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Abstract Direction-of-arrival (DOA) estimation of multi-
ple emitters with sensor arrays has been a hot topic in the
area of signal processing during the past decades. Among
the existing DOA estimation methods, the subspace-based
ones have attracted a lot of research interest, mainly due to
their satisfying performance in direction estimation preci-
sion and super-resolution of temporally overlapping signals.
However, subspace-based DOA estimation methods usually
contain procedures of covariance matrix decomposition and
refined spatial searching, which are computationally much
demanding and significantly deteriorate the computational
efficiency of these methods. Such a drawback in heavy com-
putational load of the subspace-based methods has further
blocked the application of them in practical systems. In this
paper, we follow the major process of the subspace-based
methods to propose a new DOA estimation algorithm, and
devote ourselves to reduce the computational load of the two
procedures of covariance matrix decomposition and spatial
searching, so as to improve the overall efficiency of the DOA
estimation method. To achieve this goal, we first introduce
the propagatormethod to realize fast estimation of the signal-
subspace, and then establish aDOA-dependent characteristic
polynomial equation (CPE) with its order equaling the num-
ber of incident signals (which is generally much smaller
than that of array sensors) based on the signal-subspace esti-
mate. The DOA estimates are finally obtained by solving
the low-dimensional CPE. The computational loads of both
the subspace estimation and DOA calculation procedures are
thus largely reduced when compared with the corresponding
procedures in traditional subspace-based DOA estimation
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methods, e.g., MUSIC. Theoretical analyses and numerical
examples are carried out to demonstrate the predominance
of the proposed method in both DOA estimation precision
and computational efficiency over existing ones.

Keywords Array signal processing · Direction-of-arrival
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1 Introduction

The problem of direction-of-arrival (DOA) estimation with
sensor arrays is widely studied in various areas [1–4], includ-
ing radar, sonar, astronomy and seismic detection. Various
methods have been proposed to dealwith this problem,which
can be coarsely separated into three categories, i.e., the spec-
tral ones [5–12], the subspace-based ones [13–19] and the
sparsity-inducing ones [20–28]. The methods based on spa-
tial spectrum analyzing were proposed much earlier before
the others, but they perform not very well in DOA estimation
precision and simultaneous signal resolution [5–12]. Thus,
they were replaced by the subspace-based ones quickly after
the proposal of MUSIC [13]. The sparsity-inducing meth-
ods have attracted much research attention recently. They
have been demonstrated in various numerical experiments to
surpass their counterparts in DOA estimation precision and
adaption to demanding signal environments with low signal-
to-noise ratio (SNR) or limited snapshots [20–28]. However,
their shortcoming in heavy computational load is also very
significant.

The subspace-based methods perform appropriately bet-
ween the spectrum and the sparsity-based ones in DOA
estimation precision and computational efficiency, and they
are preferred by most researchers among the existing meth-
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ods in the past decades, mainly due to their conciseness
in implementation, moderate performance in direction esti-
mation precision and super-resolution of spatially adjacent
emitters [13–19]. Although the traditional subspace-based
DOA estimation methods, e.g., MUSIC [5], are computa-
tionally far more efficient than the sparsity-inducing ones
[20–28], they still contain two computationally consuming
procedures, i.e., eigen-decomposition of the array output
covariance matrix and refined spatial searching. The com-
putational loads of the two procedures aggravate rapidly
with the increase in array sensor number and enhancement
of required DOA estimation precision. Sufficient literatures
have contributed much to improve the computational effi-
ciencies of these two procedures. A large amount of them
make use of special geometries of particular arrays and
use numerical algorithms to replace refined spatial search-
ing, such as root-MUSIC [14] and ESPRIT [15], so as to
improve the efficiency of the DOA calculation procedure.
For reducing the computational load of the subspace esti-
mation procedure, the most widely studied technique is the
propagator method (PM) [29], which substitutes algebraic
calculation for matrix decomposition to obtain estimates of
the signal- and/or noise-subspace of the array outputs.

Although the existing fast methods have gone some steps
ahead in saving the computational load of DOA estimation,
they still have an obvious shortcoming. That is, they gener-
ally consider only one of the two computationally consuming
procedures, and the computational load for DOA estimation
is not saved as a whole. A straightforward idea for solving
such a problem is to combine two algorithms which aim at
fast subspace estimation and DOA calculation, respectively,
so that the computational efficiencies of both procedures can
be improved all together, and the DOA estimation is thus
implemented in shorter time. By now, such a combinational
idea has been successfully applied to solve the 2-D DOA
estimation problem in [30,31], which introduce both PM and
ESPRIT to realize fast 2-D direction finding. But this method
increases largely the dimension of the array output when
estimating the propagator, and thus, the computational loads
of the successive subspace estimation and numerical DOA
calculation are aggravated unexpectedly. In order to further
improve the computational efficiency of DOA estimation, we
present a PM-based low-dimensional (LD) equation rooting
method in this paper. The propagator is used to realize fast
signal-subspace estimation, and the signal-subspace estimate
is then exploited to establish a characteristic polynomial (CP)
equation with a very low order, which equals the number of
the incident signals. The DOA estimates are finally obtained
by solving this low-dimensional equation. By following such
an implementation flow, the computational loads within both
procedures of subspace estimation and DOA calculation
are significantly saved, and the computational efficiency for
DOA estimation is improved as awhole. The rest of the paper

mainly consists of four parts. Section 2 formulates the DOA
estimation problem and reviews the implementation process
of traditional subspace-basedDOA estimationmethods. Sec-
tion 3 proposes the newDOA estimation method step by step
with detailed derivations and implementations and also com-
pares the computational efficiency of the proposed method
with that of the existing methods theoretically. Section 4
demonstrates the predominance of the proposedmethod over
existing ones via numerical examples, and Sect. 5 concludes
the whole paper.

2 Problem formulation

Suppose that K signals impinge onto an M-element uniform
linear array (ULA) consisting of omnidirectional sensors
from directions of Θ = [θ1, . . . , θK ] simultaneously, the
array output at time t is

x(t) = A(Θ)s(t) + v(t), (1)

where A(Θ) = [a(θ1), . . . , a(θK )] is the array respond-
ing matrix, each matrix column a(θk) = [1, e jψk , . . . ,

e j (M−1)ψk ]T is the array responding vector of a single sig-
nal, ψk = 2πDsinθk/λ represents the phase shift of the
kth signal when propagating between adjacent array sen-
sors, D is the spacing between adjacent array sensors, λ

is the signal wavelength, which is assumed to be equal for
different signals as there is usually a spectral filter before
the digital sampler letting in only signals of identical fre-
quencies, s(t) = [s1(t), . . . , sK (t)]T is the signal waveform
vector consisting of the K signal samples at time t and
v(t) = [v1(t), . . . , vM (t)]T is the additive array noise, which
is generally assumed to be independent between different
array sensors and identically Gaussian distributed.

If N snapshots, denoted by X = [x(1), . . . , x(N )], are
collected by the array receiver during the observation inter-
val, the array output covariance can be estimated as follows
[13]:

R̂ = 1

N
XXH = 1

N

N∑

t=1

x(t)xH (t). (2)

The estimation precision of the covariance matrix impro-
ves when more snapshots are collected, i.e., as N increases.
When N approaches infinity, the estimate is disturbance-free
as follows:

R = lim
N→+∞ R̂ = A(Θ)RsAH (Θ) + σ 2IM , (3)

whereRs = limN→+∞ 1
N

∑N
t=1 s(t)s

H (t) is the disturbance-
free covariance matrix of the signal waveform vector, σ 2 is
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the variance of the additive noise, IM is the unit matrix with
dimension M × M .

When N is moderately large, R̂well approximatesR, and
the randomness of the additive noise is significantly reduced
from the array covariance matrix in the statistical sense, as is
shown in the expression of R. The effect of the array noise
in the covariance matrix estimate can thus be well separated
from the signals. Based on the fast developing of digital sam-
plers, we are now able to collect a great amount of samples
even for temporally very short signals, such as radar pulses
which may be as short as several microseconds.

As the signal components are statistically separated from
the additive noise in R, and R̂ well approximates R when
the snapshot number is adequately large, researchers have
been trying different ways to extract the signal components
from the noisy covariance matrix estimate and then obtain
DOA estimates based on them. Subspace-based methods,
such as MUSIC [13], achieve this goal by decomposing the
covariance matrix into signal- and noise-subspaces, which
are orthogonal to each other and the signal-subspace spans a
hypersurface identical to that spanned by the array respond-
ing vectors.

In the subspace-based methods, R̂ is eigen-decomposed
to estimate the signal-subspace Ûs and noise-subspace Ûn,
i.e.,

R̂ =
[
Ûs Ûn

] [
Σ̂s 0
0 Σ̂n

] [
Ûs Ûn

]H
, (4)

where Σ̂s and Σ̂n are diagonal matrices with K larger and
M−K smaller eigenvalues on their diagonals in the descend-
ing order.

It can be concluded through theoretical derivations that
[13]

span{A(Θ)} = span{Us} & span{A(Θ)} ⊥ span{Un}, (5)

where Us and Un are signal- and noise-subspaces of R, they
can also be deemed as perturbation-free counterparts of Ûs

and Ûn, respectively, span{Z} represents the space spanned
by the columns of Z.

When adequatelymany snapshots are collected, R̂ approx-
imatesRwell and Ûn also approximatesUn well; thus,A(Θ)

is orthogonal to Ûn with minute deviations. Such an approx-
imate orthogonality between the array responding vectors of
the incident signals and the estimated noise-subspaces is then
exploited for DOA estimation as follows:

Θ̂ = argmax
Θ

{[
aH (θ)ÛnÛ

H
n a(θ)

]−1
}

. (6)

The cost function within the brace in (6) is calculated by
checking the candidate directions within the potential spatial

domain of the incident signals. When θ approaches one of
the K signal directions, the orthogonality between a(θ) and
Ûn is enhanced, and the cost function is maximized locally.
Since the space spanned by span{Us} has a dimension of
M − K , its orthogonal space has a dimension of K , thus the
cost function will not maximize at directions other than the
K ones corresponding to the incident signals.

In order to catch the maxima in (6) with satisfying pre-
cision, and also obtain refined DOA estimates, the spatial
search procedure in (6) is generally implemented with a very
small directional step, which may be as small as 0.1◦ or
0.01◦. The smaller the directional step is, the more testings
are required to complete spatial searching, and the heavier
the computational load of this procedure will be. In addition,
the eigen-decomposition procedure is also computationally
consuming, especially when the array sensor number is very
large. The two procedures thus aggravate the computational
load of the subspace-based methods significantly. In order
to overcome the shortcoming of the subspace-based meth-
ods in heavy computational load, researchers have made
great efforts to propose more efficient optional methods.
PM [29] and root-MUSIC [14] are two representative ones
among the most widely studied fast DOA estimation meth-
ods, and they can be combined together to further reduce the
computational load for DOA estimation [30,31]. But as root-
MUSIC requires the solving of a (2M −2)th-order equation,
its computational load is still significant when the array is
large.

3 Computationally efficient direction finding

In this section, we first exploit the technique of PM to
obtain a signal-subspace estimate of the array output covari-
ance matrix, and then establish a K th-order DOA-dependent
equation for DOA calculation based on the signal-subspace
estimate.

3.1 Fast subspace estimation using PM

The technique of PM realizes fast subspace estimation via
numerical calculations by making use of the array out-
put covariance matrix, which avoids the computationally
heavy procedure of matrix eigen-decomposition. In the pre-
vious literatures, the noise-subspace is considered more
often than the signal-subspace, because the former can be
exploited straightforwardly for successive DOA estimation
in subspace-based direction finding methods.

The noise-subspace estimate given by PM is [29]

Q̂n =
[
P̂
H − IM−K

]H
, (7)
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where P̂ = (R̂
H
1 R̂1)

−1R̂
H
1 R̂2 with R̂1 and R̂2 being the sub-

matrices consisting of the first K and last M − K columns
of R̂ and IM−K stands for the (M − K ) × (M − K ) identity
matrix.

The noise-subspace estimate obtained from (7) is then
used for DOA estimation by exploiting certain orthogonal-
ity testing method such as refined spatial searching, and the
DOA estimates are given by

Θ̂ = argmax
Θ

{[
aH (θ)Q̂nQ̂

H
n a(θ)

]−1
}

. (8)

It should be noted that further orthogonalization of the
columns of Q̂n in (7) helps to improve the precision of the
noise-subspace estimate and the final DOA estimates, and
the variant method is named orthogonal propagator method
(OPM) [29]. But as the orthogonalization process aggravates
the computational load of PM,which deviates from themajor
goal of the research in this paper, we do not take it into
account.

In our method, it is the signal-subspace, instead of the
noise-subspace, that will be used for successiveDOAestima-
tion; thus, we extend the PM technique mentioned above for
signal-subspace estimation. According to the orthogonality
between the signal- and the noise-subspaces, the signal-
subspace estimate can be easily obtained based on (7) as
follows:

Q̂s =
[
IK
P̂
H

]
, (9)

where P̂ is defined in the same way as that in (7) and IK
represents the K × K identity matrix.

For notational convenience, we also denote the perturba-
tion-free counterpart of Q̂s by Qs.

3.2 Fast DOA estimation via low-dimensional equation
rooting

After estimating the signal-subspace according to (9), our
idea of fast DOA estimation is implemented by establish-
ing and solving a low-dimensional equation with roots of
e jψk (k = 1, . . . , K ). Denote the coefficients of such an equa-
tion by bK−1, . . . , b0, i.e.,

f (α) =
K∏

k=1

(
α − e jψk

)
= αK+bK−1α

K−1+· · ·+b1α+b0.

(10)

Also denote b = [b0, b1, . . . , bK−1]T and

B =

⎡

⎢⎢⎣

b0 b1 · · · bK−1 1 0T(M−K−1)×1
.
.
.

. . .
. . .

. . .
. . .

.

.

.

0T(M−K−1)×1 b0 b1 · · · bK−1 1

⎤

⎥⎥⎦

(M−K )×M

,

(11)

By setting α = e jψk for k = 1, . . . , K in (10) and mul-
tiplying both sides with e j Jψk , one can yield the following
system of homogeneous equations,

[
bT, 1

]
⎡

⎢⎣
e j Jψ1 · · · e j JψK

...
. . .

...

e j (J+K )ψ1 · · · e j (J+K )ψK

⎤

⎥⎦ = 01×K

J = 0, . . . , M−K .

(12)

In can then be concluded by combining (11), (12) and the
formulation of A(Θ) that

BA(Θ) = 0(M−K )×1. (13)

As Qs is a substitution of A(Θ), it also holds that

BQs = 0(M−K )×1. (14)

Similarly, by setting α = e jψk for k = 1, . . . , K in (10)
and multiplying both sides with e− j (J+K )ψk , one can yield
another system of homogeneous equations as follows:

[
bT, 1

]
⎡

⎢⎣
e− j (J+K )ψ1 · · · e− j (J+K )ψK

...
. . .

...

e− j Jψ1 · · · e− j JψK

⎤

⎥⎦ = 01×K

J = 0, . . . , M−K .

(15)

Thus, the equalities of BÃ(Θ) = 0(M−K )×1 also hold
similar to (15), which can be deemed as a conjugate form
of the result presented in [32], together with the following
equalities,

BQ̃s = 0(M−K )×1. (16)

where Ã(Θ) and Q̃s are variants ofA(Θ) andQs by reversing
the order of the rows and conjugating the matrix elements.

Denote the columnvector formed by themth row elements
of Qs by qm , i.e., qm = [Qs(m, 1), . . . ,Qs(m, K )]T, and
then, (12) can be rewritten as follows
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b0q1 + b1q2 + · · · + bK−1qK + qK+1 = 0K×1,

...

b0qM−K +b1qM−K+1+· · · + bK−1qM−1+qM =0K×1.

(17)

or more compactly as

b0vec
([
q1, . . . ,qM−K

])

+ b1vec
([
q2, . . . ,qM−K+1

])

+ · · ·
+ bK−1vec

([
qK , . . . ,qM−1

])

+ vec
([
qK+1, . . . ,qM

]) = 0(M−K )K×1, (18)

where vec(Γ ) stands for the column vector established by
concatenating the columns of Γ .

Similarly, (15) can be rewritten as follows

b0vec
([
q∗
M , . . . ,q∗

K+1

])

+ b1vec
([
q∗
M−1, . . . ,q

∗
K

])

+ · · ·
+ bK−1vec

([
q∗
M−K+1, . . . ,q

∗
2

])

+ vec
([
q∗
M−K , . . . ,q∗

1

]) = 0(M−K )K×1, (19)

where ( )∗ is the conjugate operator.
Denote Σl = [ql ,ql+1, . . . ,qM−K+l−1] and Σ

′
l =

[q∗
M−K+l−1, . . . ,q

∗
l ], and then, the following equations can

be obtained by combining (18) and (19),

b0vec
([

Σ1,Σ
′
K+1

])
+ b1vec

([
Σ2,Σ

′
K

])
+

· · · + bK−1vec
([

ΣK ,Σ
′
2

])
+ vec

([
ΣK+1,Σ

′
1

])

= 02(M−K )K×1, (20)

In order to simplify the notations, we further denote
Ψ = [vec([Σ1,Σ

′
K+1]), . . . , vec([ΣK ,Σ

′
2])] and γ =

vec([ΣK+1,Σ
′
1]), and then, an estimate of the coefficients

of the equation in (10) can be derived from (20) as follows:

b = −Ψ †γ. (21)

As only finite snapshots can be collected in practical appli-
cations, the signal-subspace estimate is always perturbation
contaminated, and thus, only approximate equation coeffi-
cients can be obtained.Wedenote the perturbated counterpart
of (21) as follows:

b̂ = −Ψ̂ †γ̂ . (22)

where Ψ̂ = [vec([Σ̂1, Σ̂
′
K+1]), . . . , vec([Σ̂K , Σ̂

′
2])], γ̂ =

vec([Σ̂K+1, Σ̂
′
1]), Σ̂l = [q̂l , q̂l+1, . . . , q̂M−K+l−1], Σ̂

′
l =

[q̂∗
M−K+l−1, . . . , q̂

∗
l ] and q̂m =[Q̂s(m, 1), . . . , Q̂s(m, K )]T.

The coefficient estimates can then be used to establish the
characteristic equation as

f̂ (α) = αK + b̂K−1α
K−1 + · · · + b̂1α + b̂0. (23)

Solving this equation yields its K roots α̂k for k = 1, . . . , K ,
the signal directions are then estimated according to

θ̂k = sin−1(Ang(α̂k)λ/2πD), k = 1, . . . , K , (24)

where Ang(·) means taking the angle of a complex scalar.

3.3 Computational load analysis

It can be concluded from the implementation process of
the new method that, with the signal-subspace being esti-
mated using the PM technique, only numerical calculations
as shown in (22) are needed to establish the K th-order
characteristic equation, which is then solved with efficient
algorithms to obtain the signal DOA estimates. The estima-
tion of the signal-subspace requires KM2 + K 2(M − K ) +
O(K 3) complex multiplications, the estimation of the equa-
tion coefficients requires 2K (K + 1)(M − K ) + O(K 3)

complex multiplications, and the solving of the Kth-order
equation requires only O(K ) calculations by using numeri-
cal methods such as the gradient descent algorithm. As the
number of array sensors is generally far larger than that of
incident signals, i.e., M � K , the computational complexity
of the proposed method can be approximated as KM2 com-
plex multiplications in total by neglecting the lower-order
items.

According to similar analyses, it can also be concluded
that the original MUSIC algorithm requires approximately
O(M3) complex multiplications to estimate the noise-
subspace and much more calculations to scan the potential
spatial scope with a refined step to estimate the signal direc-
tions. The method of root-MUSIC is computationally more
efficient thanMUSIC, as it replaces the spatial scanning pro-
cedure with much simpler equation rooting, but it still needs
to eigen-decompose the array output covariance to estimate
the noise-subspace. Its computation load is about O(M3)

complex multiplications, which is much heavier than that of
the proposed method as M � K .

4 Numerical examples

This section carries out two groups of simulations, so as to
compare the performance of the proposed method (denoted
by PM+LD − rMUSIC) and themethod combining PM and
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Fig. 1 Detection probabilities of PM + rMUSIC and
PM + LD − rMUSIC for varying SNR with fixed signal direc-
tions at 5◦ and 10◦

root-MUSIC (denoted by PM + rMUSIC) in detection and
DOA estimation. Signal environments with different signal-
to-noise ratios (SNR) and inter-signal angular distances are
considered.

Assume that two equally powered signals impinge onto an
eight-element half-wavelength interspaced ULA, 1000 snap-
shots are collected in each simulation, and 1000 independent
trials are carried out for performance analysis in each sce-
nario. As both methods are numerical ones, the cases when
the derivations of both DOA estimates from the true signal
directions are smaller than 1◦ are deemed as correct detec-
tion, and only these cases are considered for DOA estimation
precision analysis.

In the first group of simulations, we fix the directions of
the two incident signals at 5◦ and 10◦ and vary the SNR
of each signal from 5dB to 15dB, and the correct detection
probabilities of PM + rMUSIC and PM + LD − rMUSIC
are given in Fig. 1, and the root mean square errors (RMSE)
of the DOA estimates of both methods for the 5◦ signal are
presented in Fig. 2, while that for the 10◦ signal is not listed
as it is similar to that of the 5◦ one.

In the second group of simulations, we fix the SNR of both
signals at 10 dB and the direction of the first source at 5◦ and
vary the angular distance between the two sources from 3◦
to 7◦, and the correct detection probabilities and the DOA
estimation RMSE of the 5◦ signal of both PM + rMUSIC
and PM + LD − rMUSIC are shown for comparison in
Figs. 3 and 4.

Figures. 1 and 3 show that the proposed method surpasses
themethod of PM+ rMUSIC in detection performance, espe-
cially when the SNR is low and the signals are spatiallymuch
adjacent. Andwhen the SNR is lower than 10 dB or the angu-
lar distance between the two signals is smaller than 5◦, the
proposed method obtains DOA estimates of higher precision
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Fig. 2 DOA estimation RMSE of the 5◦ signal of PM + rMUSIC and
PM + LD − rMUSIC for varying SNR with fixed signal directions at
5◦ and 10◦
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Fig. 3 Detection probabilities of PM + rMUSIC and
PM + LD − rMUSIC for varying angular distances with fixed
SNR at 10 dB
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Fig. 4 DOA estimation RMSE of the 5◦ signal of PM + rMUSIC and
PM + LD − rMUSIC for varying angular distances with fixed SNR at
10 dB
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than PM + rMUSIC. But as the SNR further increases or
the signal angular distance becomes larger, PM + rMUSIC
exceeds the proposed method in DOA estimation precision,
as shown in Figs. 2 and 4.

As only the cases with correct detection are considered
when obtaining the RMSE statistics of the DOA estimates,
the predominance of the proposed method in detection is
excluded in Figs. 2 and 4. Even so, the proposed method still
shows a more satisfying (or comparable in some cases) DOA
estimation precision when compared with PM + rMUSIC.

5 Conclusions

In order to improve the computational efficiency of DOA
estimation as much as possible, this paper introduces the PM
technique to give a fast signal-subspace estimation of the
array outputs and then exploits the signal-subspace estimate
to establish a low-dimensional characteristic equation,whose
order equals the number of the incident signals, and the sig-
nal directions are finally obtained by solving this equation.
By taking all the DOA estimation procedures into consid-
eration, the proposed method improves the computational
efficiency for DOA estimation as a whole. Two groups of
simulations are carried out in different scenarios of vary-
ing SNR and inter-signal angular distance to compare the
performance of the proposed method and another computa-
tional efficient one, which combines PM and root-MUSIC
directly, in terms of detection probability and DOA estima-
tion precision. The proposed method surpasses the method
of PM + rMUSIC in performance in most of the scenarios,
especially when the SNR is low and the inter-signal angular
distance is small.
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