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Abstract In-vehicle contextual augmented reality (AR) has
the potential to provide novel visual feedbacks to drivers
for an enhanced driving experience. In this paper, we pro-
pose a new AR traffic sign recognition system (AR-TSR)
to improve driving safety and enhance the driver’s experi-
ence based on theHaar cascade and theBag-of-Visual-Words
approach, using spatial information to improve accuracy and
an overview of studies related to the driver’s perception and
the effectiveness of theAR in improving driving safety. In the
first step, the regionof interest (ROI) is extractedusing a scan-
ning window with a Haar cascade detector and an AdaBoost
classifier to reduce the computational region in the hypothesis
generation step. Second, we proposed a new computationally
efficient method tomodel global spatial distribution of visual
words by taking into consideration the spatial relationships of
its visual words. Finally, a multiclass sign classifier takes the
positive ROIs and assigns a 3D traffic sign for each one using
a linear SVM. Experimental results show that the suggested
method could reach comparable performance of the state-of-
the-art approaches with less computational complexity and
shorter training time, and theAR-TSRmore strongly impacts
the allocation of visual attention during the decision-making
phase.
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1 Introduction

An important social and economic problem in present days is
traffic safety; according to several recent statistical estimates,
road accidents have been among the top ten leading causes
of death and have attributed to approximately 1.3 million
deaths annually (WHO Report, 2012). Most traffic accidents
have been caused by drivers oversight of important objects
such as pedestrians, traffic signs, traffic signals, and so on.
Research shows that human errors including driver inatten-
tion or cognitive overload lead tomisjudgments and delays in
environment recognition and constitute amajor factor of road
accidents. Even though some developments in passive safety
technologies, such as seatbelts, airbags, crumple zones, etc.,
have partially reduced damages and improved safety during
accidents, further progress in these technologies is limited
due to their inherited limitations [15].

In-vehicle contextual augmented reality (AR) has the
potential to provide novel visual feedback of other automate
functionalities to drivers for an enhanced driving experience
like traffic signs recognition, lane deviation warnings, safety
distance indication and forward collision warnings. The AR-
HUD technologies aim to optimize the visual attention of the
driver by increasing the salience of high-value elements and
to enhance the intelligent transportation systems by super-
imposing surrounding traffic information on the users’ view
and by keeping the drivers’ view on roads. However, due
to the existence of a complex environment such as weather
conditions, illuminations and geometric distortions, the AR-
HUD traffic sign recognition (TSR) systems have always
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been considered as a challenging task. Although traffic signs
are designed to be clearly visible, they can be missed due to
driver distraction or sign masking.

There are several challenges involved in developing a
complete TSR system that includes traffic sign detection
and classification. These include occlusion of signs due
to different background, weather condition, viewpoints and
sign deformations. In order to achieve fast and robust TSR,
designing a computing efficient and highly discriminative
feature is essential. Besides, classification of traffic signs is a
complicatedmatter, since sign types are similar. Recently, the
Bag-of-Visual-Words (BoVW) has been frequently used in
the classification of image data. There is a significant amount
of work which present interesting advances for creating bet-
ter dictionaries [12,22].

In the traditional BoVW model, spatial information
between keypoints is ignored during visual words con-
struction when using simple clustering algorithms such as
k-mean. However, one major limitation of the standard
BoVW model is that it ignores spatial information of visual
words in image presentation and comparison. Researchers
have demonstrated that the object recognition performance
can be improved by including spatial information, which
is important for similarity measurement between images
[4,11,24]. Therefore, combining the frequency of occurrence
and spatial information of visual words is a promising direc-
tion for improving classification accuracy.

In this paper, we present two key contributions. Firstly,
in order to improve driving safety and enhance the driver’s
experience, we propose a new AR-TSR system that displays
visual cues on the drivers’ view while keeping drivers view
on roads. We provide a prototype implementation of a visual
AR system that significantly improves driving experience.
Secondly, a novel approach for visual words construction
is presented, which takes the spatial information of key-
points into account in order to enhance the quality of visual
words generated from extracted keypoints. We demonstrate
the complementarities of the additional relative spatial infor-
mation provided by our approach to improve accuracy while
maintaining short retrieval time.

2 Related work

Vehicular safety has been actively explored in the recent
years. In fact, even before the appearance of motorized vehi-
cles a lot of devices hadbeendeveloped andplaced invehicles
[16]. The design of TSR has been a challenge problem for
many years and hence becoming an important and active
research topic in the area of intelligent transport systems.
Traffic sign localization and classification form a base for
advanced methods used for accurate TSR and autonomous

vehicle driving so that traffic accidents can be prevented and
safety of traffic participants can be increased.

The most common approach, quite sensibly, consists of
two main stages: detection and recognition. The consid-
ered baseline algorithms represent some of the most popular
detection approaches such as the Viola–Jones detector, based
on Haar-like feature [9], and the linear classifier relying on
the histogram of oriented gradients (HOG) descriptors. Some
recent methods, such as [10], have used the HOG features for
road sign feature extraction, using complementary features
to reduce the computation complexity of TSD, and then using
the SVM to implement the traffic sign classification.

Moreover, the convolutional neural network (CNN) has
been adopted in object recognition for its high accuracy. In
[14], they applied convolutional networks (ConvNets) to the
task of traffic sign classification. The ConvNets were bio-
logically inspired multistage architectures that automatically
learnedhierarchies of invariant features. TheCNNsconsist of
amultistage processing of an input image to extract hierarchi-
cal and high-level feature representations. In [5], a real-time
system for traffic signs was put forward, which used a sliding
window method combining various DNNs trained on differ-
ently preprocessed data into amulticolumnDNN (MCDNN).

The above-described approach ignores structural informa-
tion of features, which is important for similarity measure-
ment between images. It is therefore necessary to classify
the characteristics of the given information and find a way
to represent the information according to these characteris-
tics. Several methods were recently proposed to incorporate
spatial information to improve the BoVW model such as
the spatial pyramid matching method [13], spatiotemporal
interest point [6] and the distance between joint histograms
to measure the similarity between a target and its candidate
patches [20]. Considering the processing time and classi-
fication accuracy as a whole, we have developed a novel
technique to incorporate spatial information of visual words
to improve accuracy while maintaining short retrieval time.

3 Augmented reality traffic signs recognition

The vision algorithms for driver assistance systems usually
need to fulfill strong real-time constraints. Hence, we draw
a particular focus on real-time capability of the algorithms
evaluated here. Our detector is inspired by a detector pre-
sented by Viola and Jones [21]. In the first step, the ROI
is extracted using a scanning window with a Haar cascade
detector and an AdaBoost classifier to reduce the computa-
tional region in the hypothesis generation step. Next in the
verification phase, to confirmwhether eachROI is traffic sign
or not, a second stage is needed to eliminate some false posi-
tives. In this stage, with the feature extraction of traffic signs
based on the speeded up robust features (SURF), the code-
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Fig. 1 Overview of the AR-TSR application

book is generated by these feature clustering and the images
are described by histograms using theBoVWfor verification.
To ensure rotation invariance, we proposed a new computa-
tionally efficient method to model global spatial distribution
of visual words and improved the standard BoVW represen-
tation, by taking into consideration the spatial relationships
of its visual words. Finally, a multiclass sign classifier takes
the positive ROIs and assigns a 3D traffic sign for each one
using a linear SVM.

Figure 1 shows the overall procedure of the marker-less
AR system, which is split up in two distinct stages. In the
above two stages, we assume that the intrinsic and distortion
parameters of the camera are known and do not change; these
two stages are detailed in [1].

3.1 Generation candidate detection bounding boxes

The initial detection phase of a TSR system has much com-
putational costs because ROIs in a large range of scales have
to be searched in the complete image. In order to reduce
the search space, the adopted solution is to combine a cas-
cade with fewer stages with other methods that eliminate
the false positives. During the detection phase, the system
scans each window of the input image and extracts the Haar-
like features of that particular window, which is then used
to compare to the cascade classifier. Finally, only a few of
these sub-windows accepted by all stages of the detector are
regarded as objects. The detection process takes an image
as an input and gives at the output the regions that contain
the ROI. The false alarm rate of the Haar cascade detector,
without a hypothesis verification, is higher, but it eliminates
most of the non-object regions.

The Haar-like features were originally proposed in the
framework of object detection in the face detection approach.
An AdaBoost cascade using Haar-like features is trained

offline and a boosting algorithm is used to train a classifier
with the Haar-like features of positive and negative samples.
The AdaBoost algorithm trains iteratively a strong classi-
fier, which is the sum of several weak classifiers. The object
is classified positively only if it is positively classified in
each cascade stage. The final classifier works in real time.
In fact, from an integral image, in a classifier produced by
AdaBoost, voting is done as a summation of weighted clas-
sifiers. On average, only a small subset of classifiers vote
positively because of cascading.

The real-time capability of the approach ismainly enabled
by two properties: Most sliding windows are only evaluated
by the first stages which contain few classifiers/features [8].
To reduce the false alarm rate, the detected traffic sign output
of the detector stage is processed with a part based on a
verification module.

3.2 Verification system based on BoVW

In the traditional BoVWmodel, spatial information between
keypoints is ignored during visual words construction when
using simple clustering algorithms such as k-mean.However,
this modeling approach does not take into consideration the
spatial relationships of these words, which is important for
similarity measurement between images. To solve this chal-
lenging task, recent approaches try to capture information
about the relative spatial location of visual words. This paper
presents a new approach to integrate the spatial informa-
tion to BoVWmodel, with explicit local and global structure
models.

To address this issue, we introduce a novel way to incor-
porate both distance and angle information in the BoVW
representation. This method exploits spatial orientations and
distances of all pairs of similar descriptors in the image.
In the BoVWs model, a visual vocabulary Voc = vi , i =
{1, . . . , k}, then it is built by clustering these features into a
certain number of K visual words. A given descriptor dk is
then mapped to a visual word v using euclidean distance in
Eq. (1) as follows:

v(dk) = argminDist(v, dk) (1)

wherev ∈ Voc, dk is the kth descriptor in theROI,Dist(v, dk)
is the distance between the descriptor and the visual word
based on the euclidean distance. For this reason, we con-
sider theweighted sum of ROIs to implicitly represent spatial
information which is important for similarity measurement
between images.

In the training stage, the SURF features are extracted from
all the training samples, using a dense grid. Sincewe are inter-
ested in the sign contents, only the descriptors that do not fall
outside the sign contour are taken into account. Our system
exploits the SURF features, which have shown a high robust-
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Fig. 2 Spatial histogram of similar pairwise using distance and orien-
tation: a spatial distance of similar pairwise, b spatial orientations of
similar pairwise, c pairwise similarity distance orientations information
of similar pairwise, d pairwise spatial histograms

ness to varied recording conditions. After the SURF features
are extracted for all the training samples, the number of fea-
ture points of each image is not entirely consistent, whichwill
bring great difficulties to subsequent operations. Assignment
of a visual feature to the vocabulary depends on the similarity
metric. We propose a method that incorporates spatial infor-
mation at feature level. We measure the spatial relationships
between visual words using distance and orientation.

For each visual word, the average position and the stan-
dard deviation is computed based on all the occurrences of
the visual word in the image. We consider the interaction
between visual words by encoding their spatial distances,
orientations and alignments. Figure 2 shows an example to
better understand our approach. To encode spatial informa-
tion,weuse the distance (2a) andorientation (2b) information
between pairs of patches in the image space.

More formally, we consider the set Sk of all the pairwise,
where at least one patch in the pair belongs to the visual
word wk . A given pair (Pi , Pj ) ∈ Sk is characterized both
by a pair of descriptors (di , d j ) and a pair of positions in the
image space denoted (pi , p j ) is illustrated in Fig. 2. Note
that both di and pi are vectors with di ∈ RD and pi ∈ R.

Then, for each pair of points of the feature, we compute
the angle θ formed with the horizontal axis using Eq. (2)
above:

θ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arccos
−−→
Pi Pj .

−→u−−−−−−→∥
∥
∥Pi Pj

∥
∥
∥

, if
−−→
Pi Pj .

−→v > 0

π - arccos
−−→
Pi Pj .

−→u−−−−−−→∥
∥
∥Pi Pj

∥
∥
∥

Otherwise
(2)

where
−−→
Pi Pj is the vector formed by two points Pi , Pj , and

u, v are orthogonal unit vectors defining the image plane.
After clustering, the spatial information is implicitly included

in the visual vocabulary. A pairwise spatial histogram (2d) of
similar patches is then defined considering a discretization of
the image space into M bins denoted bm,m = {1, . . . ., M}
with an angle θ ∈ [0, π [ split into Mθ angle bins and the
radius r ∈ [0, R] split into Mr radial bins so that M =
Mθ · Mr .

For those purpose, a novel structural relationship between
patches are defined for evaluating superpixels similarity.
In this paper, the simple linear iterative clustering (SLIC)
superpixels [2] are used as an adaptive analysis window
for extracting spatial features. The SLIC method is chosen,
because it produces high-quality superpixels and is simple to
implement.We show that the choice of interest point detector
is crucial in the Bag-of-Visual-Words approach, and the dis-
tance measured between pixels and the superpixel centers is
the key issue of the SLIC algorithm. In the proposed method,
spatial information derived from superpixels is utilized to
improve the performance of classification. It generates super-
pixels by grouping pixels with a local k-means clustering
method, where the distance is measured as the Euclidean
distance integrated with the data and spatial distances.

Particularly, simple spatial relations between visual words
are considered the spatial locations of the words and the spa-
tial relationship between the words were added to describe
images in the BoW model. This histogram encodes spatial
information [distance and orientation (2d)] of pairwise sim-
ilar patches, where at least one of the patches belongs to Vk .
To have a global representation, we replace each bin of the
BoVW frequency histogram with the spatial histogram asso-
ciated towi . By this way, we keep the frequency information
intact and add the spatial information.

3.3 Pose estimation and augmentation

The key to realize a AR 3D registration is to obtain a camera
projection matrix, which represents the relationship between
the 2D points from the image and the 3D points from the
model. The geometric relationship between 3D world lines
and their projections on the camera image are built to esti-
mate the relative 6-DOF camera pose consists of rotation
parameters and translation parameters [3]. From the planar
homography, we can easily compute the camera position
and rotation, which provides the motion estimates. The used
mathematical model is the projection transformation, which
is expressed byEq. (3)whereλ is the homogeneous scale fac-
tors unknown a priori, where P is a 3× 4 projection matrix,
x = (x, y) are the homogeneous coordinates of the image
features, X = (X,Y, Z) are the homogeneous coordinates of
the feature points in the world coordinates, K ∈ R3×3 is the
matrix with the camera intrinsic parameters, also known as
camera matrix, the joint rotation–translation matrix [R|t] is
the matrix of extrinsic parameters, R = [rxryrz] is the 3× 3
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rotation matrix and T = [t] is the translation of the camera.

x = λPX = K [R|t]X (3)

The projection matrix P is the key to creating a realistic aug-
mented scene using the intrinsic parameters of the camera,
the dimensions of the video frame and the distances of the
near and far clipping planes from the projection center. In our
method, we assume that the intrinsic parameters are known
in advance and do not change, and this is reasonable in most
cases.

P =
Intrinsic matrix

︷︸︸︷
K ∗

Extrinsic matrix
︷︸︸︷
[R|t]

=

Intrinsic matrix
︷ ︸︸ ︷⎛

⎝
1 0 x0
0 1 y0
0 0 1

⎞

⎠

︸ ︷︷ ︸
2D translation

∗
⎛

⎝
fx 0 0
0 fy 0
0 0 1

⎞

⎠

︸ ︷︷ ︸
2D scaling

∗
⎛

⎝
1 s/ f 0
0 1 0
0 0 1

⎞

⎠

︸ ︷︷ ︸
2D shear

∗

Extrinsic matrix
︷ ︸︸ ︷

(I |t)
︸︷︷︸

3D translation

∗
(
R 0
0 1

)

︸ ︷︷ ︸
3D rotation

(4)

Once K is known, the extrinsic parameters for each image
are readily computed. From Eq. (3), we have:

r1 = λ + K−1h1
r2 = λ + K−1h2
r3 = r1 ∗ r2
t = λ + K−1h3

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h1 = [h11 h21 h31]T
h2 = [h12 h22 h32]T
h3 = [h13 h23 h33]T
r1 = [r11 r21 r31]T
r2 = [r12 r22 r32]T
r3 = [r13 r23 r33]T

Where H =
⎡

⎣
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤

⎦

and λ = 1
‖K−1+h1‖

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(5)

In order to integrate virtual objects into the real-world
seamlessly, the AR system must be able to recognize and
track its desired environment. In this final stage, the projec-
tion of virtual objects will be easily accomplished once the
pose is known. Having calculated the camera’s interior and
exterior orientations for a video frame, the 3D can be drawn
at the right position, with the proper scale, orientation and
perspective in the scene of the real world. With the complete
set of camera parameters, virtual objects can be coherently
inserted into the video sequence captured by the camera, so
that synthetic traffic signs may be added to increase safety.

The projection-based AR corresponds to the use of pro-
jection technology to augment and enhance 3D objects and
spaces in the real world by projecting images onto their vis-
ible surfaces. Once there are enough successful matches, a
RANSAC method is applied to calculate the homography
matrix between the image of the frame and the image of the
object. Then, we are able to estimate the 3D pose and draw
a virtual 3D object on the top of the real object. The camera

calibration allows combining virtual and real-world objects
in a single display.

To correctly model the perspective projection of the cam-
era, we must mimic the intrinsic camera parameters in the
virtual environment.Whenwehave the camera calibrated in a
frame,we can synchronize the real camerawith a virtual cam-
era and project the virtual objects onto the real image using
OpenGL. Technically, this can be described with a projection
matrix that maps 3D points onto a 2D plane. After the world
has been aligned with the camera using the view transfor-
mation, the conversion from an intrinsic matrix to the model
view and projection matrices requires a conversion from the

world coordinates to the normalized view volume coordi-
nates used by OpenGL. The perspective projection matrix is
expressed by Eq. (6), where width, height, far, near represent
the positions of the clipping planes.

⎡

⎢
⎢
⎣

xclip
yclip
zclip
wclip

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2∗cx
width 0 1 − 2∗x0

width 0

0 2∗cy
height −1 + 2∗y0

height 0

0 0 near+far
near−far −2 ∗ near∗far

near−far

0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

Xcamera

Ycamera

Zcamera

1

⎤

⎥
⎥
⎦

(6)

As it is indicated, most of current marker-less tracking
approaches require a 3Dmodel of the environment formatch-
ing 2D features to those lying on the model. In addition to the
complexity of building a model, such a strategy will result
in performance problems when the model is very complex
or the environment is dynamic. In contrast, our approach
does not need to perform 3D engineering of the environ-

123



80 SIViP (2018) 12:75–82

Table 1 Recall and precision
results for traffic sign detection

Traffic signs Number of signs TP Recall (%) Precision (%)

Speed limit 127 126 99.21 98.43

Danger signs 79 75 97.46 98.97

Unique signs 50 49 98 99.04

Mandatory signs 135 134 99.14 99.25

Derestriction signs 120 117 99.02 98.96

Other prohibitory signs 115 115 99.15 99.08

ment. Also, we use a simple virtual 3D model, with a known
size, to define a reference coordinate system. This stage is
composed of a feature tracker that finds point matches, and a
homography-basedmethod can be applied to find the rotation
and translation of the camera. Finally, the registration matrix
is calculated using the above homography, and the virtual
objects are rendered on the real scenes using OpenGL.

4 Experiment results

To evaluate the performance of the proposed algorithm, we
implement the proposed AR-TSR method using the hard-
ware environment of Core i7 640LM 2.13 GHz and the
software environment of Windows 7, Visual Studio 2010
using OpenGL and OpenCV Library 2.4.8. We implement
the suggested method in C++ and test the real-time perfor-
mance on the German Traffic Sign Recognition Benchmark
(GTSRB) and German Traffic Sign Detection Benchmark
(GTSDB) datasets [17]. These classes of traffic signs have
been divided into six subsets speed limit sign subset, dan-
ger sign subset, mandatory sign subset, unique sign subset,
derestriction sign subset and other prohibitory sign subset.

4.1 Performance of the proposed method

4.1.1 Detection performance

The database used to train the detectors has been collected
from the GTSRB dataset, the Belgian Traffic Signs Dataset
(BelgiumTS) [19], and our own images. Our training dataset
consists of 4500 interest traffic signs and 6000 non-traffic
signs. The sizes of traffic sign examples are in range from
15× 15 to 250× 250 pixels. The achieved detection perfor-
mances are summarized in Table 1 versus the number of test
images.

The experimental results of Table 1 demonstrate an excel-
lent performance of our system. The results show that the
proposed algorithm attains an average precision rate of
98.95% and an average recall rate of 98.66%. As previously
mentioned, the detection system robustness is demonstrated
through its tolerance of changes in lighting and in plane rota-

Fig. 3 Detection of traffic signs in adverse conditions

tions. In order to evaluate the system robustness, we have
tested the accuracy of our algorithm when tracking the ROIs
in the captured frames in various lighting and weather con-
ditions, as shown in Fig. 3.

The missing chances of true positives are comparatively
less when compared with other systems. The false alarm rate
is reduced greatly when the system is tested with a part-
based BoVW verification. It has been proved by experiments
that our algorithm is not only highly efficient, but also more
accurate than previous algorithm during detection.

4.1.2 Classification performance

In the classification stage, we determine whether a detected
image region contains a particular traffic sign or whether it
has to be rejected as a false positive. In order to evaluate the
occlusion robustness of the suggested classification method,
the content of the detected ROI is identified using the tree
classifiers. This classifier is tested on static, low-resolution
sign images. A comprehensive performance evaluationon
GTSRB dataset is carried out, where Table 2 shows the clas-
sification rates of the linear SVM.
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Table 2 Confusion matrices of
traffic sign classification

Speed limit Danger Unique Mandatory Derestriction Prohibitory

Speed limit 0.998 0 0.001 0 0 0.001

Danger 0.001 0.993 0.004 0 0.002 0

Unique 0 0 1 0 0 0

Mandatory 0 0 0 0.999 0 0.001

Derestriction 0 0.001 0 0.001 0.998 0

Prohibitory 0.001 0 0 0 0 0.999

Table 3 Performance
comparison with other TSR
methods

Method [5] (%) [18] (%) [14] (%) [23] (%) [7] (%) Our (%)

Speed limit 99.47 97.63 98.61 95.95 98.82 99.13

Danger signs 99.07 98.67 98.03 92.08 96.85 98.97

Unique signs 99.22 100.00 98.63 98.73 100.00 99.51

Mandatory signs 99.89 99.72 97.18 99.27 96.86 99.45

Derestriction signs 99.72 98.89 94.44 87.50 97.93 99.32

Other prohibitory signs 99.93 99.93 99.87 99.13 98.27 99.47

A key idea of our method is to project the 3D object sign
using the corresponding sparse dictionary and then to classify
the projected vector with the SVM. Furthermore, we evaluate
the classification task on the detected signs returned by the
previous detection module. As shown in Table 2, the overall
classification accuracy is 99.31%. Note that only 3 (out of
1500) speed limit signs, while only 6 (out of 890) danger
signs, are falsely classified. If the recognition is complete, a
multiclass sign classifier takes the positive ROI and assigns
a 3D traffic sign to each one. Experiments demonstrate that
our approach succeeds in adding relative spatial information
into the BoVWmodel by encoding both the global and local
relative distributions of visual words over an image.

4.2 Comparisons with other state-of-the-art methods

In order to verify the discrimination performance and com-
putation efficiency of the proposed feature for TSD, the
experiments on the public available dataset of traffic signs are
implemented. Because the training and testing samples in the
GTSRB dataset are split according to a fixed rule, an absolute
performance comparison with other reported approaches is
possible. We report these results in Table 3, where the results
of the winning system from the IJCNN challenge and some
reported results in the IJCNN 2011 are provided as refer-
ences.

According to the results for the GTSRB dataset, shown in
Table 3, this work achieves a 99.31% recognition accuracy,
which is a comparable performance of 0.24% less then the
work by [5], and a performance of 0.17% higher than the
work by [18] and 1.51% than the work by [14]. The accuracy
of recognizing unique signs reach 99.31%,which is compara-
ble with the best achieved one. The danger signs which have

triangular shape have given the worst results compared with
other traffic sign categories. Compared with other methods,
this paper presents an overview of studies related to drivers’
perception and cognition when this information is displayed
on the windshield HUD, as it can be a solution to reduce the
duration and frequency of drivers looking away from the traf-
fic scene, which is very important in safe driving assistance
systems.

4.3 Augmented reality tracking

In this section, the results obtained during real-time tests,
performed with a fully equipped vehicle, are presented. We
have started the evaluation of theAR tracking by superimpos-
ing 3D graphics on target images. To provide driving safety
information using the proposedAR-TSR, various sensors and
devices have been attached to the experimental test vehicle.
The system has been empirically tested under different light-
ing conditions, in sunny or cloudy days, in the rain and at
night (Fig. 4).

The experimental results have shown that the proposed
method has significantly reduced the computational cost and
also stabilized the camera pose estimation process. A virtual
object is attached to a real object for the augmentation pur-
pose, and the camera pose are used to superimpose virtual
objects onto the real environment. Therefore, theAR-HUD is
an important step in the direction of holistic human machine
interaction concepts in vehicles for amore comfortable,more
economic and safer driving experience. The experiments
have confirmed that the system can accurately superim-
pose virtual textures or 3D objects to a user-selected planar
part of a natural scene in real time, under general motion
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Fig. 4 Insertion of virtual 3D object sign in cloudy days, nighttime,
sunny days and snow days

conditions, without the need of markers or other artificial
beacons.

5 Conclusions

To improve driving safety and minimize the driving work-
load, the provided information should be represented in such
a way that it is more easily understood and imposing less
cognitive load onto the driver. A new AR-HUD approach to
create real-time interactive traffic animations is introduced,
in terms of rules for placement and visibility, types of traffic
signs and migration of these to an in-vehicle display. The
AR-TSR supplements the exterior view of the traffic condi-
tions in front of the vehicle with virtual information for the
driver. We have chosen to combine the Haar cascade detec-
tor and hypothesis verification using BoVWwith the relative
spatial information between visual words, which has proved
to be a good compromise between the resource efficiency
and overall performance. Experimental results show that the
suggested method could reach comparable performance of
the state-of-the-art approaches with less computational com-
plexity and shorter training time.
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