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Abstract Liver is considered as a tissue with large shape
variations. Representation of such a complex shape cannot
be accurately performedusing conventional SSMalgorithms.
We propose to decompose a human liver into its anatomi-
cal parts and use them as a guide when considering point
correspondences. To cope with shape complexity, a modi-
fied coherent point drift (CPD) algorithm is proposed too.
The modified CPD algorithm assigns fuzzy correspondences
to points and follows a simulated annealing approach to
convert fuzzy correspondences into binary ones. Our modi-
fication includes automatic parameter settings which results
in robustness of the algorithm. The proposed algorithm was
compared to the thin plate spline-robust point matching
(TPS-RPM) and minimum description length (MDL) tech-
niques. Our method is twice faster than the MDL algorithm.
Compared to the TPS-RPM algorithm, our method improved
mean Specificity of the right lobe by 0.09 and Compactness
of the model by two less modes.

Keywords Anatomical shape decomposition · Liver
shape modeling · Modified coherent point drift · Point
correspondences · Statistical shape model

1 Introduction

Statistical shape models (SSMs) have several applications
including shape deformation analysis [1] and shape recon-
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struction [2]. Establishing correct correspondences between
the points of two shapes is a crucial task in developing an
SSM, and three types of methods have been proposed [3].

In the 1st group, one shape is registered to the other using
a rigid/non-rigid registration scheme. Then, one assigns pairs
of the nearest points as corresponding. These techniques are
not suitable for non-rigid bodies. Non-rigid multimodality
registration is also sensitive to intensity variations [4].

In the 2nd group, one does an exhaustive search on all
landmarks which is a tedious task and sometimes impossible
[3,4].

The 3rd group uses iterative methods to estimate trans-
formation function and to resolve point correspondences in
an (expectation maximization) EM-like [5] approach. Sev-
eral examples are the ICP (iterative closest point) [6] and its
variants, the TPS-RPM (thin plate spline robust point match-
ing) [3] and CPD (coherent point drift) [7]. This class of
algorithms has the best performance among others. However,
they do not consider morphological/anatomical characteris-
tics of shapes. Involving shape geometry in building an SSM
is important especially in cases of highly deformable bodies
such as human liver.

2 Previous works

TheTPS-RPMmethod uses the EMscheme to find fuzzy cor-
respondences between shape points. It employs a Gaussian
mixture and assigns the set of moving points as the center
of the Gaussians. In the E-step, a fuzzy correspondence is
assigned to the set of reference points. In the M-step, the
transformation matrix is estimated to transfer the moving
points to new positions. This method is sensitive to parame-
ter setting.

The CPDmethod uses Gaussianmixture and the EMalgo-
rithm to iteratively register amoving shape to a reference one.
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In contrast to the TPS-RPM, it applies a coherency constraint
on shapemovement that preserves shape topologyduring reg-
istration. Compared to the TPS-RPM, the sensitivity of the
CPDmethod to its parameters is less, and it is faster andmore
robust.

The minimum description length (MDL) algorithm maps
3D reference and moving shapes onto a sphere [8]. It reg-
isters the two shapes by displacement of their points on the
sphere using minimization of the model compactness. The
method has large computational cost, and its convergence is
not guaranteed.Heimann et al. [9] andXu et al. [10] proposed
solutions for non-uniform distribution of points. However,
the problems of runtime and convergence remained.

The above methods do not consider natural/anatomical
structures of shapes. Some researchers divided a shape into
semantic divisions and registered each division individually
[11]. Corresponding to each division, they used a Gaussian
component. Manually splitting a 3D shape is not a simple
task, and employing a rigid transform function is not suitable
for soft tissues too. In [12], the authors employed a sequential
approach to estimate number of Gaussian components. They
employed a smoother objective function and a smaller search
space. The algorithm was sensitive to Gaussian parameters.

Some researchers used perception rules to split a shape
into semantic parts. Some of these rules have been verified
in psychological studies of human being including minima
rule [13], short-cut rule [14] and convexity rule [15,16]. The
minima rule split a shape based on loci of negative minima of
the curves that form a shape. The short-cut rule tries to mini-
mize cut lengths.The convexity rule emphasizes on convexity
of a shape to split it into parts. Ma et al. [17] introduced a
new rule called “Part-Similarity rule” to distinguish similar
parts of a body and combined it with convexity rule to split
a shape. Compared with other methods, their results were
closer to human perception. However, the outcomes were
not acceptable with regard to curved branches and resulted
in extra parts.

Three-dimensional extensions of the above methods are
not straightforward. For medical objects, anatomical proper-
ties should be considered instead of structural characteristics.
Okada et al. [18] divided a human liver shape into sections
to improve accuracy of segmentation. Lamecker et al. [19]
manually divided the surface of a liver into four patches. Due
to the large shape variations, these patches are not easily dis-
tinguishable.

Anatomically, a physician divides human liver into four
lobes: right, left, caudate and quadrate [20]. In this paper, we
propose a new shapemodelwhich considers anatomical char-
acteristics of liver. One used the bifurcations of portal veins
to divide liver into left and right lobes. Individual models
are built for each lobe and the complete hepatic model is the
augmented submodels. Our main innovations are to explic-
itly dealwith anatomical structures of the tissue, optimization
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Fig. 1 The flowchart of the proposed method. The left column
describes splitting a liver into anatomical divisions. The right column
explains how an SSM is built for each lobe

and conscious choice of registration parameters, decreasing
computational cost, and developing a robust algorithm. In
Sect. 3, we describe the proposed method. We present the
results in Sect. 4 and discuss them in Sect. 5. Section 6 con-
cludes the paper.

3 Proposed method

The flowchart of our method has two branches (Fig. 1): The
left column describes splitting a liver into anatomical divi-
sions, and the right column explains how we build an SSM
for each lobe.

3.1 Splitting a liver into its left and right lobes

In an earlier research, we built a single model for a liver
volume [21]. Consider a liver with a small left lobe that is to
be registered on a liver with a large left lobe. In such a case,
some points on the right lobe of the first liver are erroneously
assigned to the left lobe points of the second liver. Therefore,
considering separate models for left and right lobes increases
accuracy of the model. A novelty of our method is to use
anatomical landmarks to divide a liver into two parts and
constructing individualmodels for a part.Aphysician divides
the hepatic parenchyma into left, right, caudate, and quadrate
lobes. Due to small volumes of caudate and quadrate lobes
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Fig. 2 a Dividing a liver into left and right lobes. b The two lobe
volumes

compared to left/right lobes, we do not consider them when
partitioning a liver.

Since separate branches of vessels feed a lobe, we use
bifurcation of portal veins that are visible in 2ndphase images
to divide the gland into two parts (Fig. 2a). To enhance portal
veins more, we use the multiscale filter proposed by Frangi
et al. [22].

We segment and extract the skeleton of the enhanced veins
based on the method of Lee et al. [23]. Using the skeletons
of the portal veins, we use graph analysis to distinguish left
and right branches of the vessels. Based on its distance to the
nearest vascular branches, each voxel is labeled as either left
or right lobe (Fig. 2b). In a case where the contrast between
vessels and the liver tissue was not enough, the results of ves-
sel enhancement and skeletonization were not acceptable. A
physician manually divided a liver using maximum inten-
sity projection (MIP) of the axial view. A plane was fitted to
branching place of portal veins which split the gland into left
and right lobes.

3.2 Modified CPD

Since the surface of a segmented liver is not smooth, we
employ a 3 × 3 × 3 smoothing filter. The liver images are
zero-padded to keep the image size unchanged.

Each lobe is then represented by a mesh using the march-
ing cube algorithm [24]. We sample liver shapes by 1000
points according to our previous work [21]. Regarding the
voxel dimensions (0.625 × 0.625 × 1.25mm3), the mini-
mum distance betweenmesh points cannot be less than 0.625
mm. In other words, the minimum surface of a mesh cannot
be less than 0.195mm2 (0.625× 0.625/2). We built meshes
of all training shapes with 500, 1000, and 2000 points and
measured the least surface of themeshes. For the shapes sam-
pled by 2000 points, the least mesh surface of some training
shapes were less than 0.195mm2. It means that some voxels
are sampled with at least two points which is not meaningful
and it just increases computational time. On the other hand,
the least mesh surface of some shapes sampled by 500 points
was bigger than 0.195mm2 which may ignore some criti-
cal parts of a liver. However, if we sample a liver shape by

1000 points, mesh surfaces will be of the proper sizes. After
splitting a liver, we represent use the larger right lobe by 601
points to and the smaller left lobe by 401. Next, we use the
modified CPD algorithm to set up point correspondences.

The modified CPD is another novelty in our method to
build statistical models of a shape with large variations. The
CPDmethod simultaneously finds a non-rigid transformation
matrix andpoint correspondences. It imposes amotion coher-
ence constraint [25] on the velocity field of point movements
which enforces the neighboring points to move coherently.
This preserves shape topology during registration process. It
considers registration of two point sets as a problem of esti-
mating the probability density of one point-set using another
point-set density. It achieves this goal by maximizing the
posterior probability or maximizing the likelihood function
equivalently. To do this, the points of the moving mesh (M
points) are considered as centers of a Gaussian mixture and
they are registered to the fixed mesh points (N points). Con-
sidering Y0 as the initial position of the centers, new positions
of the template mesh are obtained by Eq. 1.

Y = v (Y0) + Y0 (1)

In Eq. 1, v is a continuous velocity field of template
point movements. Using the Bayes theorem, we calculate the
posterior probability and the likelihood function of moving
points Y by Eq. 2 and Eq. 3, respectively.

p (Y|X) = p (X|Y) p (Y)

p (X)
(2)

p (X|Y) =
M∑

m=1

p (X|ym) =
N∏

n=1

M∑

m=1

p(xn|ym)

=
N∏

n=1

M∑

m=1

e
− 1

2

(∥∥∥ xn−ym
σ

∥∥∥
2
)

(3)

In Eq. 2, p (X) and p (Y) are prior probability functions
of the reference and template shapes respectively. In Eq. 3,
variances of theGaussian components ( σ ) are equal. In order
to impose a smooth motion constraint, the prior probability
of moving mesh is defined in Eq. 4.

p (Y) = e− λ
2 φ(Y) (4)

In Eq. 4, λ is a weighting constant and φ (Y) is a function
which regularizes motion smoothness. Assuming linearly
independence and usingminus log-likelihood, Eq. 4 is rewrit-
ten as Eq. 5.

− log (p (Y|X)) = − log (p (X|Y)) − log (p (Y))

+ log (p (X)) (5)
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By omitting independent parts from Y and substituting
Eqs. 3 and 4 with Eq. 5, we write the objective function as
Eq. 6.

E (Y) = −
N∑

n=1

log
M∑

m=1

e
− 1

2

(∥∥∥ xn−ym
σ

∥∥∥
2
)

−
(

−λ

2
φ (Y)

)
(6)

Minimizing the objective function leads to minimizing
the fixed and moving point distances which is equivalent to
maximizing the posterior probability of the moving mesh.

We restrict the velocity field of the moving points Y to be
smooth. A smooth function has less energy in high frequen-
cies. Thus, we obtain a smooth function through multiplying
its frequency transform by a high-pass Gaussian filter or
equivalently dividing by a low-pass Gaussian filter (Eq. 7).

φ (v) =
∫ |ṽ (s)|2

G̃
ds (7)

In Eq. 7, ṽ is the Fourier transform of the velocity field and
G̃ is a symmetric, positive-definite and low-pass Gaussian
filter that becomes smaller as ||s|| → ∞. By putting Eq. 7
back into Eq. 6, we write the objective function as Eq. 8.

E (ṽ) = −
N∑

n=1

log
M∑

m=1

e
− 1

2

(∥∥∥ xn−ym
σ

∥∥∥
2
)

+λ

2

∫ |ṽ (s)|2
G̃

ds (8)

Minimizing Eq. 8 leads to minimizing the high-frequency
contents of the point movement function which causes the
movements to be smooth. By substituting Eq. 1 in Eq. 8 and
calculating its derivation with respect to v, it can be shown
that the velocity function which minimizes Eq. 8 is rewritten
as Eq. 9.

v (z) =
M∑

m=1

wmG (z − y0m) (9)

In Eq. 9, wm is a weighting factor and G is a Gaussian
mixture kernel which is different from the Gaussian mixture
of points Y . This kernel goes to zero as ‖s‖ → ∞which sat-
isfies the velocity field smoothness. Also, the smoothness of
the velocity function can be controlled by tuning parameters
of theGaussian kernel. By choosing aGaussian kernel for the
velocity field, Eq. 8 becomes similar toMCT (Motion Coher-
ence Theory) [25] as well. The second term of Eq. 8 is equal
to a weighted sum of all orders of the squared derivations of
the velocity field (Eq. 10).

λ

2

∫ |ṽ (s)|2
G̃

ds → λ

2

∫ ∞∑

m=1

β2m

m!2m
(
Dmv

)2 (10)

In Eq. 10, D is the derivative operator defined in Eqs. 11
and 12.

D2mv = ∇2mv (11)

D2m+1v = ∇
(
∇2mv

)
(12)

By substituting Eq. 10 for Eq. 8, the energy function is
rewritten as Eq. 13.

E (W) = −
N∑

n=1

log
M∑

m=1

e
− 1

2

(∥∥∥∥
xn−y0m−∑M

k=1 wkG(y0k−y0m )
σ

∥∥∥∥
2
)

+λ

2
tr

(
WTGW

)
(13)

In Eq. 13, W is the matrix of Gaussian kernel weights
of velocity field and G is a symmetric square matrix. We
calculate an element of G by Eq. 14.

gij = e
− 1

2

∥∥∥
y0i−y0j

β

∥∥∥
2

(14)

Each element ofG has a value between 0 and 1. In Eq. 14,
β is the effective radius of each Gaussian component with
the center of y0i and it determines the number of neighbor-
ing points of y0i which are imposed to move coherently. By
utilizing the EM algorithm, an upper bound for Eq. 13 can
be found in the form of Eq. 15. Minimizing Eq. 15 leads to
minimization of Eq. 13.

Q (W) =
N∑

n=1

M∑

m=1

Pold (m|xn) ‖xn − y0m − G (m, .)W‖2
2σ 2

+λ

2
tr

(
WTGW

)
(15)

In Eq. 15, G (m, .) is the mth row of the matrix G and
Pold is the posterior probability matrix which is calculated
from current places of the reference points with respect to the
Gaussian centers. We obtain an element of Pold using Eq. 16.

pmn = e− 1
2
yoldm −xn

σ

2/
⎛

⎝
(
2πσ 2

) d
2

α
+

M∑

m=1

e− 1
2
yoldm −xn

σ

2
⎞

⎠

(16)

In Eq. 16, yoldm is the current location of a Gaussian center.
A uniform distribution is included in the denominator of the
pmn to model noise and outliers. Regarding the uniform dis-
tribution, d is the dimension of the space and α determines
the effect of the uniform distribution in pmn .
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In order to minimize the energy function, we calculate the
derivation of Eq. 15 with respect toW set it to zero (Eq. 17).

{
(diag (P1))G + λσ 2I

}
W = PX − diag (P1)Y0 (17)

In Eq. 17, P1 is the posterior probability matrix with a
column of ones and diag(.) is a diagonal matrix. Solving
Eq. 17 forW is performed in the M-step and calculating the
posterior probability matrixP is done in the E-step of the EM
algorithm. If the EM algorithm is converged, the template
points will be moved to new locations using Eq. 18.

Y = Y0 + GW (18)

Then, we reduce the coverage of the mixture components
(σ ) by a deterministic annealing strategy [21] (Eq. 19).

σnew = σold × r (19)

In Eq. 19, r is the annealing factor in the 0.93–0.97 range.
After reducing σ , the EM algorithm is repeated. The anneal-
ing scheme of σ is continued until each Gaussian component
covers a single point. This leads to a one-to-one correspon-
dence between the reference and template point sets. The
steps involved in the modified CPD method are shown using
Algorithm 1.

Algorithm 1 Finding corresponding points between two
shapes.
Inputs: Reference shape vector X, moving shape vector Y0.
Step 1. Initialize parameters β = 1.87, σ = 1, λ = 2, r =
0.95.
Step 2. Construct elements of the G matrix using Eq. 14.
Step 3. Update correspondence matrix P using Eq. 16.
Step 4. Solve for W in Eq. 17.
Step 5. Update moving shape points using Y = Y0 + GW.
Step 6. If σ > 0.028 then

Update σ using σ = σold × r .
Goto Step 3

End
Output: Registered shape vector Y with points correspond-
ing to the reference shape.

3.3 Free parameters

A novelty in our method is conscious selections of non-rigid
registration parameters. The free parameters of theCPDalgo-
rithm areσ , λ, and β. In Eq. 15, the parameter λ compromises
between the point registration and the motion smoothness
and we set it to 2. Thus, both parts of the Eq. 15 have the
same effect on the objective function. The parameter β in G
(Eq. 14) regularizes interactions among the points in Y and
determines that number of neighboring points in Y which

are restricted to move together coherently. A small value of
β leads to a local transformation, while a large value results
in a rigid transformation.We set β to 1.87 so that all elements
of G are larger than 0.36. Consider the effective range of a
Gaussian as (mean ± standard deviation) the standard devi-
ation is 0.36 of its maximum value. Thus, the farthest points
in Y (Gaussian centroids) have a negligible effect on each
other, and thus topology of the moving shape is preserved
during the registration.

The parameter σ in Eq. 15 is the standard deviation of
Gaussian components. It compromises between point regis-
tration accuracy and motion smoothness. We decrease this
parameter by a constant factor (between 0.93 and 0.97) dur-
ing registration using the Deterministic Annealing strategy.
Since we normalize the shapes before registration, we set the
initial value of the parameter to 1. Thus, a point in X corre-
sponds to any point in Y at the start of the process. We also
set the annealing factor to 0.95.

Due to the complexity of liver shapes, if we decrease the
parameter σ less than a threshold, some points in X may fall
far from the Gaussian contours. The transformation matrix
is therefore calculated incorrectly and the Gaussian centers
are moved to wrong positions. We empirically found that
the threshold value for sigma is 0.028. It is equivalent to 70
iterations of the algorithm according to Eqs. 20 and 21.

σfinal = σinit × rn (20)

n = ln σfinal
σinit

ln r
(21)

Proper selection of the final value ofσ prevents divergence
of the algorithm and helps to develop a robust technique.

3.4 Construction of the shape model

After finding corresponding points, we convert a shape in the
training set to a vector and normalize it (|X| = 1) (Eq. 22).

⎡

⎢⎣
x1 y1 z1
...

...
...

xm ym zm

⎤

⎥⎦ → X = (x1, y1, z1, . . . ., xm, ym, zm)T

(22)

In Eq. 22, m is the number of shape points. We align
the normalized shapes usingGeneralizedProcrustesAnalysis
and calculate the mean shape (X̄) by Eq. 23.

X̄ = 1

S

S∑

i=1

Xi (23)
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In Eq. 23, S is the number of shapes in the training set.
Next, we calculate the covariance matrix corresponding to
the training shapes (C) by Eq. 24.

C = 1

S − 1

S∑

i=1

(
Xi − X̄

) (
Xi − X̄

)T
(24)

If the eigenvalues of C are sorted in the descending order,
we reconstruct a valid shape using a linear combination of
the mean shape and the eigenvalues (Eq. 25).

X ≈ X̄ + Ψ b (25)

In Eq. 25, Ψ is the eigenvector matrix corresponding to
the ordered eigenvalues and b is a parameter vector.

4 Results

4.1 Dataset

We employed the second phase of 30 computed tomography
images of abdominal cavity from 16 males and 14 females
in the 20–75 age range. The images were stored in 12-bit
DICOM format of 512 × 512 × 159 pixels with a pixel size
of 0.625× 0.625× 1.25 mm3. The images were captured at
Osaka University Hospital, and a radiology specialist manu-
ally segmented the livers.

We implemented the codes in MATLAB environment and
ran on a personal computer with windows 8.1 operating sys-
tem,AMD-fx41003.6GHzCPUand8GBof dynamicRAM.

Regarding the runtime of our method, it took approxi-
mately 16 and 31 s to find corresponding points of the left
and right lobes, respectively. However, it took about 68 s to
process a complete liver. Regarding computational cost, our
anatomical decomposition technique is therefore superior to
traditional methods. The time complexity of our algorithm is
O(N ) where N is the number of the input shape points.

4.2 Evaluation measures

We used Compactness, Generalization ability, and Speci-
ficity metrics [14] to evaluate the proposed shape model.

The compactness of a model is the number of modes that
are required to reconstruct a valid shape (Eq. 26). A compact
model uses fewer modes to reconstruct a shape.

C =
∑m

i=1 λi∑Nd
i=1 λi

(26)

In Eq. 26, λi s are eigenvalues of the covariance matrix
(Eq. 24) that are sorted in the descending order, M is the
total number of the modes, N is the number of points and d

is the shape dimension. The number of required modes (m)
is selected such that C reaches a value between 0.9 and 0.98.

Generalization is the ability of a model to reconstruct
training and unseen valid shapes. It evaluates over-fitting of
the model with respect to the training set. The leave-one-out
method is employed to calculate this metric for all training
images. The mean value of reconstruction errors is consid-
ered as the generalization ability of the model (Eq. 27).

G (m) = 1

M

M∑

i=1

∥∥xi − x′
i (m)

∥∥ ,

x′
i (m) = X̄ +

m∑

i=1

Ψ i bi (27)

InEq. 27, xi is the leftout shape, x′
i (m) is the reconstructed

shape using m modes, Ψ i is the i th eigenvector, bi is the i th
shape parameter, and M is the number of training shapes.
The reconstructed shape (x ′

i (m)) is a function of m (number
of modes) and the Generalization ability is a function of m
as well.

A model is specific if it represents only valid shapes. In
other words, any shape that is created by the model should
be similar to the training set. To compute this measure, we
created 1000 random shapes using random shape vectors
(b̃A, 1 ≤ A ≤ 1000). We constrained the shape vectors in[
−√

2λ,+√
2λ

]
range. The minimum distance of a random

shape from the training images was calculated in the allow-
able shape domain (ASD) space. Themean of these distances
is the specificity measure (Eq. 28).

S (m) = 1

N

N∑

A=1

min
i

∥∥yA (m) − xi
∥∥ ,

yA (m) = X̄ +
m∑

i=1

�i bi A (28)

In Eq. 28, yA is a randomly generated shape, N is the
number of random shapes, and xi is a training shape. The
Specificity is a function ofm (the number of modes) as well.

4.3 Evaluation of the left and right lobes

Themodels of the left and right lobeswere comparedwith the
complete liver model using compactness, generalization, and
specificity.We compared the results qualitatively too (Fig. 3).

The compactness of a complete liver, left lobe and right
lobe models are 18, 18 and 16 respectively.

We performed experiments with the MDL and the TPS-
RPM algorithms using our available dataset. Regarding the
run-time of the code, ourmethod took about 1400 s to prepare
a model while the MDLmethod took more than 3600 s to do
the task. Our method is more robust compared to the MDL
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as well.With respect to the TPS-RPM algorithm, our method
improved the mean Specificity of the right lobe by 0.09 and
the Compactness of the model by two less modes.

5 Discussion

In this paper, we built individual models for left and right
lobes. It prevents the surface of a liver to be represented by
a non-uniform mesh. In Fig. 4, a typical shape of a liver was

Fig. 3 Top row A typical complete liver. Middle row Left lobe. Bot-
tom row Right lobe. Left column Before registration. Middle and right
columnsAfter registration. The reference shape is shown in lower opac-
ity.Warm/cold colors are larger/smaller distances respectively

Fig. 4 Representation of a complex shape by a single model makes
the corresponding mesh to be non-uniform

represented by a single model using the MDL method. As it
is seen, some parts of the left lobe are not covered completely.
This happens since the modes of variation corresponding to
the right lobe control the left modes as well.

Based on our previous research [21], we used themodified
CPD to build left and right lobemodels. Regarding the results
shown in Fig. 3, the moving liver shape is clearly different
from the reference shape. The left lobe of the moving shape
is smaller than that of the reference shape. However, the left
and right lobes of the moving liver were registered to the
reference liver well.

The results of the compactness reveal that the right lobe
model with 16 modes is more compact compared to the left
lobe and complete liver models. This means that right lobes
have simpler shapes compared with the left lobe and a com-
plete liver.

The generalization index (Table 1) shows that the com-
plete liver model had the least reconstruction error and the
reconstruction error of the right lobe model was about 0.7
mm higher. The left lobe model had the worst result due to
its complex shape.

The specificity measure (Table 1) shows that the right lobe
model is more specific than both the left lobe and complete
liver models. Therefore generated random shapes have lower
distances from the training images.

The results reveal that decomposing a shape may affect
the evaluating measures and thus lead to a more accurate
model. Also, taking anatomical information into account
may prevent assigning wrong correspondences in biological
tissues.

6 Conclusion and future works

In this paper, we presented a robust point correspondence
algorithm, decomposed a complex shape into simple parts,
and built individual models for each part. The proposed
approach helps us to represent the surface of a complex
shape with uniformmeshes and to build more accurate shape
models. Regarding human liver, typical applications of an
accurate shape model include precise segmentation of the
hepatic volume [26] and detection of liver shape deforma-
tion which is considered as a kind of disease [27].

Table 1 Comparison of compactness, generalization, and specificity of left/right lobe models with the complete liver model

Method Complete liver Left lobe Right lobe

Number of modes to achieve 98% Compactness 18 18 16

Mean generalization (mm) 3.78 ± 0.95 5.56 ± 1.95 4.31 ± 1.25

Mean specificity 0.21 ± 0.06 0.34 ± 0.08 0.12 ± 0.0007
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In future, we plan to divide a liver shape into more simple
parts based on anatomical landmarks and develop a hierar-
chical model to represent complex shapes.
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