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Abstract The goal of edge-aware filtering is to smooth out
small-scale structures while preserving large object bound-
aries. A fundamental idea to design such filters is to avoid
smoothing across strong edges. In this paper, we explore a
new approach which iteratively adds the edge information
back to a smoothed image. We study the smoothed image as
the starting point of the iteration and the optimal stopping
criterion. We demonstrate that in a wide range of applica-
tions the proposed technique can produce competitive results
as those of state-of-the-art edge-aware filters. In particular,
the proposed algorithm has the best performance in texture
smoothing.

Keywords Edge-aware smoothing - Adaptive interpolation -
Texture smoothing - Detail enhancement - Content-aware
resizing

1 Introduction
Edge-preserving filtering has been extensively studied in

computer graphics and image processing to suppress noise
from images and/or extract important image contents [17,
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22]. Edge-preserving filters are widely deployed in many
applications, such as image matting and haze removal [9],
image colorization [10], HDR tone mapping [7], details
manipulation [6], and image super resolution [27-29]. Some
well-known algorithms include: adaptive smoothing [20],
anisotropic diffusion [18], total variation [21], robust statis-
tics [2], bilateral filter [25], nonlocal mean filter [3], Lo-
minimization-based filter [30], BMA filters [5], weighted
least-square-based filter [6], SVM-based filter [31], geodesic
filter [7], bi-exponential filter [24], and guided filter [9]. The
relationship between recent image smoothing algorithms is
studied in [14].

From the above brief review of current state-of-the-art
edge-aware filtering algorithms, it can bee seen that most
of them are based on the idea of smoothing out unwanted
detail information by avoiding smoothing across significant
edges. Motivated by the current development and the success-
ful applications of edge-aware filters, the aim of this work is
to explore new ways for the development of filters which will
lead to improved performance in terms of smoothing texture
and preserving edges. In the following, we briefly review the
basic ideas of two algorithms which are directly related to
our work: the rolling guidance filter and unsharp masking.

The rolling guidance filter (RGF) [32] is a scale-aware
filter [13] which involves two steps. In the first step, small
structures are completely removed by a Gaussian low-pass
filter. In the second step, a joint bilateral filter is adopted to
restore the large image structures iteratively. Recently, the
smooth and iterative restore (SIR) filter [12], which follows
a similar idea of the RGF, is used to iteratively restore strong
edges from the smoothed image.

Unsharp masking [8] is a classical technique which is
used to improve the sharpness of an image. The basic idea is
to smooth the image and extract the edge information. The
enhanced image is produced by adding the edge informa-
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tion to the smoothed image. Edge-aware smoothing filters
[4,5,9,19] have been used to produce the smoothed image.

This work is inspired by the RGF and unsharp masking.
The basic idea of this work is that the edge-aware smoothing
can be achieved by iteratively adding significant edges to
a smoothed image. A fundamental difference between this
work and those based on the RGF is that in this work the
edges are added back through a linear process similar to that
of unsharp masking, while in the RGF the edges are restored
through the guided edge-aware filters such as the bilateral
filter. As such, the proposed algorithm is computationally
more efficient than the RGF. In addition, by iteratively adding
the edges back, the resulting image can be regarded as an
adaptive interpolation between the smoothed image and the
original image.

The rest of the paper is organized as follows. In Sect. 2, we
describe the proposed edge-preserving filter, including the
basic iterative algorithm and its convergence, the interpreta-
tions of the filter from geometric and nonlinear interpolation
points of view, and a discussion of the stopping criterion in
terms of a convex optimization problem. In Sect. 3, through
experimental results and comparison with other algorithms,
we demonstrate that the proposed algorithm is an efficient and
effective tool for many applications including detail enhance-
ment, texture smoothing, and seam carving based resizing.
Conclusions are presented in Sect. 4.

2 The proposed algorithm
2.1 The basic algorithm

At pixel location n, let I (n) and Y (n) be the original image
and the processed image at the kth iteration. The proposed
algorithm can be written as

Yir1(n) = Ye(n) + ¢ (Dg(n)) Dy (n) (D

where Dy(n) = I(n) — Yx(n) and ¢(x) is a nonlinear
function. Since the proposed algorithm uses pixel-wise oper-
ations, to simplify notation, the dependence on the pixel
location n is not explicitly expressed in the following dis-
cussion. For example, we will use Y, I and Dy to replace
Yi(n), I (n) and Dg(n).

Intuitively, it is expected that in the smooth areas of the
image, the value of Dy is small. There is little edge infor-
mation to add to the smoothed image. As such, a natural
requirement is that Y31 &~ Y, which requires the function
¢ (x) to have the property limy|—o ¢ (x) = 0. On the other
hand, around the edge, the value of Dy is expected to be
large due to the smoothing effect. Edge information must be
added to the smoothed image. In an extreme case, it is desir-
able to have Y; = I such that the edge information is fully
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restored. As such, the function ¢ (x) should have the property
¢(x) = 1 when |x| is sufficiently large.
With these considerations, we can define ¢ (x) as

%2
=1l-e - 2
$(x) xp ( 202> @)
where o is a scale parameter which controls how fast the
function is increased to 1 or decreased to 0. For example, the
value of | Dy | is said to be sufficiently large when | Dy | > 3o.
In this case, we have ¢ (Dy) = 0.99 which strongly restores
the edge information.

2.2 Adaptive interpolation
2.2.1 Interpolation

The proposed algorithm can be interpreted as an adaptive
interpolation between the initial smoothed image Y and the
original image. Indeed, we can rewrite Eq. (1) as a weighted
average of Yy and /

Yipr = (1 = ¢(Di)Yx + ¢ (D) ] 3

To examine the interpolation effects, let us denote the
smoothed image Yy = S which is produced by an image
smoothing algorithm. We can then determine the output of
the proposed algorithm in terms of S and / as follows

Yigr = &S+ (1 — Pp)l “

where

k

1 k
& =[] —pU —¥)) =exp (—20—2 > D?) ©)
i=1

i=1

We now prove that the above iterative algorithm converges
to the original image . Since Zle D? > Zf‘:—ll D?, we
have

{‘Pk < Dp_q,
P = Dy,

Y #1 (6)
V=1 @)

We define the absolute difference
€ = [Yir1 — I| = §¢|S — 1] (®)

Using (6), we have 0 < €; < €x—; which means ¢ is a
decreasing function of k. As such, the output is getting closer
to the original image as the number of iteration increases. On
the other hand, using (7), we have €, = €;_1 which implies
Yiy1 = Yx = I. There is no further change in the output
in successive iterations. In fact, using (4), we can clearly
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Fig. 1 The convergence of the proposed algorithm as iteration increases from the initial smooth image (S) (k = 0) to the image at iteration (k = 4).

The mean squared difference (k) is also shown

see that in this case €, = 0 which means @; = 0. There-
fore, the output of the iterative algorithm will converge to
the original image /. An example is shown in Fig. 1 which
demonstrates the convergence of the algorithm measured by
the mean squared difference defined as:

n=N

1
o0 == D W) = Im)? ©)

n=1

2.2.2 A geometrical interpretation

If we regard / and S as two points in the N-dimensional
space, where N is the number of pixels, then the interpolation
results are a sequence of points {Yy}. Initially Yy (k is small)
is close to S. As the iteration progresses, Y is getting close
to 1. Let us imagine that there is a curve starting at point
S and ending at point /. The curve links all points {Y%}.
The desirable edge-aware filtering result is then a point in
this curve. Therefore, there are two factors that make critical
influence to the filtering result. One is the starting point S,
and the other is the stopping criterion.

2.3 Stopping criterion and starting point selection
2.3.1 Stopping criterion

To study the stopping criterion, we recall an early work
[15] on edge-aware filtering which is based on the following
objective function

N N
Ty ="y D) + 1Y ¢ () + vi(m)) (10)

n=1 n=1

where h(n) and v(n) are the absolute value of the horizontal
and vertical gradient of the image at pixel Y (n), and ¢(x) is
defined as ¢(x) = |x|¥, 0 < « < 1. The objective function
imposes two requirements for the desirable edge-aware fil-

0.84 - - -

Tteration(k)

Fig. 2 Cost function J (k) averaged over the 4 test images under the
test condition o = 0.5 and different settings of A

tering result: (1) It must be close to the original image, and
(2) it must be smooth except at locations of sharp edges. We
can numerically determine k such that this objective function
is minimized for a fixed regularization parameter A.

Since the above objective function has led to good edge-
aware filtering results, a natural way to develop a stopping
criterion for the proposed algorithm is to evaluate the objec-
tive function at each iteration Y. The output image at the kth
iteration which results in the smallest cost should be used as
the stopping criterion. We have conducted experiments by
applying the proposed algorithm to 4 test images. The cost
function Eq. (10) is calculated for the output of each itera-
tion. Figure 2 shows the average costs J (k) over 4 test images
which are “Flower,” “Flautist,” “House corner,” and “Tulips.”
To simplify our experiment, we fix ¢ = 0.5 and calculate the
cost function for a range of values of k (the number of itera-
tions) and A. Results are shown in Fig. 2 which are obtained
by using the four tested images. From these results, we can
clearly see that the minimum cost is reached when &k = 2
or 3. Therefore, we can choose k = 2 or 3 as the stopping
criterion. We also remark that both parameters « and X are
not required in the proposed algorithm. They are used in the
cost function which is used to experimentally determine the
stopping criterion.
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Fig. 3 First row the initial smoothed images using Gaussian blur (o, =
4), (9 x 9) mean filter and (9 x 9) median filter, respectively. Second row
the proposed filtering results from the respective three initial smoothed
images. The filter parameters are: o = 0.4 and k = 2. The artifacts due
to the Gaussian and mean filters are pointed out by red arrows (color
figure online)

2.3.2 Starting point selection

The initial smoothed image (starting point S) can be selected
based on the following experiments. We have used simple
smoothing filters: Gaussian low-pass filter, the mean filter,
and the median filter to remove small-scale structure. We
tune the parameters of these three filters to produce similar
smoothing effects. Results are shown in Fig. 3. We can make
the following observations. In the smooth areas of the image,
results of the proposed filter that used these three filters as
the starting point are almost the same. However, in areas with
sharp edges, the results of the proposed filter associated with
the mean filter and Gaussian filter have ringing phenomena
around the edges, while the result associated with the median
filter is almost free of such artifacts. Therefore, the median
filter is adopted to produce the initial smoothed image in
the proposed filter. The neighborhood size of median filter is
defined as (r).

3 Results
3.1 Experimental study of the proposed algorithm
3.1.1 Parameters settings and smoothing results

There are two parameters in the proposed filter. They are
the scale parameter (o) for the nonlinear function ¢ (x) and
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the size (r) of the neighborhood for the median filter. The
smoothing performance of the proposed filter has been tested
using the “Flower” image shown in Fig. 4 by setting different
values of these two parameters. We can see that setting a
large value of r will smooth out more details, while setting
a smaller value of o will lead to preserving textures such as
those on the flower leaves.

3.1.2 Running time

Because the proposed filter only requires pixel-wise compu-
tation, it has competitively low running time without software
and hardware optimization. The complexity of the proposed
filter is O(r log(r)N + kN ). We compare the running time
of the proposed filter with some of the most computationally
efficient edge-aware filters. Two images (Flautist and Flower)
are used in the experiment which is aimed at smoothing the
texture. All results are produced by averaging the running
time of 10-run of each filter. All filters are implemented
in MATLAB which is run in a PC with 16 GB memory
and an Intel-i7 processor running at 3.4 GHz. Results are
presented in Table 1 which shows that the running time
of the proposed algorithm is faster than the domain trans-
form filter (DTF) [7], the rolling guidance filter (RGF) [32]
and the bilateral grid (BG) implementation of the bilat-
eral filter [16], but is slower than the guided filter (GF)
[9].

3.2 Applications and comparisons

In this section, we present applications of the proposed algo-
rithm and compare the results with some state-of-the-art
filters including guided image filter (GF) [9], rolling guid-
ance filter (RGF) [32], region covariance filter (RCF) [11],
Bayesian model averaging (BMA) [5] and semi-guided bilat-
eral filter (SGBF) [23].

3.2.1 Image noise removal

To study the performance of different edge-preserving filters
in the presence of noise, we artificially create an image which
has structures of different sizes (i.e., small, medium, and
large). This image is used as a reference image. We then add a
uniform noise between —10 and 10 to the reference image to
generate a noisy image. One row of the reference image and
the noisy image as well as the filtering results are shown in
Fig. 5. We adjust parameters of each filter such that the largest
value of PSNR is achieved. The quantitative performance
of noise removal is measured by the peak-signal-to-noise-
ratio (PSNR) which is shown in Table 2. We can clearly see

1 One of the reviewers of this paper pointed out this result.
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r=3

Fig. 4 Effects of different parameters settings on smoothing results of the proposed filter

Table 1 Running time (s) of experiments on “Flower” shown in Fig. 1
and “Flautist” shown in Fig. 7

GF RGF DTF BG Proposed
Flautist 0.014 1.175 0.072 0.049 0.040
Flower 0.060 1.567 0.181 0.174 0.078

The results of all algorithms are tuned such that the results are of about
the same PSNR (27.8 dB for the “Flautist” image and 37.6 dB for the
“Flower” image)
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Fig. 5 A comparison of results in noise removal
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Table 2 The PSNR (dB) for results in Fig. 5
GF RGF RCF BMA

SGBF Proposed

28.79 35.41 34.03 34.90 28.54 35.92

that while RCF, GF, BMA, and SGBF achieve PSNR below
35 dB, the proposed filter and RGF achieve PSNR greater
than 35 dB. Visually, the filters (RCF, GF, and BMA) do
not only smooth out the noise but also blur large edges. The
SGBEF produces results with jagged edges. Both the RGF
and the proposed filter produce similar results which are rel-
atively close to the ground truth signal.

An interesting question is: what would be the performance
of the proposed filter if the nonlinear function ¢ (x) defined
in (2) is replaced by other functions? To study this prob-
lem, we recognize that Eq. (2) is indeed the so-called Welsch
function which is a cost function typically used in robust esti-
mation [33]. Therefore, we investigate the performance of the
proposed filter by using other functions used in robust esti-
mation. These functions are listed in Table 3. We apply the
proposed algorithm with different choices of ¢ (x) to process
the noisy image used in the above experiment. The results are
measured by PSNR which are also listed in Table 3. We can
clearly see that the proposed function (the Welsch function)
leads to the highest PSNR.
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Table 3 Robust cost functions and the achieved peak-signal-to-noise-
ratio (PSNR) in the proposed filter

Type ¢ (x) PSNR (dB)
Proposed 1-— exp(—(x2/2c2)) 35.92
L x| 29.82
Li—L2 2/T+x2/2-1) 30.29
Ly [x]” /v 35.24
Fair cAIx| /e —log(1 + |x]/¢)] 32.83
Cauchy < log(1 + (x/c)? 27.13
German-McClure ;‘—i% 23.76
Tukey Fzz(l = /) 35.00
(c*/6)

3.2.2 Detail enhancement

An unsharp masking algorithm is used in the detail enhance-
ment. Figure 6 shows the results for the test image “Tulips.”
We can see that the proposed filter produces a similar result
as those of the GF. It can also be observed that results of
GF and the proposed filter are free of gradient reversal and
ringing artifacts. However, RGF produces reversal artifacts.

3.2.3 Texture smoothing

In this section, we demonstrate that the proposed filter is an
effective tool for smoothing out texture information while
preserving large objects and sharp edges.

() (b) (c)

Fig. 6 Detail enhancement results. The parameters are oy = 7, 0, =
0.1 for RGE, r = 7, ¢ = 0.12 for GF, and r = 7, o = 0.1 for the
proposed filter. The detail is boosted by 4 times. a RGE. b GF. ¢ Our
results

To perform a quantitative evaluation of the smoothing per-
formance, we add texture to a texture-free image which is
used as the ground truth. We adjust parameters of each filter
such that it preserves the overall image structure and elimi-
nates the texture component as much as possible. The quality
of the smoothing result is measured by the structure similarity
index (SSIM) [26].

Results shown in Fig. 7 clearly indicate that the proposed
filter effectively smooths out the texture while preserving
most of the important information of the original image. In
comparison, other filters (GF, RGF, BMA, and SGBF) still

Fig. 7 Texture smoothing results. All filters are adjusted for their best
performance in terms of achieving the best SSIM. a Ground truth image.
b Ground truth + texture. ¢ GF (r = 5, ¢ = 0.05). d RGF (o5 = 2.1,
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6, = 0.1). e RCF (¢ = 0.05, k = 3). fBMA (r = 4, ¢ = 0.002). g
SGBF (0, = 2.1,0, = 0.1). h (r = 4, 0 = 0.4)
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Table 4 The objective GF RGF RCF BMA SGBF Proposed
evaluation of the results using
E,SHV; and PSNR for images in SSIM 0.922 0917 0.934 0.934 0.933 0.936
12.
& PSNR (dB) 26.83 27 27.74 27.65 26.79 27.18

| (2)

(h) o )

Fig. 8 Seam carving in a natural science. Left column original method. Middle column results of [11]. Right column results of the proposed filter.
Rows from top to bottom: original image, smoothed images, seams to be eliminated and the seam carving results

preserve texture to certain degree because these filters treat
texture as edges. On the other hand, the RCF is successful
in texture removal at the cost of blurring object boundaries.
The subjective evaluation of the proposed filter is confirmed
by the largest SSIM associated with result produced by the
proposed method. However, the PSNR results are mixed. The
PSNR value of the image produced by our filter is among the
best as shown in Table 4.

3.2.4 Content-aware image resizing

Content-aware image resizing was introduced in [1]. The
importance of the pixels has been calculated based on gradi-
ent energy function. In a natural scene, details such as grass,
waves, sand, tree are less important compared to objects of
interest. It can be observed in Fig. 8d that the vertical seams

pass through the tree on the left and middle, whereas it crosses
waves on the right, making the results in Fig. 8g unaccept-
able. To address this problem, an edge-aware filter is used
to smooth the image and the result is used to calculate the
seam. We compare the performance of the proposed filter
with the structure—texture decomposition approach in [11].
Results shown in Fig. 8 show that the performance of the two
approaches is indeed similar. The advantage of the proposed
filter is that it runs 25-times faster than the region covariances
filter [11].

4 Conclusion

In this paper, a new technique for edge-aware image smooth-
ingis introduced. The proposed technique is based on the idea

@ Springer



354

SIViP (2018) 12:347-354

of iteratively adding the edge information to the smoothed
image. This is different from most existing edge-aware tech-
niques in which the aim is to perform the smoothing operation
in such a way to avoid smoothing across edges. A detailed
study of the proposed technique is presented, which includes
the choice of the smoothed image as the starting point of
the iteration and the optimal stopping criterion. Experimen-
tal results and comparisons have demonstrated that in a wide
range of applications the proposed technique can produce
competitive smoothing results as those of state-of-the-art
edge-aware filters. In particular, the proposed filter has the
best performance in texture smoothing.
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