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Abstract Multilevel thresholding of the color images such
as natural and satellite images becomes a challenging task
due to the inherent fuzziness and ambiguity in such images.
To address this issue, a modified fuzzy entropy (MFE)
function is proposed in this paper. MFE function is the dif-
ference of adjacent entropies, which is optimized to provide
thresholding levels such that all regions have almost equal
entropies. To improve the performance of MFE, backtrack-
ing search algorithm is used. The numerical and statistical
results indicate that MFE-BSA has higher peak signal-to-
noise ratio, lower mean square error for all the images at
different thresholding levels. Moreover, structural and fea-
ture similarity indices for MFE-BSA are closer to unity and
the average fitness value obtained using MFE-BSA is mini-
mum (lesser than 0.5). Overall, MFE-BSA shows very good
segmentation results in terms of preciseness, robustness, and
stability.
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1 Introduction

Over the years, various segmentation approaches have been
compiled to segment various types of images [1–5].However,
among all the existing approaches, image thresholding have
been adopted widely owing to its simplicity, accuracy and
better performance.

Conventional entropy-based nonparametric thresholding
approaches [6,7] fails to segment the color images efficiently
as the threshold level increases. Therefore, meta-heuristics
optimization algorithms have been coupled with the entropy
functions to improve thresholding performance [8,9]. In last
few years, multilevel image segmentation has gained wide
popularity by using meta-heuristics algorithms such as arti-
ficial bee colony (ABC) [9], bacterial foraging optimization
(BFO) [10], krill herd algorithm [11], particle swarm opti-
mization (PSO) [12], modified firefly algorithm (FA) [13]
and various other nature-inspired and quantum-inspired opti-
mization techniques [14,15].

Nowadays, satellite images are vital in various applica-
tions involving geographical information systems, astron-
omy and geoscience studies [16]. Therefore, multilevel seg-
mentation approaches based on modified ABC [17], genetic
algorithm [18], differential algorithm [19], Cuckoo search
[20] and other nature-inspired algorithms [16,21] have been
presented in the literature to efficiently deal with the satellite
images. For the multilevel thresholding of colored satel-
lite images, recently, Bhandari et al. [22] proposed Tsalli’s
entropy-based different evolutionary algorithms and Pare et
al. [23] proposed a newenergy curve-based entropy functions
optimized by CS algorithm and its variant. Later, Pare et al.
[24] presented GLCM and CS satellite image segmentation
algorithm.

Among various optimization algorithm, a simple and
effective structure-based backtracking search algorithm
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(BSA) has emerged as a successful algorithm for many
multimodal optimization problems [25,26]. In addition, the
proposed algorithm is also compared with BFO algorithm
using MFE as objective function.

2 Backtracking search optimization algorithm

BSA undergoes five steps: initialization, selection-I, muta-
tion, crossover and selection-II [26]. The general flowchart
of BSA is shown in Fig. 1.

2.1 Initialization

PopulationP is initialized by BSA fori = 1,2,3,…,N and j=
1,2,3,…,D through Eq. (1):

Pi, j ∼ U (low j , up j ), (1)

N and D represent population size and problem dimension,
respectively. Pi, j represents target individual in the popula-
tion P and U shows uniform distribution.

2.2 Selection-I

In this process, historical population oldP which computes
the search direction is determined. After oldP is determined,
permutting function is used to change the order of the indi-
viduals in oldP randomly after determining it.

2.3 Mutation

The initial formof the trial population ‘Mutant’ has been gen-
erated using BSA’s mutation process. For computing search
direction matrix, historical population is used

2.4 Crossover

In this process, final form of trial population T is generated.
After the crossover process, individualmay exceed the search
space boundaries.

2.5 Selection-II

Pis values are updated by a greedy selection strategy that
uses Tis that have better fitness values than corresponding
Pis values. Global minimum value is replaced by the best
individual of P(Pbest) when Pbestvalue is better than global
minimum value.

Detailed description of BSA is given in [25,26].

Mutation

Crossover
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Cycle=Cycle+1

Stopping
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Fig. 1 General structure of BSA algorithm [25]
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Fig. 2 Membership function graph

Fig. 3 Original color images a Satellite image 1, b Satellite image 2, c
Satellite image 3, d Lena, e Barbara and f Sailboat (color figure online)

3 Proposed methodology

In image segmentation field, fuzzy entropy measures the
information quantity of the segmented image.

3.1 Modified fuzzy entropy function

Assume that the imageI with a size of M × N is divided into
dark (d), medium (m), bright (b) regions using thresholds
t1 and t2. Ed, Em, and Eb are the three regions that com-
prises pixels with high gray levels, middle gray levels, and
low gray levels, respectively. Let, Ï3= {Ed, Em, Eb } repre-
sents unknown probabilistic partition of image. Then Ï3 is an
unknown probability partition with distribution:
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pd = P(Ed); pm = P(Em); pb = P(Eb). (2)

In order to divide an image into three regions (fuzzy sets),
three trapezoidal membership functions (μd(k), μm(k), and
μb(k)) are selected to classify image pixels. Figure 2 shows
the fuzzy partition of the image formed by usingmembership
functions given in Eq. (3).

μd(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 k ≤ u1
(k−u1)2

(w1−u1) ∗ (v1−u1)
u1 < k ≤ v1

1 − (k−w1)2

(w1−u1) ∗ (w1−v1)
v1 < k ≤ w1

1 v1 < k ≤ w2

μm(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 k ≤ u1

1 − (k−u1)2

(w1−u1) ∗ (v1−u1)
u1 < k ≤ v1

(k−w1)2

(w1−u1) ∗ (w1−v1)
v1 < k ≤ w1

0 k > w1

μb(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 k ≤ u2
(k−u2)2

(w2−u2) ∗ (v2−u2)
u2 < k ≤ v2

1 − (k−w2)2

(w2−u2) ∗ (w2−v2)
v2 < k ≤ w2

1 k > w2

(3)

The shape of these three membership functions are deter-
mined by using the fuzzy parameters (u1,v1,w1,u2,v2,w2)

which satisfy the condition 0 ≤ u1 < v1 < w1 < u2 <

v2 < w2 ≤ 255. In this paper, the optimal fuzzy parame-
ters are determined by minimizing MFE. Once the optimal
parameters combination is determined, shape ofmembership
functions shown in Fig. 2 is determined.

Fuzzy entropy function for each class (Ed, Em, and Eb)

can be represented as:

Hd = −
255∑

k=0

pk ∗ μd(k)

pd
∗ ln

(
pk ∗μd(k)

pd

)

Hm = −
255∑

k=0

pk ∗ μm(k)

pm
∗ ln

(
pk ∗μm(k)

pm

)

Table 1 Comparison of PSNR, MSE and CPU time (in seconds) for energy-Tsalli’s-CS, Tsalli’s-CS, MFE-BFO, and proposed (MFE-BSA)
algorithms

Images m Energy-Tsalli’s-CS Tsalli’s-CS MFE-BFO MFE-BSA

PSNR MSE CPU PSNR MSE CPU PSNR MSE CPU PSNR MSE CPU

(a) 3 10.20 4853.6 514.65 13.11 2084.5 4.343 13.33 1932.4 156.45 15.77 1916.4 49.050

5 11.82 4528.9 540.02 15.85 2882.7 4.763 16.03 1825.1 208.38 16.99 1206.2 50.757

8 12.51 2593.4 532.51 15.23 2319.7 4.894 16.48 1165.2 264.82 17.76 1172.9 58.951

12 14.20 1234.9 521.10 16.86 2508.9 5.006 16.99 1338.9 359.23 17.47 1146.5 81.517

(b) 3 11.45 4395.5 524.45 13.87 2857.5 3.909 15.55 2000.3 155.64 16.56 1228.4 51.977

5 11.87 4024.4 536.87 14.81 2145.7 3.959 14.84 1879.7 206.33 17.49 1184.8 52.442

8 13.46 3456.3 569.75 14.83 2733.7 4.005 14.97 1671.5 266.55 18.76 1177.7 64.919

12 14.45 3058.6 590.45 15.46 2385.6 4.195 15.98 1206.3 360.16 18.94 1110.1 88.245

(c) 3 10.98 3902.4 512.67 13.13 2571.3 4.522 14.48 1954.6 156.94 17.48 1131.4 47.308

5 11.87 3854.4 520.45 15.42 2179.0 4.639 16.18 1623.0 210.32 18.07 1002.1 44.312

8 13.58 3542.9 525.52 16.23 2209.0 4.767 16.70 1453.1 270.03 18.55 981.02 65.735

12 13.96 3012.4 550.56 16.89 2319.6 5.002 17.04 1208.5 354.71 19.44 947.54 111.05

(d) 3 12.49 5022.4 534.94 11.66 2985.3 4.466 12.40 2095.8 157.74 16.61 1224.5 43.796

5 13.96 4059.9 531.22 13.38 2127.6 4.599 13.91 1668.8 211.18 15.20 1196.4 47.027

8 13.74 1755.8 598.71 14.65 2183.9 4.701 15.01 1326.0 271.80 16.75 1173.8 65.038

12 14.16 2123.1 537.32 16.68 2095.4 4.919 17.52 1188.5 350.55 17.06 902.08 91.935

(e) 3 11.74 4400.6 534.42 10.12 2914.7 4.501 12.86 1852.2 159.31 15.56 1827.4 50.975

5 12.60 2491.8 536.18 12.58 1996.5 4.716 14.49 1745.8 209.73 17.03 1204.2 44.946

8 13.37 2240.9 546.99 12.64 1802.4 4.805 14.41 1602.2 268.96 17.35 1189.6 68.072

12 13.18 2631.5 556.36 14.66 1727.9 4.829 15.80 1171.2 350.20 18.79 1136.5 119.06

(f) 3 10.67 5456.3 521.46 11.10 2720.2 4.577 12.15 1647.9 155.23 14.41 2035.4 44.124

5 10.45 5204.4 537.57 11.33 2843.8 4.583 13.20 1801.1 207.40 16.85 1213.0 45.957

8 11.54 4819.3 544.89 13.34 2468 4.874 14.29 1385.7 267.25 18.67 1176.6 66.250

12 12.46 3950.2 598.68 15.58 2302.2 4.881 16.32 1246.0 356.98 18.92 932.58 90.591
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Table 2 Comparison of SSIM, FSIM and fitness values for energy-Tsalli’s-CS, Tsalli’s-CS, MFE-BFO and proposed (MFE-BSA) algorithms

Images m Energy-Tsalli’s-CS Tsalli’s-CS MFE-BFO MFE-BSA

SSIM FSIM Fitness SSIM FSIM Fitness SSIM FSIM Fitness SSIM FSIM Fitness

(a) 3 0.8532 0.6957 3.1235 0.8300 0.6357 1.2963 0.8540 0.6010 0.1739 0.9422 0.8187 0.1589

5 0.8835 0.6456 3.8765 0.9517 0.7456 1.9958 0.9767 0.8038 0.8741 0.9299 0.8504 0.1534

8 0.9376 0.7504 4.8946 0.9687 0.8245 2.9997 0.9720 0.9086 1.7719 0.9816 0.9277 0.2119

12 0.9716 0.8696 5.2356 0.9765 0.8756 4.3326 0.9714 0.9260 2.8237 0.9933 0.9653 0.2291

(b) 3 0.8425 0.6581 3.4567 0.9010 0.7390 1.2962 0.9153 0.7576 0.1057 0.9152 0.6661 0.4156

5 0.8541 0.7024 2.3467 0.9259 0.8363 1.9957 0.9553 0.6914 1.0403 0.9570 0.7774 0.5299

8 0.8526 0.7102 3.7896 0.9509 0.8343 2.9992 0.9777 0.8412 1.7937 0.9816 0.8829 0.1943

12 0.8652 0.7426 5.6678 0.9541 0.8692 4.3308 0.9850 0.9523 3.8904 0.9955 0.9629 0.9393

(c) 3 0.8745 0.7415 3.3242 0.8872 0.8110 1.2963 0.8266 0.7419 1.0176 0.8528 0.6016 0.3193

5 0.8851 0.7854 3.7789 0.8721 0.8213 1.9958 0.9415 0.7452 1.3620 0.9741 0.7775 0.1966

8 0.8898 0.8425 4.2341 0.8866 0.8676 2.9997 0.9790 0.7678 2.1374 0.9843 0.8440 0.5636

12 0.8952 0.8852 5.6609 0.8942 0.9305 4.3325 0.8909 0.7925 3.3001 0.9934 0.9203 0.5725

(d) 3 0.8740 0.6324 4.1138 0.8265 0.7769 1.2963 0.9013 0.7025 3.7911 0.9231 0.7550 0.1749

5 0.8923 0.6745 5.0238 0.8851 0.8210 1.9958 0.9215 0.7725 2.7534 0.9547 0.8263 0.2056

8 0.9634 0.7345 5.4451 0.8911 0.8483 2.9995 0.9328 0.8020 2.8248 0.9456 0.8555 0.2078

12 0.9412 0.7787 5.7550 0.9052 0.8662 4.3316 0.9553 0.8588 3.0265 0.9860 0.9074 0.5522

(e) 3 0.8824 0.6680 3.1233 0.8080 0.7331 1.2963 0.9196 0.6840 1.0279 0.9311 0.7552 0.1957

5 0.9280 0.7443 4.8746 0.8510 0.7993 1.9959 0.9267 0.7564 2.1216 0.9667 0.8496 0.1929

8 0.9665 0.7835 5.2208 0.8925 0.8125 2.9997 0.9344 0.8332 2.4092 0.9818 0.8811 0.3291

12 0.9832 0.7977 6.1108 0.8952 0.8428 4.3322 0.9459 0.9028 3.9412 0.9921 0.9331 0.8537

(f) 3 0.8012 0.7462 2.8647 0.8587 0.7061 1.2963 0.8680 0.6078 1.1206 0.9245 0.7953 0.1653

5 0.8245 0.7525 3.9067 0.8770 0.7552 1.9958 0.9678 0.8430 1.4615 0.9746 0.8851 0.6164

8 0.8354 0.7726 4.2977 0.8895 0.8048 2.9996 0.9655 0.7858 1.6302 0.9891 0.9435 0.8553

12 0.8513 0.7852 6.1209 0.8928 0.8352 4.3323 0.9716 0.9136 2.2244 0.9941 0.9499 0.9856

Hb = −
255∑

k=0

pk ∗μb(k)

pb
∗ ln

(
pk ∗μb(k)

pb

)

, (4)

where, probability of each of the classes are:

pd =
255∑

k=0

pk ∗μd(k)

pm =
255∑

k=0

pk ∗μm(k)

pb =
255∑

k=0

pk ∗μb(k) , (5)

pk = P(Dk) = hk, hk is the histogram of the image at
gray-level value k.

To determine the optimal thresholds, MFE function is
defined in Eq. (6). In MFE, minimization on the sum of dif-
ference of entropies of adjacent thresholded divisions of the
histogram of image matrixes is used.

H (u1, v1, w1, u2, v2, w2)

= abs(Hd − Hm) + (absHm − Hb) + (absHb − Hd).

(6)

The MFE varies along with the fuzzy parameters u1, v1,
w1, u2, v2, w2. Thus, the optimum fuzzy parameter combi-
nation is determined by minimizing the MFE, H (u1, v1,w1,
u2, v2, w2) so that all the regions can have almost equal
entropies:

ϕ(u1, v1, w1, u2, v2, w2) = argmin

{H(u1, v1, w1, u2, v2, w2)}.
(7)

The optimal fuzzy parameters find desired threshold val-
ues (t1 and t2) located at crossover points of membership
function curves as shown in Fig. 2. The gray level, whose
membership is 0.5, is selected as the threshold.Consequently,
the thresholds can be computed as:

μd(t1) = μm(t1) = 0.5,

μm(t2) = μb(t2) = 0.5. (8)
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Fig. 4 Graphical comparison between energy-Tsalli’s-CS, Tsalli’s-
CS, MFE-BFO and proposed (MFE-BSA) using a PSNR, b MSE, c
CPU time, d SSIM and e fitness values (color figure online)

The solution can be obtained on the basis of Eq. (3), as:

t1 =
⎧
⎨

⎩

u1 + √
(w1 − u1) ∗ (v1 − u1)/2 (u1 + w1)/2 ≤ v1 ≤ w1,

w1 − √
(w1 − u1) ∗ (w1 − v1)/2 (u1 ≤ v1 ≤ (u1 + w1)/2

t2 =
⎧
⎨

⎩

u2 + √
(w2 − u2) ∗ (v2 − u2)/2 (u1 + w1)/2 ≤ v1 ≤ w1

w2 − √
(w2 − u2) ∗ (w2 − v2)/2 (u2 ≤ v2 ≤ (u2 + w2)/2.

(9)

The two-level thresholding presented can be extended to
three and more levels based on the segmentation problem.
The above methodology can be extended for n-level thresh-
olding, the n number of threshold values are dependent on
optimal fuzzy parameters u1,v1,w1,u2,v2,w2,…,un ,vn ,wn ,
determined by the minimum entropy criterion:

ϕ(u1, v1, w1, . . . , un, vn, wn) = argmin

(H(u1, v1, w1, . . . , un, vn, wn)) . (10)

The MFE principle proposed in this paper is more uni-
versal. However, the numbers of fuzzy parameters to be
optimized increase as the thresholding level increases, so the
proposed fitness function becomes computationally complex
and converges slowly. Therefore, BSA is employed to com-
pute the best combination of fuzzy parameters that can obtain
minimum entropy value. BSA eliminates the redundant com-
putations, consequently reducing the computational cost of
MFE.

3.2 BSA based multilevel thresholding algorithm

In this paper, the following steps have been undertaken to
obtain color image multilevel through MFE-BSA:

Step 1 Extract the red, green and blue pixel matrixes from
an input image.

Step 2 For each of the individual image matrixes, obtain the
histogram distributions, and then set the number of
discrete levels for the image to be segmented.

Step 3 Set the required control parameters (N , D, mixrate,
low1:D , up1:D , maximum iterations) for BSA.

Step 4 Input image histogram and number of thresholds.
Step 5 Initialize thepopulation for basic components of color

image (red, green and blue) using randomly chosen
gray-level pixel intensity values between 0 and 255.

Step 6 For each of the color components, form the required
number of classes from the corresponding position of
every particle in population P . Form each of the class
by using pre-defined number of threshold values as
pixel intensity from image.

Step 7 Obtain best fuzzy parameters combination usingBSA
algorithm that can minimize the fitness function.

Step 8 Determine the threshold values and the corresponding
segmented image.

4 Results and discussion

All the experimental results evaluated on three test col-
ored natural images and three satellite images (adopted from
www.visibleearth.NASA.gov). The test images are shown in
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Fig. 3. All the experiments are conducted using MATLAB
R2017a on a personal computer with 3.4GHz Intel core-i7
CPU, 8 GB RAM running on Windows 10 system.

For a fair comparison between the performances of the
algorithms, population size and number of generations are set
as 20 and 300, respectively, for all optimization algorithms.
Other control parameter specifications are: InBSA, only con-
trol parameter mixrate is set as 1 [25]. For BFO: maximum
number of chemotactic steps (Nc), swims (Ns), reproduc-
tion steps (Nre) and elimination-dispersal events (Ned) are
selected as 10, 5, 4 and 4, respectively [10]. The swarming
coefficient dattract, xattract, hrepellent, xrepellent are 0.1, 0.2, 0.1
and 10, respectively. For CS algorithm, step size (α), muta-
tion probability (pa), and scale factor (β) are set as 1, 0.25,
and 1.5 respectively [23].

The segmented results are evaluated in terms of peak
signal-to-noise ratio (PSNR), mean square error (MSE),
computation time (CPU time in seconds), feature similarity
index (FSIM), structural similarity index (SSIM) and fitness
value. As meta-heuristic algorithms deals with randomness,
the best quantitative results obtained by algorithms in 10 dif-
ferent runs are shown in Tables 1 and 2.

4.1 Comparison based on PSNR and MSE

Tomeasure the performance of compared algorithms in terms
of strength and accuracy, PSNR and MSE are shown in
Table 1. It can be seen that MFE-BSA has obtained highest
PSNR and lowest MSE. This shows that MFE-BSA shows
better multilevel thresholding of complex colored images
(satellite and natural image) possessing fuzziness and ambi-
guity in nature. MFE-BFO algorithm and Tsalli’s-CS have
also obtained satisfactory outcomes than energy-Tsalli’s-CS.
Moreover, on increasing the thresholding levels, PSNR and
MSE further improve.

4.2 Comparison based on computation complexity

To measure the computational complexity or speed of all
algorithms, CPU time (in seconds) is shown in Table 1.
The CPU time of the Tsalli’s-CS is lowest among all other
techniques. However, the proposed algorithm takes higher
time than Tsalli’s-CS. Result show that MFE-BSA has sig-
nificantly lesser computational time than MFE-BFO. The
computational complexity of the energy-Tsalli’s-CS is high-

Energy-Tsalli’s-CS    Tsalli’s-CS        MFE-BFO     Proposed (MFE-BSA)

3

5

8

12

Fig. 5 Multilevel segmented color images obtained for satellite image 1 at segmentation levels 3, 5, 8 and 12 using energy-Tsalli’s-CS, Tsalli’s-CS,
MFE-BFO and proposed (MFE-BSA) (color figure online)
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est. Table 1 shows that as the threshold levels increase, CPU
time of algorithms increases as well.

4.3 Comparison based on SSIM and FSIM

Similarity index such as FSIM and SSIM shown in Table 2
is evaluated to measure the similarity among the original
and segmented image. Table 2 shows that on increasing the
thresholding levels, SSIMandFSIMapproach closer to unity.

4.4 Comparison based on fitness values

The segmentation results depend majorly on the fitness func-
tion to be optimized. From the values indicated in Table 2,
MFE-BSA has gain minimum fitness value followed by
MFE-BFO. This is due to the fuzzy-based mathematical for-
mulation of the MFE function. The minimum fitness value
indicates better searching ability of the algorithm in obtain-
ing accurate thresholds.

It is perceptible from the values in Tables 1 and 2 that
MFE-BSA has given most promising results in terms of
accuracy, robustness and efficiency. This can be attributed
to the good explorational and exploitational property of the
BSA algorithm in contrast to BFO and CS algorithm. Based
on increasing performance, compared algorithms can be

arranged as: Energy-Tsalli’s-CS< Tsalli’s-CS<MFE-BFO
< MFE-BSA. In terms of increasing CPU time: Tsalli’s-CS
<MFE-BSA<MFE-BFO< energy-Tsalli’s-CS. The heavy
computationworkload of theMFE-BSA that grows exponen-
tially with the number of thresholds would limit the real-time
multilevel thresholding applications. Still results indicate that
proposed algorithm effectively and efficiently searches opti-
mal fuzzy parameters and optimal threshold values at various
segmentation levels based on histogram of color images. The
graphical results indicated in Fig. 4 also justify the numerical
results determined in Tables 1 and 2 showing best perfor-
mance of proposed MFE-BSA algorithm.

4.5 Qualitative performance evaluation

For the visual interpretation of the performance, a detailed
qualitative validation of segmented images with 3-level, 5-
level, 8-level and12-level thresholdingusing energy-Tsalli’s-
CS, Tsalli’s-CS,MFE-BFOandMFE-BSAare demonstrated
in Figs. 5 and 6. Figure 6 represents the segmented results
obtained through all the algorithms at segmentation level 5.
From the results in Fig. 5, it can be seen that segmentation is
much smoother and more uniform at higher threshold levels
as compared to levels 3 and 5. On comparing the segmen-
tation results in Figs. 5 and 6, it can be depicted that the

(a) 

(b) 

(c) 

(d) 

Satellite image2   Satellite image3        Barbara           Sailboat                  

Fig. 6 Multilevel segmented images obtained for colored satellite and natural test images at level-5 using a energy-Tsalli’s-CS, b Tsalli’s-CS, c
MFE-BFO and d proposed (MFE-BSA) (color figure online)
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proposed MFE-BSA algorithm yields adequate segmenta-
tion with more accuracy and better quality. As an example,
consider the satellite image 1 shown in Fig. 5. The objects
in the image are much better and become more interpretable
and identifiable at m > 5 than at m = 2. Moreover, it can
be observed from Fig. 5 that at higher dimensions, the qual-
ity of the thresholded images gets superior as they resemble
original image.

5 Conclusions

In this paper, a new multilevel thresholding approach has
beenproposedusing aMFEfunction andBSAalgorithm.The
objective and subjective evaluation of experimental results
reveal that the proposed algorithm (MFE-BSA) obtained:
(1) best PSNR and minimum MSE values. The average
PSNR value for the proposed algorithm obtained is 18.456
approximately, which is better than the values of MFE-BFO
and Tsalli’s-based approaches. The average PSNR values
obtained by energy-Tsalli’s-CS and Tsalli’s-CS is lower,
nearly 12.4351 and 14.566 (2) best segmentation quality
shown by minimum mean fitness values which is around
0.3125. MFE-BFO has slightly higher fitness values than
MFE-BSA.The energy-Tsalli’s-CShas obtainedmuch larger
fitness values with an average value of 5.1245 and 2.5425
(3) SSIM and FSIM values closer to unity which shows
higher accuracy (4) average computation time of MFE-BSA
is although higher than the Tsalli’s-CS approach.
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