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Abstract A novel framework for sparse and dense dispar-
ity estimation was designed, and the proposed framework
has been implemented in CPU and GPU for a parallel pro-
cessing capability. The Census transform is applied in the
first stage, and then, the Hamming distance is later used as
similarity measure in the stereo matching stage followed by
amatching consistency check. Next, a disparity refinement is
performed on the sparse disparity map via weighted median
filtering and color K -means segmentation, in addition to
clustered median filtering to obtain the dense disparity map.
The results are compared with state-of-the-art frameworks,
demonstrating this process to be competitive and robust. The
quality criteria used are structural similarity index measure
and percentage of bad pixels (B) for objective results and sub-
jective perception via human visual system demonstrating
better performance in maintaining fine features in disparity
maps. The comparisons include processing times and run-
ning environments, to place each process into context.
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1 Introduction

Estimation of disparity maps (DM) has been a heavily
researched topic for more than a decade. One of themain rea-
sons for this rising interest is the wide range of applications
that are being conceived and designed in themedical imaging
[1–3] and computer vision fields [4,5,9]. As a consequence,
a variety of solutions and variations of former proposals have
been presented with the aim of designing a robust, fast and
reliable framework for specific needs or requirements.

We can classify the existing frameworks into two groups:
those focused on speed and those focused on quality. The
frameworks in the first group mainly use local search for
the disparity estimation and fast smoothing stages, avoiding
iterative methods. As a consequence, they fail to meet some
quality criteria, specifically in more challenging scenarios.
These methods are designed to provide a fast DM, when
the error threshold is larger than the average and the reso-
lutions and disparity range are limited. The quality-focused
methods provide acceptable results in most scenarios, but the
processing time is inconvenient due to limited compatibility
with specified hardware or extremely iterative methods.

Due to the continuous advances in image processing
algorithms, along with the use of GPU computation and
development of multicore CPUs, it is possible to design and
implement more exhaustive and abstract methods, achieving
better results and shortening distances between frameworks,
such as the ones aimed at real-time processing [7,8,10,12]
and the ones aimed at obtaining the best quality criteria scores
[6,11,13,14]. Actually, it is possible to choose a trustworthy
and robust framework for a given task, but a general solution
is still in development. During this work, an effort has been
made to reduce the distance between speed and quality, by
implementing the same process in CPU and GPU parallel
architectures, with only minor modifications into a structure
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of framework applied but maintaining the same results, thus
reducing the processing time.

In this paper, there are three main contributions. Firstly,
a Census transform GPU implementation, allowing to rep-
resent every pixel value in the form of a binary vector, is
estimated from a few values in their neighborhood pixels.
Secondly, this work presents a GPU implementation in the
stereo matching stage with Hamming distance as similarity
measure; this allows the proposed framework to estimate a
sparse disparity map with large size datasets. And finally, a
clustered median filtering (CMF) is applied for refinement
disparity and occlusion handling, which, in conjunction with
a clustering algorithm, as K-means, is capable to reconstruct
an acceptable dense disparity map.

The remainder of the paper is organized as follows. In
Sect. 2, some related works are described. In Sect. 3, the
novel framework for the parallel dense disparity estimation
is presented and the hardware implementations detailed; in
Sect. 4, the quality criteria, datasets, and experimental results
are presented; and in Sect. 5, the conclusions are drawn.

2 Related works

There exists several methods for obtaining disparity maps.
Some of these frameworks will be compared with our
approach. Among the comparison frameworks will be some
works submitted in the Middlebury v3 table, available for
two sizes (quarter and half size). Additionally, sparse and
dense results are compared to this dataset.

Binary stereo matching (BSM) [17] is a sparse-only
method, consisting of binary-based cost computation and
aggregation. The cost volume is constructed through bitwise
operations on a series of binary strings. Next, this approach
is combined with a traditional winner-takes-all strategy. The
method for computing the stereo matching cost with a con-
volutional neural network (IDR) [18] consists of a two-pass
aggregation with a Census-gradient cost metric, followed
by iterative cost penalization and disparity re-selection to
encourage local smoothness of disparities. The disparities are
chosen as the sum of truncated absolute differences (SAD).

In efficient large-scale stereo matching (ELAS) [19], a
prior disparity image is calculated by matching a set of
reliable support points and triangulating between them. A
maximum a posterior approach refines the disparities, and
disparity segments below a size of 50 pixels are removed.
A two-stage correlation method for stereoscopic depth esti-
mation (SNCC) [20] is a block matching stereo approach
with a summed normalized cross-correlation (SNCC) mea-
sure. Then, the standard post-processed is applied, includ-
ing error island removal (region growing), hole-filling and
median filtering. Real-time correlation-based stereo vision
with reduced border errors (Cens5), Hirschmller et al. [21] is

based on a correlation with five, partly overlapping windows
on Census-transformed images using the Hamming distance
as the matching cost. MAP disparity estimation using hidden
Markov trees (TMAP) [22] is amessage passing onminimum
spanning trees to acquire the maximum a posteriori disparity
estimates. Hirschmller [23] is the OpenCV’s “semi-global
block matching” method (SGBM2). The matching cost is
the sum of absolute differences over small windows. Aggre-
gation is performed by dynamic programming along paths
in only 5 of 8 directions. The iterative guided filter (IGF)
[27] is a stereo matching algorithm based on edge preserv-
ingfilter at cost aggregation (SADandCensus transform) and
image segmentation at disparity refinement stage, and for
morphological processing of stereoscopic images (MPSV)
[28], the computation of the sparse disparitymaps is achieved
by means of a 3D diffusion of the costs contained in the dis-
parity space volume. The watershed segmentations of the
left and right views control the diffusion process, and valid
measurements are obtained by cross-checking.

Frameworks such as [18–21] are focused on real-time
applications and are based on discriminating disparity esti-
mations on some areas, often considering similaritymeasures
with low computational cost, based on sets of previously
determined rules. Such frameworks are more prone to errors
with light, noise or exposure changes. Thus, the disparity
refinement and smoothing stage are necessary for increas-
ing a disparity map quality. Another group of frameworks
[17,22] rely on the stereo matching stage with full com-
putational cost, implementing exhaustive convolutions and
discriminating in later stages the incorrect disparities. Some
instances of these frameworks are capable of real-time appli-
cations based on parallelization [18], specifically with GPU
computation. In such cases, there is a continuous develop-
ment of GPUs with more computational capability. In this
instance, we opted to design a general framework and then
work toward a better adaptation in both, CPUandGPU.Thus,
we proposed two implementations, one focused onto smaller
datasets (CPU) and one for large-scale data (GPU). We used
MATLAB to design and prototype the proposed framework.
Then, an optimization was performed via migration to C++,
toward the creation ofMEXfiles (MATLABexecutable files)
in the case of CPU, with the C++ linear algebra library
Armadillo and multiple thread processing capabilities using
the application program interface (API) OpenMP. Also a
CUDA migration for the GPU implementation is presented.

3 Proposed method

The proposed method consists of the followings stages: a
color–space conversion from RGB to CIEL*a*b is applied
to the stereo pair, and then, in the L-channel, the Census
transform is applied to the stereo dataset, following a stereo
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Fig. 1 Diagram for proposed method

matching performed under the Hamming distance measure
(matching cost). Also, a match-check consistency is applied
for occlusion labeling in order to obtain the sparse disparity
map. In the next stage, a post-processing stage is performed
on the estimated DM. A weighted median filter is applied to
smooth objects and surfaces in the a*b* channels, reducing
the number of iterations required for a color segmentation via
k-means. On the other hand, an occlusion mask is obtained
from the sparse disparitymap. Finally, a clusteredmedian fil-
ter is employed,where theROI is determinedby the occlusion
mask and the color segmentation, estimating and smoothing
surfaces for a dense disparity map; the block diagram of the
method is presented in Fig. 1.

3.1 Pre-processing stage

The stereo pair is converted to CIELa*b* color–space, where
the L-channels are employed for the stereo matching stage
and the channels a*b*help to smooth the sparse disparitymap
along the color segmentation section in the post-processing
stage. Next, the Census transform is applied. The Census
transform can be described as a local binary pattern process-
ing method, in which every pixel is related to a binary value
of length N , where N is the number of local elements [15].
The transform is obtained using the Heaviside function of the
neighborhood (1). The function determines a number, which
is represented as a binary vector suitable for Hamming dis-
tance computation.

H(g(i+d1, j+d2) − g(i, j))

H(z) =
{
0 → z < 0
1 → z ≥ 1,

(1)

where the Census transform is applied only in horizontal,
vertical and diagonal axes across each local submatrix, thus
reducing the length of the binary value for each pixel

3.2 Stereo matching stage

For the stereo matching stage, the Hamming distance (2) was
selected, which is the number of coefficients in which two
binary vectors differ from each other [16].

HD(x, y) =
∑
i

|xi − yi | , (2)

The stereo matching process is done obtaining the Ham-
ming distance between every binary vector along the left and
right Census-transformed images, where Hamming distance
is the number of coefficients, in which two binary vectors
differ from each other to estimate the left disparity map, the
right image is shifted along the X -axis until the disparity
range is covered, and the winner-takes-all (WTA) approach
is performed to select a disparity value for each pixel. This
procedure is performed twice, one time for each image in
the stereo pair, according to the resolution of the stereo pair.
We propose that the 480p width resolution or lower should
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be estimated with a minimum kernel size of 9× 9. Two DM
are obtained and are compared to evaluate consistency and
occlusion labeling via the stereo match consistency process;
the result is a sparse DM.

3.3 Post-processing stage

In the post-processing stage, the weighted median filter is
applied to the left image, in order to speed up the k-means
clustering algorithm. The weighted median filter (WMF) is
an operator that replaces the current pixel with the weighted
median of neighboring pixels within a local window [24].
This method is edge preserving, which is a major task in
stereo matching smoothing techniques. The color segmenta-
tion data are added as a parameter for the clustered median
filter, along with the sparse DM and the occlusion mask. The
occlusion mask is a binary dataset containing 0s for every
occlusion or mismatched disparity value and 1s for every
valid disparity in the sparse DM. After application of the
CMF algorithm, the dense DM is finally obtained.

The WMF is very similar to bilateral filtering, where for
each local window, Gaussian weights are computed, and the
median is subsequently estimated based on those Gaussian
weights:

O[i, j] ∗ g[i, j] =
n∑

i=1

m∑
j=1

O[i, j]sort(g[xw − i, yw − j]),

(3)

where g is the image to be processed andO is a kernel suitable
for order filtering. The sort process is performed to establish
theweightedmedian value, whereweights are obtained using
the Gaussian difference:

w = e−(
( f (x,y)− f (ξ))

σr
)2

, (4)

where f (ξ) is the local window from the reference image
(the borders in this image will be preserved), f (x, y) is
a local window from the sparse DM defined at the x, y
position as center, and σr controls the weight between two
pixels. For handling occlusions, a binary mask is defined
according to the occlusions in the sparse DM. This approach
enables the local avoidance of all the labeled values in
the computation of each local weighted median, permitting
reduction in the areas with occlusions while smoothing the
surfaces, obtaining the dense disparity map at the end of the
process.

The goal of the k-means algorithm that is applied in clus-
tering stage (Fig. 1) is to minimize the objective function J
that measures the closeness between data points and cluster
centers:

Fig. 2 Diagram for post-processing stage

min
c j

(J ) =
K∑
j=1

n∑
i=1

∥∥∥x ( j)
i − c j

∥∥∥2 , (5)

When K -means is applied after the WMF, the number of
iterations required to converge to the solution for cluster-
ing is reduced, speeding up the color segmentation process
and avoiding scattered points that are present after only the
k-means segmentation, due to noise and textures in color
images. Once the color segmentation is completed, the data,
along with the binary mask occlusion and the sparse DM,
are processed with the CMF. The block diagram for this pro-
cess is presented in Fig. 2. In the CMF, disparity values are
median filtered with a main condition. The median value is
determined for every pixel, but only using data belonging
to the same color cluster. Data of a different color cluster
are discarded, and the median value obtained is utilized to
occlusion handling. Finally, a padding array is fixed for inter-
polation of the borders of the image, in order to obtain a full
DM with the same resolution as the stereo pair images.

3.4 Hardware implementations

The proposed method was implemented on a CPU Intel i7-
3770k 3.4GHz with 16Gb RAM. This implementation aims
for a fast and efficient process with low processing times.
With this goal in mind, the image resolutions and dispar-
ity ranges are limited to a quarter size. The process was
implemented on the IDEMATLAB R2015a, where the main
stages were programmed using the Aarmadillo C++ linear
algebra library and theAPIOpenMP formultithread compat-
ibility. The operating systemwasWindows 7 (64bit), and the
compiler for the MEX files was TDM-GCC with optimiza-
tion level O3. The GPU implementation was created using
a NVIDIA Quadro K2000D with 384 CUDA cores and a
memory interface of 2Gb GDDR5.

For the quarter-size simulation results, a multithread
similarity measure is proposed, via open multiprocessing
(OpenMP). OpenMP provides an easy method for thread-
ing applications based on shared memory architecture.
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The parallelization is achieved by adding directives in
C/C++ programs. These directives support the distribution
of autonomous tasks over the available processor cores.

For theGPU implementation, the data are sent to theGPU,
and theHamming distance is performed,where the block size
is fixed at 32×32 threads, and the grid size is estimated along
the image dimensions. The data are gathered and returned to
the CPU once the stereo matching process is complete. The
send and gather operations are performed only once for a
sparse DM estimation. The implementation was performed
via MATLAB R2015a, and the CUDA algorithm was com-
piled into a CUDA kernel for MATLAB usage.

Let explain novel framework in detail. The proposed
approach employs a customized Census transform and Ham-
ming distance as similarity measure in the stereo matching
stage, where a WTA (winner-takes-all) approach is used to
determine the best possible disparity. The post-processing
stage uses clustered median filtering. Here, the weighted
median filtering is applied to the original left image. Next,
a K -means color segmentation is applied in the CIELa*b*
color–space.Next, the clustering data and the occlusionmask
data are utilized in the clusteredmedianfilter to create a dense
disparity map.

4 Experimental results

4.1 Data

To evaluate the performance of the proposed method, the
most recent training set to date was taken from the Middle-
bury Stereo VisionWeb site [26]. The results of the proposed
method are compared to the results from other methods, as
tested on the same dataset, to demonstrate the robustness of
our approach to different image content and properties.

4.2 Quality criteria

Two quantitative metrics, similarity structural index measure
(SSIM) and percentage of bad matching pixels (B), are used.
The results of these metrics allow us to justify the efficiency
of the proposed framework and to compare the processing
times using the same metrics. To compute the selected met-
rics, the ground truths (GT) obtained from the Middlebury
Stereo Vision Web site for each stereo pair and the DM esti-
mate are employed.

The SSIM index is based on the fact that natural images
are highly structured; also, it is known that SSIM is more
consistent with human perception than other metrics, such as
PSNR or MAE. The SSIM contains three similarity metrics:
luminance (l), contrast (c) and structure (s). The SSIMmetric
values [25] are defined as:

SSIM(x, y) = [l(x, y)] · [c(x, y)] · [s(x, y)], (6)

The B values are calculated as shown:

B = 1

N

∑
(x,y)

(|DMI (x, y) − DMGT (x, y)| > δd), (7)

where N is the total number of pixels in an image or frame,
DMI is the estimated disparity, and DMGT is the GT. δ is
the error threshold difference for each pixel evaluated. There
are two results for B: sparse and dense. Sparse is the DM
estimated without any smothering stage, with occlusions
marked. Dense map is the post-processed DM. Sparse results
are shown only when these ones are available for other pro-
posals.

4.3 Evaluation results

The DM results for the Middlebury datasets are presented
in this section. Our proposed method is first compared in
quarter size with other DM sparse schemes. Next, the half-
size sparse frameworks are compared during evaluation. In
this comparison, only B measure and processing times are
presented. Finally, the half-size denseDMis presented for the
GPU implementations. For these results, the SSIM measure
is presented for every framework.

The B measure results show a robust performance despite
different resolutions, image sizes, exposures and light con-
ditions. For a better pixel-by-pixel comparison, a low δ

threshold value was chosen (δ = 0.5) for quarter size,
and δ = 1 for half size); this allows for the understand-
ing of the improvement made to the DM estimation in the
sparse stage only. Our approach is able to maintain qual-
ity over the number of pixels estimated in this stage, in

Fig. 3 B results for sparse disparitymap estimation for the quarter-size
dataset
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order to achieve acceptable B and to reduce the computa-
tional cost for an exhaustive approach at the stereo matching
stage for quarter-size dataset. In Fig. 3, our designed pro-
posal can be distinguished by the better performance at the
stereo stage, particularly in different light conditions (ArtL,
PianoL), which is a downside for most of the state-of-the-
art methods. Bricola et al. [28] showed better results, but
the processing time is almost 100 times greater than our
proposal for the same dataset size and sparse DM estima-
tion.

In the half-size dataset, the best result is achieved with
our proposal using Hamming distance for sparse DM estima-
tion, as shown in Fig. 4, where the scenarios with different
light conditions (ArtL, PianoL), exposure (MotorcycleE) or
misalignment (Playtable) are better estimated employing the

Fig. 4 B results for sparse disparity map estimation for the half-size
dataset

proposed method. Hamming distance as similarity measure
is often overlooked in fast implementations because of the
amount of processing time required, specifically with the
Census transform and the binary vector length, where it is
possible to short the binary values performing the Census
operator only in selected directions instead of using a full
kernel. However, the use of GPU implementation and cus-
tomized kernel for Census transform can compensate this
drawback. Subjective results are shown in Fig. 5 where the
comparison with state-of-the-art methods can be viewed,
demonstrating reduced number of mismatched disparities
(black areas); this is a crucial task to obtain better results in
the smoothing stage, allowing to reconstruct finer details and
edges. Non-occluded pixels visible mask, provided by Mid-
dlebury dataset, shows pixels that are visible in both views
of the stereo pair marked as white pixels, then occluded and
invalid pixels are marked as gray pixels, and mismatched
disparities related to black pixels are marked also in Fig. 5.

The dense disparity map results for the stereo pairs that
presents different light conditions, exposure or misalignment
are presented in Table 1, where the SSIM, B and process-
ing times with megapixel ratio are listed. For quantitative
comparison, B is evaluated only in discontinuity and non-
occluded regions, to show effectiveness of the proposal in
border regions. For the dense disparity map estimation in the
half-size dataset (Fig. 6), the weighted median filtering was
applied with a 15 × 15 kernel, and σr = 12. The Gaussian
weights were obtained from the L-channel of the left image,
and a binary mask that is based on as the occlusion labels
for each image. The results have shown that our proposal is
competitive among other better frameworks, despite the sim-
ple but efficient design of novel framework. The SSIM value
was obtained using an 11 × 11 Gaussian kernel and defin-
ing the dynamic range as the disparity range for every dense

Fig. 5 Error image results for the sparse disparity map estimation for
the half-size dataset fromMiddlebury dataset [26], Playtable stereo pair:
a non-occluded pixels visible mask, b Cens5, c ELAS, d TMAP and

e Hamming measure. PianoL stereo pair: f non-occluded pixels visible
mask, g Cens5, h ELAS, i TMAP and j Hamming measure
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Table 1 Average B for discontinuity regions

B Prop. GPU Cens5 ELAS TMAP SNCC

ArtL 31.21 32.05 28.39 29.91 30.02

MotorcycleE 38.75 37.43 48.86 33.09 35.09

PianoL 48.33 47.59 63.86 45.82 42.14

Playtable 57.02 65.30 67.01 56.64 61.94

Average B 43.82 45.59 52.03 47.95 50.21

SSIM Prop. GPU Cens5 ELAS TMAP SNCC

ArtL 0.8351 0.8382 0.8268 0.8837 0.8464

MotorcycleE 0.8411 0.8328 0.8385 0.8592 0.8455

PianoL 0.7497 0.8058 0.7853 0.8000 0.8253

Playtable 0.7362 0.6924 0.7482 0.8184 0.6343

Average SSIM 0.7905 0.7923 0.7997 0.8403 0.7879

Average time/Mp 31.59 1.08 0.48 1264 0.78

SSIM and processing times per megapixel results for dense disparity map estimation and processing times for the half-size dataset (δ = 2)

Fig. 6 Experimental results for the dense disparity map estimation for the half-size dataset from Middlebury dataset [26], ArtL stereo pair: a
ground truth, bCens5, c ELAS, d TMAP and eHamming measure. Jadeplant stereo pair: f ground truth, g Cens5, h ELAS, i TMAP and jHamming
measure

DM. Subjective results for dense disparity map estimations
can be seen in Fig. 6, where the CMF demonstrates better
performance in maintaining object features. One can see this
observing small details and edges in the zoomed imagewhere
finer details are reconstructed with visibly better perception.
Time processing values per megapixel demonstrate higher
values, but they are significantly better, even compared to
iterative frameworks, which run longer.

5 Conclusions

In this paper, a comparison between sparse and dense DM
estimation frameworks was presented, where the principal

contributions are: Firstly, the proposed technique uses a
customized Census transform scheme with GPU implemen-
tation. Secondly, we use Hamming measure in the stereo
matching stage implemented in GPU; the results have shown
that this appears to demonstrate better performance for the
sparse DM estimation than state-of-the-art methods espe-
cially in reconstructing finer details and edges. Finally, DM
estimation using a novel clustered median filtering was
designed and parallelized on their CPU implementation via
OpenMP. Experimental results have shown that Hamming
distance implemented on GPU is effective in estimation of
sparse DMs presenting higher quality than state-of-the-art
methods (especially in reconstructing finer details and edges)
and the dense DMs obtained using clustered median filter
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which are in both terms, objective and subjective, adequate
for a depth reconstruction of stereo pair images, maintaining
a parallel design to be more competitive in processing times.
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