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Abstract Viterbi algorithm (VA) applied to time–frequency
(TF) representation is a highly performed instantaneous fre-
quency (IF) estimator for discrete-time signals, but it suffers
from switch problem (SP) at the intersected points of mul-
ticomponents on TF plane. To suppress the SP in VA, an
improved VA (IVA) presented in this paper assumes that the
IF variation trends between two adjacent IF variation are not
large, and then, a novel penalty function is introduced and
added to the original VA. To verify the algorithm, the pro-
posed algorithm applied to several multicomponent signals
is firstly simulated; then, how parameter in the new penalty
function influences the performance is analyzed. Compar-
ison of the proposed algorithm with VA on signals in the
background of noise is also made in the next. Simulations
indicate that in contrast to the original VA, the proposed IVA
can effectively suppress the SP caused by the intersected IFs
and thus can achieve more accurate IFs for the multicompo-
nent signals especially those with monotonous IFs.

Keywords Viterbi algorithm · Instantaneous frequency
estimator · Multicomponent signals · Time–frequency
analysis

1 Introduction

Instantaneous frequency (IF) is an important parameter for
non-stationary signals in radar, sonar and other applica-
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tions, as it can reveal the time-varying characteristics of
the Fourier spectrums in the non-stationary signals [1–3].
IF estimation for discrete-time signals has been attracted a
lot of researches over the last decades, and various algo-
rithms have been proposed [4–6], and most of methods are
effective for the mono-component signals. IF estimate is
commonly easier for mono-component signals than for mul-
ticomponent ones, therefore, a number of signal extraction
algorithms based on null space pursuit [7,8], wavelet decom-
position [9], empirical mode decomposition (EMD) [10–12],
parameterized de-chirping [13] and blind source separa-
tion [14] can be implemented prior to the IF estimation.
However, these extraction techniques are not always effective
for the complicated multicomponent signal, and IF extrac-
tion for multicomponent signals is still a challenge. Due
to the time-varying characteristics of Fourier spectrum in
the multicomponent signals, IF estimation based on time–
frequency (TF) analysis among other methods is a natural
promising solution. After mapping one-dimensional (1-D)
signal into two-dimensional (2-D) time–frequency represen-
tation (TFR) using TF transform, IFs are located at TF ridges,
rather than TF points belonging to the noise and cross-terms.
Therefore, most of the current methods are based on TF anal-
ysis. IF estimation based on TFR is generally influenced by
the following factors: (a) noise; (b) other components; (c)
time–frequency distribution used; (d) IF detection method.
To suppress the noise and other components, TF filtering [15]
and the component extraction algorithms presented above
can be both applied. Corresponding to aforementioned (c),
while TFR with constant window cannot obtain the opti-
mal TF concentration because of the time-varying IFs, some
researchers attribute development of TFRs with adaptive
variable window widths [16–18].

Corresponding to aforementioned (d), other researchers
focus on IF estimators for multicomponent signal from
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TFR [19–23]. In [19–21], Hough transform applied to TFR
is proposed to estimate IFs of multicomponent signals. How-
ever, this transform needs prior information about the class
of signal’s law and IFsmust bemathematically depicted. The
transform is inefficient for components with different laws.
In [22], image processing techniques such as Markov ran-
dom field model are also utilized to estimate the overlapped
IFs.

In order to estimate IFs, one simple and direct approach is
to detect peaks on the TF plane. However, for low signal-to-
noise ratio (SNR) signals, the frequency fluctuation becomes
large so that this IF estimates could far from true IFs. Thus,
in [23], the continuous property was used by the IF detec-
tion on the TFR to obtain high-accurate estimates. Briefly,
assume that the IF passes through as many TF points as pos-
sible of Wigner distribution with strong magnitudes and that
the IF variations between two consecutive points are not too
large, two penalty functions are defined, and Viterbi algo-
rithm (VA) is introduced to estimate IF from TFR. VA is a
most effective IF estimator for low SNR mono-component
signals [23]. Furthermore, VA can be also potentially applied
to estimate IFs of multicomponent signals when signals are
separated well on the TF plane [24,25]. However, when IFs
are overlapped on the TF plane, switch problem (SP) could
arise, that is, one IF may switch to another IF at intersected
TF points [23], which leads to wrong IF trajectory. To avoid
this SP in the process of VA, this work attempts to propose an
improved VA to extract overlapped IFs from TFR. Assuming
that the IF variation trends between two adjacent IF varia-
tion are not intense, a novel penalty function is defined and
added to the original VA. As a result, SP among different
IFs can be largely suppressed and more accurate IFs can be
acquired.

This paper is organized as follows: An improved VA
scheme is depicted in the next section. Section 3 presents the
validation and performance analysis of the proposed algo-
rithm using a series of artificial multicomponent signals.
Conclusions are drawn in the last section.

2 Algorithms

2.1 Viterbi algorithm

To introduce our proposed method, we first review the orig-
inal VA. More detail can be found in reference [23].

After transforming a noisy signal into 2-D TFR, both sig-
nal and the noise are converted intoTFpoints on theTFplane.
The signal will concentrate on the IF ridge of TF points with
large amplitude, and the IF of signal should be commonly
smooth in a short time interval, while the noise will locate
on the TF points randomly across the TF plane with small
amplitude. Thus, the VA for IF estimation from TFR is pro-

posed based on two assumptions: (a) The estimated IF should
pass through as many TF points as possible with strong mag-
nitude. (b) The IF variation between two consecutive points
is not extremely large. After defining two penalty functions
corresponding to these two assumptions, the IF estimator can
be written as the line minimizing the corresponding sum of
the path penalty function [23]:

f̂ (n) = arg min
k(n)∈K

[
n2−1∑
n=n1

g(k(n), k(n + 1))

+
n2∑

n=n1

h (TF(n, k(n)))

]

= arg min
k(n)∈K p(k(n); n1, n2), (1)

where TF(n, k) is a TF point at time bin n and frequency
bin k, h(x) is a non-increasing function corresponding to the
first assumption (a) and g(x, y) is a non-decreasing function
with respect to the absolute difference between x and y cor-
responding to the second assumption (b), p(k(n); n1, n2) is
a sum of penalty functions h(x) and g(x, y), along the line
k(n), from time instant n1 to time instant n2, and K is the all
paths between n1 and n2.

Assume a discrete TFR has M (Frequency)×N (Time)
TF points, then n1 = 1, n2 = N , and the total path num-
ber K is equal to be MN from n1 to n2. When one IF is
estimated from TFR, the IF estimation in (1) is converted
into searching a line K (n) with minimal penalty from MN

paths.
For a considered time point n, the function h(x) can be

formed as follows. The TF values are first sorted into the
non-increasing sequence [23]:

TF(n, f1)≥TF(n, f2) ≥ · · · ≥ TF(n, f j )≥ · · ·TF(n, fM ),

(2)

where j = 1, 2, . . ., M, is the position within this sequence.
Since larger magnitude of TF points corresponds to smaller
penalty function, one simple h(x) is defined as [23]:

h
(
TF

(
n, f j

)) = j − 1. (3)

In this way, at the considered time point n, h(TF(n, f1)) = 0,
h(TF(n, f2)) = 1, . . ., h(TF(n, fM )) = M − 1, i.e., largest
TF point results in smallest penalty, second largest TF points
results in second smallest penalty, etc.

Meanwhile, a common linear form of g(x, y) can be
defined as [23]:

g(x, y) =
{
0, |x − y| ≤ Δ,

c(|x − y| − Δ), |x − y| > Δ.
, c,Δ > 0

(4)
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In this formula, the choice for Δ along c together deter-
mines themaximal expected value of the IFvariation between
consecutive points. In the realization, the selection of Δ is
based on the frequency resolution of TF transform. Good
results can be obtained by taking Δ and c corresponding to a
few neighboring points when high-resolution TF transforms
are used [23,25].

2.2 Proposed algorithm

VA performs well to estimate the mono-component signal
in the low SNR; furthermore, it can be also potentially used
to estimate well-separated IFs of multicomponent signal on
the TF plane [25]. However, when VA is applied to the over-
lapped IFs, switch problem occasionally occurs. That is, one
IF may switch to another IF at the intersected TF points
between two components. To demonstrate the disadvantage,
assume amulticomponent signal composed of one sinusoidal
frequency modulation (SFM) and one linear frequency mod-
ulation (LFM) components as:

s(t) = exp ( j80 cos(π t + π/4))︸ ︷︷ ︸
SFM

+ exp( j2t2)︸ ︷︷ ︸
LFM

. (5)

Assume the signal is sampled at the length of 256 points,
with sample frequency 256Hz, parameters Δ and c in (4)
are set to be 2 and 8, respectively. In principle, all the types
of TFRs can be selected for VA-based IF estimation. For
multicomponent m-D signals, however, TFR with high TF
resolution and good cross-term suppression should be pre-
ferred. It is reasonably concluded that higher performed TFR
will result in more accurate VA-based IF estimation. While
traditional short-timeFourier transform (STFT) lacks enough
TF resolution and Wigner–Ville Distribution (WVD) suf-
fers from serious cross-term interference, the filtered WVD,
known as Cohen class, is one of the good candidates. In this
paper, B-distribution (BD) is preferred for its high perfor-
mance on TF resolution and crossing-term suppression [26].
After transforming the signal into TFR using BD, VA-BD
is used to calculate two SFM IFs. The results are shown in
Fig. 1a, b. It is shown in Fig. 1b that the measured IF has
obviously switched from IF1 to IF2 at the region where two
IFs are overlapped.

The switch problem can be explained as follows: Accord-
ing to (1), both IF1 and IF2 correspond to two paths with two
minimal values across the BD. At the overlapped TF points,
the magnitude penalty function h(x) is almost the same for
two components. However, when IF1 switches to IF2 at the
overlapped points, the penalty function g(x, y) along IF2 is
smaller than the one along the IF1 itself. The penalty function
g(x, y) only assumes the IF variation between two consecu-
tive points x and y is not extremely large. It cannot guarantee
the continuous property of IF variation trends, i.e., when

Fig. 1 VA-BD for two SFM multicomponent signals. a BD, b VA-
based IF estimation. SP occurs where arrow ticks

the IF is calculated along the intersected region, the sign of
two adjacent IF variation trends should be identical in com-
mon. Therefore, analysis above illuminates us present a third
assumption to solve SP: The consecutive IF variation trends
are not large, and then, a new penalty function is introduced
as:

r(x, y, z)=
{
0 if (z−y)(y−x)>0
u |(z − y) − (y − x)| else

(6)

where u is a parameter for penalty function r(x, y, z), x, y, z
are the time adjacent three IF points, which determines the
suppressed level of SP in the IF estimation. Then, the function
(1) is revised as:

f̂ (n) = arg min
k(n)∈K

[
n2−1∑
n=n1

g(k(n), k(n + 1))

+
n2−2∑
n=n1

r(k(n), k(n + 1), k(n + 2))

+
n2∑

n=n1

h (TF(n, k(n)))

]

= arg min
k(n)∈K p(k(n); n1, n2), (7)

where the IF path is determined by three penalty functions.
In this way, one IF estimate is also converted into searching
a minimal path k(n) from K paths determined by (7), but
suppression of SP can be expected. Note that when u =
0, the improved VA is identical to VA. For simplicity, the
new proposed algorithm is named as improved VA (IVA).
Assume there are Lmax components in a multicomponent
signal, the IFs of multicomponent signal will be estimated
by IVA-BD one by one. Note that the implementation of
the proposed IVA is almost the same as VA, except that the
penalty function g(k(n), k(n + 1)) should be replaced as
g(k(n), k(n+1))+r(k(n), k(n+1), k(n+2)) when n ≥ 3.
It can be implemented by online realization, which has been
explained in detail in [23,25]. Thus, implementation of the
proposed method is summarized in the following textbox.
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Initializing step:

1. Setting IVA parameters ( Δ , c ,u),component order i = 0, component 

number Lmax and masking bandwidth δ .

2. Getting B-distribution BDi(n, k) of the considered signal.

3. Establishing the penalty functions h(BDi(n, k)), g(x, y) and r(x,y,z) as 

three sub-functions.

While i < Lmax

1. Estimating the IF ( )if n
∧

from BDi(n, k) according to Eq.(7).

2. Forming a new BD of signal by taking zero-values in the region around 

the determined IF by:

1
0, [ ( ) , ( ) ],( , )
( , ), ,

i i
i

i

k f n f nBD n k
BD n k others

δ δ
∧ ∧

+

⎧⎪ ∈ − += ⎨
⎪⎩ .

3. Updating  1i i→ + .

End

As a comparison, the same signal (5) at SNR = −2 dB is
evaluated using IVA. The parameters are set as: Δ = 2, c =
8, u = 12, δ = 12. The IVA-based IF estimation is shown
in Fig. 2a. VA-based IF estimate with different Δ and c is
presented in Fig. 2b–d. And the mean square error (MSE)
and mean absolute error (MAE) of IFs measured by 200
independent realizations are also displayed in Table 1.

Fig. 2 a IVA-based IF estimation, b–d VA-based IF estimation with
different parameters Δ and c

Table 1 MSE and MAE of IFs corresponding to Fig. 2

Components IVA (a) VA (b) VA (c) VA (d)

MSE

SFM 4.57 6.92 6.08 5.68

LFM 6.48 8.29 7.67 7.32

MAE

SFM 1.05 2.95 2.31 1.99

LFM 1.90 3.37 2.84 2.50

Note from Fig. 2b–d and Table 1 that smallerΔ and larger
c in VA result in smoother IF estimation and less MSE and
MAE, but SP always exists, meaning that wrong IFs are esti-
mated, and VA cannot solve the SP by adjusting the VA
parameters easily. However, as is shown in Fig. 2a, IVA suc-
ceeds to obtain IFswithout SP by selecting proper parameters
Δ, c and u, resulting in the smallest MSE and MAE for both
two IFs. To validate the algorithm, more simulation on per-
formance analysis will be implemented in the next section.

3 Simulation and performance analysis

In this section, a set of synthetic multicomponent signals
embedded in the white Gaussian noise with independently
real and imaginary parts are considered. The discrete signal
is expressed as:

s(nΔt) = x(nΔt) + w(nΔt), (8)

where n = 1, 2, . . ., N , N = 256, sampling interval Δt =
1/256s, E(w(nΔt)) = 0 and var(w(nΔt)) = σ 2. Assume
that the amplitude of each component equals to 1, the SNR is
defined as 10 log10(1/σ

2) dB. In the first part, IVA-based IF
estimation for twomulticomponent signals will be presented.
And in the next part, performance analysis of the proposed
algorithm on parameter selection of u is given. Meanwhile,
the comparison of IVA with VA at different SNRs will be
conducted.

3.1 Examples

3.1.1 Example 1

A signal with one LFM component and two SFM compo-
nents, which is defined as:

x(t) = exp ( j · (30 cos(2π t + π/6)))︸ ︷︷ ︸
SFM1

+ exp ( j · (25 cos(4π t + π/4)))︸ ︷︷ ︸
SFM2

+ exp( j · (20t2))︸ ︷︷ ︸
LFM

.

(9)

This signal is practical and usually modeled as the radar
returned echo from the rigid target with micro-motions such
as the helicopter with rotating blades [15,27]. Assume the
signal is corrupted with white Gaussian noise with SNR =
2 dB, the BD is displayed in Fig. 3, where three components
are seriously overlapped on the TF plane.

Both IVA and VA are applied on BD to estimate three IFs.
As is shown in VA, IFs are calculated one by one from BD.
Therefore, for seriously TF overlapped signals, the latter IF
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Fig. 3 BD of signal composed of one LFM and two SFM components
at SNR=2dB

Fig. 4 IF estimation for the signal composed of one LFM and two
SFM components. a IVA-based estimation, b–d VA-based estimation
with different parameters (color figure online)

derives from TFR with TF points around former estimated
IFs removed. As a result, the latter IF estimation is, the more
TF points removed from TFR are. Therefore, the possible
IF variation between two adjacent candidates of TF points,
especially for those located in overlapped regions, may be
large. So large Δ = 5 is set. Comparison of the IVA-based
IF estimation with VA-based IF estimation under various
parameters is shown in Fig. 4. The MSE and MAE of three
IFs are given in Table 2.

From Fig. 4, it is seen that compared with VA-BD, only
IVA-BD can succeed to obtain all the three IFs without SP.
Furthermore, for all the VAs, the LFM IF (red dashed line)
and SFM1 (black solid line) IF always switch together. As
is shown in Table 2, larger c and smaller Δ in VA result
in more accurate IFs only for SFM1 and LFM components
whose IFs are smoother. For SFM2 component with sharp
IF, larger c and smaller Δ could lead to larger IF error. For
IVA-based IF estimate, the most accurate SFM1 and LFM
IFs can be measured as there is no SP; however, note that the

Table 2 MSE and MAE for three IFs

Components IVA (a) VA (b) VA (c) VA (d)

MSE

SFM1 5.62 10.70 10.51 8.29

SFM2 15.28 9.46 10.21 20.49

LFM 5.33 10.33 10.04 7.90

MAE

SFM1 2.99 6.64 6.63 5.07

SFM2 9.43 5.96 6.21 13.08

LFM 1.56 5.41 5.31 3.76

performance of IVA degrades for SFM2 component com-
pared with VAs in Fig. 4b–c. The reason can be explained:
This SFM IF has two peaks and one nadir, and the sign of IF
variation reverses at these extremes. The IF estimates along
the peaks or nadirs will be recognized as SP and suppressed
by the proposed function (6). This example indicates the pro-
posed IVA is more suitable to measure the multicomponent
signals with monotonous and smooth IFs. To further vali-
date the conclusion, another signal composed of three SFM
components with sharp IFs will be considered.

3.1.2 Example 2

It has been verified from Example 1 that the selection of
parameters Δ and c is related to the IF variation of the com-
ponents in the considered signal. As a result, the performance
of IVA will be different for the components in the same sig-
nal, depending on the IF variation. Also, when mapping the
signal into TF plane using TFR, the TF concentration of the
components will be also different; this further degrades the
performance of the proposed algorithm. To alleviate from the
influence of IF variation and focus on the analysis of param-
eter selection, we present another three-component signals
with the same SFM but different time-shifting IFs:

x(t) = exp ( j25 cos(2.4π t + π/3))︸ ︷︷ ︸
SFM1

+ exp ( j25 cos(2.4π(t − 0.3) + π/3))︸ ︷︷ ︸
SFM2

+ exp ( j25 cos(2.4π(t − 0.6) + π/3))︸ ︷︷ ︸
SFM3

. (10)

Assume SNR = 2 dB, the BD of the signal is given in
Fig. 5. It is shown in Example 1 that the proposed VA cannot
perform well for the sharp IF curve with peaks or nadirs. We
applied VA and IVA with different parameters to the signal,
respectively, and the results are displayed inFig. 6. TheMSEs
and MAEs for three IFs are shown in Table 3.
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Fig. 5 BD of a signal composed of tree time-shifted IFs of SFM com-
ponents

Fig. 6 IF estimation for signal composed of three SFM components.
a, b VA-based estimation, c, d VA-based estimation

As is demonstrated in our previous work [25], smaller Δ

and larger c may result in smoother IF; however, it may lead
to the higher possibility of SP. Increasing the value of Δ and
decreasing the value of c would result in less SP but lead to
more IF fluctuation. The conclusion is validated in Fig. 6a,
b, where IF estimate in Fig. 6a has smoother IFs but more
SP; on the other hand, the estimate in Fig. 6b has more IF
fluctuation but less SP. As the result, IF estimation by VA
withΔ = 2 and c = 8 is more accurate. However, no correct
IF curve is successfully extracted.

As is shown in reference [25], larger Δ and smaller c
should be selected for the seriously overlapped components.
Therefore, set Δ = 6, c = 4, IVAs with u = 3, 5 are applied
to the BD to extract the IFs, the results are given in Fig. 6c,
d, the simulation is also similar to previous Example 1, and
larger u can result in better suppression of SP; however, IF
estimate searching along the peaks and nadirs of IF curves is
considered as SP, and this searchingwill be prevented by IVA.
As is shown in Table 3, although IF curves are sometimes

Table 3 MSEs and MAEs of estimated IFs corresponding to Fig. 6

Components VA (a) VA (b) IVA (c) IVA (d)

MSE

SFM1 21.23 21.94 21.67 21.85

SFM2 20.77 22.53 21.01 21.98

SFM3 19.45 19.85 19.38 19.52

MAE

SFM1 14.18 14.68 14.62 15.00

SFM2 13.56 14.42 13.90 14.82

SFM3 12.55 12.84 12.75 13.14

estimated successfully in Fig. 6d, the IF error is larger than
this by VA, and larger u will lead to larger IF error.

3.2 Influence of parameter u on performance

In this part, we are going to investigate the performance of
IVA under different u. To quantify the performance, theMSE
between the estimated IF and theoretical IF is used. Then, set
Δ = 5, c = 8, and u = 4, 8, 12, 16 respectively, and MSEs
of three components in Example 1 are calculated at SNRs
from −10 to 5dB. MSE at each SNR is calculated by the
independent 200 process. The results for three components
are shown in Fig. 7. As is shown in Fig. 4, theVA-based IFs of
SFM1 and LFM switch together; therefore, accuracy of VA-
based SFM1 and LFM in Fig. 7a, c is lowest. IVA can effec-
tively avoid the problem, andwhen u or SNR becomes larger,
the IF is more accurate. For the SFM2 estimation, since there
is no SP, the accuracy of SFM2 IF will be almost the same
for two algorithms when u = 4 in IVA, which is verified
in Fig. 7b. However, when u = 8, 12, 16, IF error becomes
larger and the performance of IVA is worse thanVA. The rea-
son is that SP of IVA for SFM2 also ariseswhen u is too large.

In general, as is shown in Fig. 7a, c, larger u in IVA is,more
SP is suppressed. Furthermore, larger u will result in less
IF fluctuation. Therefore, more accurate IF can be obtained.
However, the conclusion is more suitable for monotonous
IF. For the non-monotonous IF, the sign of IF variation at
the extremes will also reverse. Therefore, when u becomes
too large for the sinusoidal IF, IF error increases. And more
peaks or nadirs there are, more likely expansion of IF error
occurs. As a result, the IVA-based sinusoidal IF1 with less
peaks and nadirs and linear IF3 are more accurate than VA-
based IFs under different parameteru at all SNRs from−10 to
5dB. For the sinusoidal IF2with larger oscillating frequency,
however, IVA-based IF estimation accuracy is worse thanVA
for different u except when u is about 4.

To confirm the conclusion, a multicomponent noise-free
signal composed of two SFM components is constructed as:
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Fig. 7 IVA-based IF estimation for three components with different
parameter u. a SFM1, b SFM2, c LFM

x(t) = exp ( ja1/ f1 cos(2π f1t + φ1))︸ ︷︷ ︸
SFM1

+ exp ( ja2/ f2 cos (2π f2t + φ2))︸ ︷︷ ︸
SFM2

. (11)

Set a1 = 40, f1 = 0.5 Hz, φ1 = π/3, a2 = 60, φ2 =
−π/2, vary f2 from 1 to 5Hz, and then, we investigate the IF
estimation of SFM2using the proposed IVAwithu ∈ (1, 12).
Note that the performance of IVA is highly relevant to TFR,
and when the oscillating frequency of SFM2 changes, the
TF concentration and cross-term suppression of BD differ
largely. Thus, to alleviate from the TFR influence on the
performance, BD of each SFM component is first calculated
respectively, and the IVA is then applied to sum of two BDs.
In this process,window length ofBD is also adjusted properly
with f2. Set Δ = 5, c = 8, and MSE of each IF at different
parameter u is calculated. The results are displayed in Fig. 8.
The results are consistent with the previous analysis. When
f2 of SFM2 becomes larger, there are more peaks and nadirs
in the SFM IF trajectory; therefore, larger parameter u leads
to more IF error. For f2 = 1, the IF curve is smooth, so the
IF estimate is always accurate when u changes from 1 to 12.
For f2 = 2, IF is accurate when u changes from 1 to 8; For
f2 = 3, u should be set from 1 to 4. When f2 = 4, the IF
curve changes sharply, andmore overlappedTF points, peaks
and nadirs of IF curve arise, parameter u should be only 1. Till
f2 = 5, IVA fails to estimate the SFM2 IF with largest error.
To summarize this subsection, similar to the parameters

in VA, the value of parameter u should be also set according
to the IF characteristics in the considered signal. Generally,
IVA is more suitable for the overlapped multicomponent sig-
nals with monotonous IFs, since larger parameter u could
suppress the SP effectively. When IFs of the considered sig-

Fig. 8 MSE of IF estimate of SFM2 with different f2 when u varies
from 1 to 12 in IVA

Fig. 9 Comparison of IVA with VA under different parameters for
three components. a SFM1, b SFM2, c LFM

nal are non-monotonous, especially for the overlapped IFs
with many peaks or nadirs, however, larger parameter u may
probably lead to more SP, because the sign of IF variation
also reverses at the peaks and nadirs in the IF curve and IF
estimate along the extremes is considered as SP in mistake.
Parameter u is recommended to be several values and should
be adjusted depending on the IF characteristics in the signal.

3.3 Compared with VA with different c and Δ

To further verify the performance of IVA, more comparison
of IVA with VA under different parameters will be made in
this subsection. Signal at SNR from−10 to 5dB inExample 1
is also used. Results are plotted in Fig. 9a–c. The conclusion
is similar to that in Fig. 8. It is shown in Fig. 9a, c that
when u = 8,Δ = 5, c = 8, IVA can calculate the SFM1 and
LFMcomponents with the highest accuracy, but the accuracy
for SFM2 is almost the lowest. When IVA parameters u =
4,Δ = 5, c = 8, IVA can obtain the higher estimate for
SFM2, but the IF accuracy for SFM1 and LFM becomes

123



178 SIViP (2018) 12:171–179

lower. Furthermore, for SFM1 and LFM components, the
accuracy is almost the same as that for VA with parameters
Δ = 2, c = 18 when SNR is below 1dB. When SNR is
larger than 1dB, IVA estimate for SFM1 and LFM is better
than those from all the VAs. When Δ = 2, c = 18, the
accuracy estimate is the lowest for SFM2 because of switch
problem. Therefore, in order to obtain all three components
with high accuracy, IVA with u = 4,Δ = 5, c = 8 is a
compromised choice.

4 Summary and conclusion

When VA is applied to estimate IFs of multicomponent sig-
nals from TFR, SP may occur at intersected points of several
IFs; therefore, wrong IFs may be obtained. In order to sup-
press the SP in VA, this paper assumes that the sign of the
two adjacent IF variations should not be reverse and a new
penalty function is defined. To validate the IVA, two artifi-
cial multicomponent signals are simulated. Compared with
VA, the smooth IFs are successfully extracted without SP.
To quantify the performance of IVA, the MSE or MAE of
each IF at various SNRs is also calculated for both VA and
IVA. The results show that the proposed IVA can obtainmore
accurate IFs than VA for all the components.

Similar toVA, the performance of IVA is related to the sev-
eral parameters in penalty functions [25]. In general, larger u,
c and smallerΔ result in smoother IF. Largeru could suppress
SP more effectively. However, for some signals especially
those composed of non-monotonous or sharp IF components,
the conclusion is not always correct and large u could lead
to erroneous IFs.

The algorithm is more suitable for the multicomponent
signals with overlapped monotonous IFs and cannot perform
well for signals with step or sharp IFs. Similar to VA, the
algorithm is alsohighlydependent on the selectedTFR.Other
highly performed TFR for multicomponent signals can be
openly applied. All these works will be further investigated
in the future.
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