to each other for all k too, that
is, the output histogram will be almost uniform. Therefore,
before applying HE, we can modify the input histogram as
close to a uniformly distributed histogram as possible to fully
exploit the dynamic range [14,17].

Based on the above considerations, the proposed algo-
rithm consists of three steps, that is, (i) adaptive gamma
transform of the input histogram, (ii) histogram splitting and
histogram bins redistribution between sub-histograms, and
(iii) histogram addition and equalization. Adaptive gamma
transform is employed to smooth histogram spikes, his-
togram addition is applied to fill the histogram pits, and
histogram splitting is introduced to preserve the histogram
mean. The gamma transform is defined as

h̃ = chγ , (4)

where c and γ are positive constants, h represents the original
input histogram, and h̃ is the corresponding output. Applying
gamma transform on the input histogram can smooth his-
togram spikes and restrain the noise artifacts effect. As the
value of γ varying, different levels of smooth and restraining
can be achieved. Since different images require different lev-
els of smooth and restraining, in the proposed algorithm, the
parameter γ is calculated adaptively according to the image
intensity exposure. Thus, before gamma transform, the inten-
sity exposure threshold is obtained by [12]

ε = 1

L

∑L−1
k=0 h(k)k

∑L−1
k=0 h(k)

. (5)

For the proposed algorithm, gamma is defined by

γ =
{
1 − ε, 0.5 ≤ ε < 1
ε, ε < 0.5

(6)

The first column of Fig. 1 is the original image and its
histogram. The second column is the results of conventional
HE. And the third column presents the results of applying
adaptive gamma transform on HE. Comparing the original
histogram with that of adaptive gamma transform-based HE
and that of convention HE, we observe that the original his-
togram features are well preserved in the output histogram
and the over-enhancement is nonexistence now. We can also
observe that applying adaptive gamma transform on HE can
lighten the noise artifacts effect as shown on the up right
corner of the processed images.

Based on the definition of exposure threshold, the splitting
threshold is defined as

Ts = L × ε, (7)
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Fig. 1 From left to right, it is the original image and its histogram, results obtained by HE, adaptive gamma transform, and histogram addition,
respectively

where Ts is the threshold for splitting h̃ into under exposed
sub-histogram hu and over exposed ho.

Unlike aforementioned contrast enhancement methods
[5–12] that enhance each sub-histograms within the splitting
thresholds, we redistribute the input under exposed sub-
histogram from range [0, Ts] to output range [0,U ], and the
over exposed sub-histogram from [Ts + 1, L − 1] to output
range [U + 1, L − 1] to fully exploit the dynamic range,
where U is the output threshold for under exposed and over
exposed sub-histograms and is calculated as

U = L ×
(∑Ts

k=0 hu
)γ

(∑Ts
k=0 hu

)γ +
(∑L−1

k=Ts+1 ho
)γ . (8)

The fourth column of Fig. 1 presents the results of splitting
the input histogram and enhancing them independently. We
can observe that applying splitting histogram alone can pre-
serve the histogram shape, but the noise artifacts effect is still
obvious.

To deal with the problem of detail loss causing by his-
togram pits, we add two terms to hu and ho, respectively, to
further smooth the histogram h̃. The two addition terms are
their standard deviations of hu and ho, respectively.

Su =
√√√√ 1

m

m∑

i

(hu(i) − ψ), i = 0, 1, . . . ,U , (9)

So =
√√√√1

n

n∑

j

(ho( j) − ν) j = U + 1,U + 2, . . . , L − 1.

(10)

wherem and n are the number of gray levels in sub-histogram
hu and ho, respectively, and ψ and ν are their corresponding
sub-histogram mean. Finally, the sub-histograms for apply-
ing HE are defined by

h̃u = Su + hu, h̃o = So + ho. (11)

What calls for special attention is that the output histogram
for h̃u and h̃o are in range [0, Ts], and [Ts +1, L−1], respec-
tively.

The fifth column of Fig. 1 presents the results of adding a
term (here is the standard deviation of the input histogram)
to the original histogram and applying HE on the modi-
fied histogram. We can observe that histogram addition can
preserve the histogram shape too. By incorporating adap-
tive gamma transform, histogram splitting, and histogram
addition together, the output histogramwill be close to a uni-
formly distributed histogram as well as close to the input
histogram to the most extend. Thus, the output image will be
a visually pleasing enhanced image.

3 Performance evaluation and discussion

To extensively evaluate the performance of the proposed
algorithm, comparative experiments are conducted on 300
test images, which are (i) 25 reference images from the
TID2013 [18]; (ii) 75 images from the miscellaneous, and
aerials series of the USC-SIPI Image Database [19]; and
(iii) 200 training images form the Berkeley Image Data
Set [20]. The proposed algorithm is compared with HE,
the weighted histogram approximation method (WAHE) [7],
MMSICHE [12],AGCWD[13], 2DHE [16], andESIHE [10]
method. Authors of ESIHE compared their method against
the BBHE, DSIHE, MMBEBHE, and RMSHE method
[5–8], and showed their superiority.

We assess the performance of these six methods sub-
jectively and objectively. Subjective assessment focuses on
evaluating the visual quality of the enhanced images. Objec-
tive assessment involves image details, contrast, level of
noise, natural appearance, etc., and is evaluated in terms of
discrete entropy (DE) [1,4,10–12,14,15,17], peak signal-to-
noise-ratio (PSNR) [3,11,21], edge-based contrast measure-

123



688 Signal, Image and Video Processing (2018) 12:685–692

ment (EBCM) [4], gradient magnitude similarity deviation
(GMSD) [16,21,22], and multiscale contrast similarity devi-
ation (MCSD) [22].

(i) Discrete entropy (DE) [1,4,10–12,14,15,17]

DE characterizes the information contained in an image.
Therefore, no results of any enhancement method can out-
perform the original image on DE, which is defined (in bits)
by

De =
L−1∑

k=0

−p(k) log2 p(k). (12)

(ii) Peak signal-to-noise-ratio (PSNR) [3,11,14,21]

PSNR measures the noise level of the result, and a good
enhancement method should not amplify the noise level of
the origin. For an input image I1 and its enhanced image I2
with dimension of M × N , PSNR is defined by

PSNR = 20 × log10

(
MAX√
MSE

)
, (13)

where MAX is the maximum intensity value, e.g., 255 for
8-bit grayscale images, and MSE refers to the mean square
error defined by

MSE = 1

MN

M−1∑

i=0

N−1∑

j=0

(I1(i, j) − I2(i, j))
2. (14)

(iii) Gradient magnitude similarity deviation (GMSD) [16,
21,22]

GMSD is a perceptual image quality index with high pre-
diction accuracy [21]. It is an efficient distortion assessment
metric which can measure the perceptual image quality of
a distorted image against the reference [21,22]. It predicts
the quality of image by combining pixel-wise gradient mag-
nitude similarity (GMS) with the standard deviation of the
GMS map. The horizontal and vertical gradient magnitude
images of I1 and I2 are defined as [21,23]

hr (i) =
√

(I1 ⊗ hx )2(i) + (I1 ⊗ hy)2(i),

Vd(i) =
√

(I2 ⊗ hx )2(i) + (I2 ⊗ hy)2(i),
(15)

where symbol⊗means convolving, hx and hy are the Prewitt
filters in the direction of horizontal x and vertical y, respec-
tively. And the gradient magnitude similarity (GMS) map is
defined as

G(i) = 2hr (i)Vd(i) + δ

h2r (i) + V 2
d (i) + δ

, (16)

where δ is a positive constant for keeping numerical stability.
Then, we compute the gradient magnitude similarity mean
(GMSM) as

GM = 1

χ

χ∑

i=1

G(i). (17)

where χ is the total number of pixels in image. And finally,
the gradient magnitude similarity deviation of the GMSmap
is defined as

GMSD =
√√√√ 1

χ

χ∑

i=1

(G(i) − GM)2. (18)

Lower GMSD score denotes better image perceptual quality.

(iv) Edge-based contrast measurement (EBCM) [4]

TheEBCMisbasedon theobservation that humanperception
mechanisms are very sensitive to contours (or edges). An
enhancement method should yield bigger EBCM result than
the input image. The EBCM for image I1 of size M × N is
defined as

EBCM =
∑M

i=1
∑N

j=1 C(i, j)

MN
, (19)

where C(i, j) represents contrast of pixel at location (i, j)
with intensity I1(i, j) and is defined as follows

C(i, j) = |I1(i, j) − f (i, j)|
|I1(i, j) + f (i, j)| , (20)

where f (i, j) is the mean edge gray level defined by

f (i, j) =
∑

(y,z)εα(i, j) g(y, z)I1(y, z)∑
(y,z)εα(i, j) g(y, z)

, (21)

where α(i, j) is the neighboring pixel set of I1(i, j), and
g(y, z) is the edge value at location (y, z), which is the mag-
nitude of the image gradient by Sobel operators [4]. Higher
EBCM value means more edges information. Therefore, we
consider the contrast of target image I2 is enhanced when
EBCM(I2) > EBCM(I1). But it must be pointed out that
higher EBCM value does not necessarily mean better visual
quality.
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Fig. 2 From left to right and top to bottom, the images are from the origin, HE, AGCWD, ESIHE, 2DHE, MMSICHE, WAHE, and the proposed,
respectively. The corresponding contrast measurement values are listed in Table 1

(v) Multiscale contrast similarity deviation (MCSD) [22]

MCSD is another perceptual image quality assessment with
high correlation with human judgments [22]. The MCSD
measures the contrast features resorting to images multiscale
representation. First, contrast similarity deviations (CSD) for
the reference image I1 and its distorted version I2 at three
reduced resolutions are computed. Then, the final MCSD
score is defined by

MCSD =
nScales∏

j=1

CSDβi
j , (22)

where nScales represents the total scales, βi is the weight of
the j th scale and

∑nScales
j=1 β j = 1. The contrast similarity

deviation is defined by

CSD =
√√√√ 1

MN

M∑

i=1

N∑

j=1

(CSM(i, j) − MCS)2, (23)

where MCS (mean contrast similarity) is the mean pooling
of contrast similarity map

MCS = 1

MN

M∑

i=1

N∑

j=1

S(i, j). (24)

And the contrast similarity map (CSM) between the original
image and its enhanced one is

CS = 2CMr . × CMd + 2

CMr .2 + CMd.2 + a
, (25)

where ‘.×’ refers to element-wise multiplication of two
matrices, ‘.2’ indicates element-wise square, and a is a posi-
tive constant avoiding divide by zero. CMr and CMd are the
contrast maps for the original image and its enhanced one,
respectively, and are defined as

CM =
√√√√

M∑

i=1

N∑

j

wi, j (Ii, j − μI )2, μI =
M∑

i=1

N∑

j

wi, j Ii, j ,

(26)

where wi, j is the local window centered at (i, j), and μI is
the local mean of I .

3.1 Subjective assessment

On most of the test images, MMSICHE, WAHE, 2DHE,
ESIHE, and the proposedmethod present similar visual qual-
ity, the AGCWD method presents darker results, and HE
provides over-enhanced bright images. On some of the test
images, ESIHE and the proposed method obviously outper-
form the other four reference methods visually. On quite a
few images, results of the proposedmethod are superior to all
the other six reference ones. Due to limited space, only three
images as Figs. 2, 3, and 4 are selected from those images
that cause different visual quality.

Figure 2 presents a “TANK” on grassland. The processing
results of HE, 2DHE, andWAHE are over-enhanced, making
the grassland like snowfield. The result of AGCWDmethod,
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Fig. 3 From left to right and top to bottom, the images are from the origin, HE, AGCWD, ESIHE, 2DHE, MMSICHE, WAHE, and the proposed,
respectively. The corresponding contrast measurement values are listed in Table 2

Fig. 4 From left to right and top to bottom, the images are from the origin, HE, AGCWD, ESIHE, 2DHE, MMSICHE, WAHE, and the proposed,
respectively. The corresponding contrast measurement values are listed in Table 3

on the contrary, is too dark to be discernible. All methods
except the proposed lose details on turret of the “TANK” as
shown on the bottom right corner of the processed images.

Figure 3 shows that the HE, 2DHE, andMMSICHEmeth-
ods over-enhance the moon, making the margin of the moon
scattered on the results. The WAHE method enhances the
sky too much making the background sky and the moon
become an entire bright sky. The AGCWD method extends
the gray levels to both ends, making the bright sky brighter
and the dark background darker. The ESIHE method does
enhance the background, but it introduces halo effect to the
moon making the moon blurred. The HE, ESIHE, 2DHE,
MMSICHE, and WAHE methods amplify the noise at dif-
ferent levels. Only the proposed method provides visually
enhanced image. The output image of the proposed is more
bright than the input, and the moon is not blurred.

In Fig. 4, the HE, ESIHE, 2DHE,MMSICHE, andWAHE
methods over-enhance some of the bricks with different lev-
els. The result of AGCWD is too dark andmakes the building
less clear. Only the proposed produces visually pleasing
result.

Table 1 Enhancement comparison for applying the reference methods
on Fig. 2

Method DE PSNR EBCM GMSD% MCSD%

Origin 5.50 – 101.49 – –

AGCWD 5.27 11.83 37.92 13.87 13.20

ESIHE 5.48 15.61 157.18 9.91 9.11

2DHE 5.42 14.05 116.69 20.28 19.37

MMSICHE 5.44 18.78 134.40 20.89 20.70

WAHE 5.39 13.60 111.53 21.83 20.98

HE 4.97 13.78 101.35 23.13 22.46

Proposed 5.49 23.71 161.74 2.47 2.20

The best and the second results are boldfaced and underlined, respec-
tively

3.2 Objective assessment

Tables 1, 2, 3 list the performance values of DE, PSNR,
EBCM, GMSD, andMCSD as shown in Figs. 2, 3, 4. Table 4
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Table 2 Enhancement comparison for applying the reference methods
on Fig. 3

Method DE PSNR EBCM GMSD% MCSD%

Origin 4.76 – 0.75 – –

AGCWD 4.47 15.31 0.92 12.81 10.49

ESIHE 4.74 12.61 160.68 11.06 10.65

2DHE 4.73 8.10 174.38 16.54 16.99

MMSICHE 4.49 22.10 14.56 17.54 18.10

WAHE 4.73 6.50 186.57 18.02 17.27

HE 4.42 9.79 127.44 22.61 22.75

Proposed 4.75 13.42 172.06 6.99 6.61

The best and the second results are boldfaced and underlined, respec-
tively

Table 3 Enhancement comparison for applying the reference methods
on Fig. 4

Method DE PSNR EBCM GMSD% MCSD%

Origin 5.99 – 144.67 – –

AGCWD 5.43 9.09 5.97 16.48 14.89

ESIHE 5.97 19.37 135.95 14.54 13.67

2DHE 5.95 14.07 159.41 18.38 17.31

MMSICHE 5.83 19.57 141.19 17.07 16.49

WAHE 5.93 12.99 166.73 18.92 17.98

HE 5.27 13.13 123.27 24.64 23.86

Proposed 5.99 22.89 159.41 6.05 5.54

The best and the second results are boldfaced and underlined, respec-
tively

Table 4 Enhancement comparison on 300 test images by average

Average DE PSNR EBCM GMSD% MCSD%

Origin 6.98 – 101.39 – –

AGCWD 6.75 15.93 47.41 7.31 5.95

ESIHE 6.92 23.85 101.85 4.66 4.17

2DHE 6.86 17.55 112.79 9.13 8.49

MMSICHE 6.85 23.85 102.00 8.34 7.85

WAHE 6.79 16.35 117.04 10.50 9.86

HE 5.80 15.58 116.09 12.72 12.01

Proposed 6.94 22.45 111.86 3.34 3.07

The best and the second results are boldfaced and underlined, respec-
tively

presents the average values of aforementioned five perfor-
mance metrics on 300 test images.

Table 1 shows that, of all five measurement metrics, the
proposed method outperforms the other six reference meth-
ods. On PSNR, GMSD, and MCSD metrics, the proposed
method is much better than all the other reference methods.
Especially for theGMSDandMCSDmeasurements, the pro-

posedmethod is better almost by one order ofmagnitude even
compared with the second best ones.

Table 2 demonstrates that the proposed method outper-
forms the other six reference methods measured by DE,
GMSD, and MCSD. The proposed method ranks the third
on PSNR, and the first two are the MMSICHE and AGCWD
methods. However, they perform bad on EBCM as inferior to
all other methods by one order of magnitude. Since EBCM
measures the enhancement level, both the MMSICHE and
AGCWDmethods do not enhance the target image. The pro-
posed method performs the third on EBCM, and the WAHE
and 2DHE are the best two. But they attain high EBCM by
augmenting the noise level, which is indicated by their worst
PSNR scores and visual quality shown in Fig. 3.

As for Table 3, the proposed method produces the best
image quality measured by DE, PSNR, GMSD, and MCSD.
One thing that needs to be noted is the proposed method
attains the same second best EBCM score as the 2DHE
method, but provides much better image quality measured
by the other five metrics.

Table 4 presents the average experimental results on 300
test images. The ESIHE and MMSICHE attain better PSNR
values than the proposed method. But on average, both
method barely enhance the edge information as indicated
by their EBCM value of 101.850 and 102.004, respectively,
which are almost the same as the original average EBCM
value 101.386. The best two average values on EBCM are
117.041 and 116.094 by theWAHE, and HEmethod, respec-
tively. However, both methods suffer from noise artifacts
effect as indicated by their low PSNR values. The proposed
method performs the best on DE, GMSD, and MCSD, and
the second best on PSNR.

4 Conclusion

we proposed a contrast enhancement method that performs
well on many image quality metrics. On average, the pro-
posed algorithm have some improvements of 2.89, 9.83,
28.32, and 26.38% over the second best ESIHE algorithm
on DE, EBCM, GMSD, and MCSD. Though the proposed
method ranks the third on PSNR, the two methods with
the highest PSNR values (ESIHE and MMSICHE) barely
improve the contrast as denoted by their EBCMvalues which
are almost the same as the input. The proposed method ranks
the third on EBCM too. The best two are WAHE and HE,
but they performs much worse on the other four metrics. In
a word, the overall performance of the proposed method is
superior to state-of-the-art reference methods.
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