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Abstract This paper presents a novel approach to Lyapunov
stability theory-based adaptive filter (LAF) design. The pro-
posed design is based on the minimization of the Euclidean
norm of the difference weight vector under negative def-
initeness constraint defined over a novel linear Lyapunov
function. The proposed fixed step size LAF (FSS-LAF) algo-
rithm is first obtained by using the method of Lagrangian
multipliers. The FSS-LAF satisfying asymptotic stability in
the sense of Lyapunov provides a significant performance
gain in the presence of a measurement noise. The stability of
the FSS-LAF algorithm is also statistically analyzed in this
study.Moreover, gradient variable step size (VSS) algorithms
are adapted to the FSS-LAF algorithm to further enhance the
performance for the first time in this paper. These VSS algo-
rithms are Benveniste (BVSS), Mathews and Farhang–Ang
(FVSS) algorithms. Simulation results on system identifi-
cation problems show that the bounds of step size for the
FSS-LAF algorithm are verified, and especially, the BVSS-
LAF and FVSS-LAF algorithms provide a better trade-off
between steady-state mean square deviation error and con-
vergence rate than other proposed algorithms.
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1 Introduction

Adaptive filters have been used in many applications such
as prediction, noise cancellation and system identification
[1]. Recently, the LAF algorithms are the most widely used
adaptive filter algorithms [2–8], because they are designed to
construct an energy surface having a single global minimum
point in contrast to the gradient descent-based algorithms
[2]. Furthermore, they always guarantee asymptotic stabil-
ity according to the Lyapunov stability theory (LST) due to
the fact that their error signals can converge to zero asymp-
totically [2–8]. However, since these LAF algorithms are
designed without considering measurement noise effects,
they cannot estimate optimal weight vector coefficients of
an unknown system. To overcome many of the limitations
on existing LAF algorithms [2–8], we proposed an LAF
algorithm with a fixed step size for the noisy desired sig-
nal in [9]. The proposed algorithm in [9] has provided the
distinct advantages over the conventional LAF algorithm [2]
by controlling the fixed step size parameter. However, there
are conflicting requirements between the convergence rate
and the steady-state MSD error for the proposed LAF algo-
rithm in [9]. Also, the analysis of the proposed algorithm in
terms of convergence in the mean has not been investigated
in [9], and hence, the lower and upper bounds for the step
size parameter have not been statistically determined yet.

In this paper, we propose a novel LAF algorithm and
its some VSS versions. A novel Lyapunov function is first
determined as V (k) = |e(k)|, and then, the proposed filter
design is expressed as a constrained optimization problem
by considering LST. As a result of the solution of the opti-
mization problem, we obtain the FSS-LAF algorithm. Thus,
the proposed FSS-LAF algorithm, which ensures negative
definiteness in the sense of Lyapunov, iteratively updates the
weight vector coefficients of the adaptive filter. Use of the
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step size parameter in the proposed algorithm improves the
convergence capability, provides the estimation of the opti-
mal weight vector coefficients of the unknown system and
controls both steady-state and transientMSD errors. Further-
more, we present the convergence analysis of the proposed
FSS-LAF algorithm for the first time in this paper. However,
the selection of the step size parameter plays a critical role
in the convergence performance of the proposed algorithm.
Hence, the step size parameter in the FSS-LAF needs to be
optimized and adaptively controlled during the filtering pro-
cess.

To deal with this problem, a number of widely used
gradient VSS algorithms are also adapted to the proposed
FSS-LAF algorithm to further improve the performance for
the first time in this paper. These VSS algorithms adjust-
ing the step size parameter are the BVSS [10], MVSS [11]
and FVSS [12] algorithms. To iteratively update and opti-
mize the step size in the FSS-LAF algorithm, similar to
studies in [10–13], the BVSS-LAF algorithm is rigorously
derived without considering the independence assumptions,
whereas the MVSS-LAF algorithm uses instantaneous gra-
dients. The FVSS-LAF algorithm is also proposed to reduce
the computational complexity of the BVSS-LAF algorithm.
Furthermore, computational complexities of the proposed
VSS algorithms are analyzed in this study. Finally, the per-
formances of the proposed algorithms are comparatively
illustrated on benchmark system identification problems.

2 The proposed FSS-LAF algorithm formulation

In the classical structure of a system identification problem,
the desired signal consists of the following model:

d(k) = s(k) + n(k) = wo
Tx(k) + n(k) (1)

where s(k) = wo
Tx(k) represents the unknown system out-

put, x(k) = [x(k), x(k − 1), . . . , x(k − M + 1)]T is the
input vector, wo = [w0, w1, . . . , wM−1]T is the optimal
weight vector of the unknown system to be estimated, n(k)
is the measurement noise, and M is the filter order.

The filter output y(k) and the error signal e(k) are defined
in (2) and (3), respectively.

y(k) = wT(k)x(k) (2)

e(k) = d(k) − y(k) (3)

For the design of the proposed adaptive filter, a candi-
date Lyapunov function should be determined after the error
signal e(k) is defined in (3). According to LST, the Lya-
punov function in our design is selected as V (k) = |e(k)| to
construct a linear inequality constraint in our optimization
problem. In order to ensure the asymptotic stability of the

proposed algorithm in the sense of Lyapunov, the determined
Lyapunov function V (k) should also provide the negative
definiteness condition as �V (k) = V (k) − V (k − 1) < 0,
∀ k. Therefore, this condition is integrated into the constraint
part of the proposed optimization problem as follows:

wo = min
w(k)

(
1

2
δwTδw

)
subject to �V (k) < 0 (4)

where δw = w(k) − w(k − 1) and �V (k) = |e(k)| −
|e(k − 1)|.

In order to solve the optimization problem having the
quadratic cost function and the linear inequality constraint,
we use the method of Lagrange multipliers. We primarily
define the Lagrangian function F(w(k), λ) as follows:

F(w(k), λ) = 1

2
(w(k) − w(k − 1))T(w(k) − w(k − 1))

+ λ (|e(k)| − |e(k − 1)|) (5)

where λ is the Lagrange multiplier.
Then, the derivative of F(w(k), λ) is taken with respect to

w and λ and these results are equal to zero. Thus, we obtain
the two optimality conditions as follows.

Condition 1:
∂F(w(k), λ)

∂w(k)
= 0 (6)

Condition 2:
∂F(w(k), λ)

∂λ
= 0 (7)

By implementing optimality Condition 1, (8) is obtained as
follows:

w(k) − w(k − 1) = λ (sgn(e(k))x(k)) . (8)

In order to obtain the Lagrange multiplier λ from (8), we can
multiply both sides of (8) by xT(k). Thus, we can get the
Lagrange multiplier λ in (9) after rearrangement of terms.

λ = α(k) − e(k)

‖x(k)‖2sgn(e(k)) (9)

where α(k) represents the a priori estimation error given by:

α(k) = d(k) − wT(k − 1)x(k) (10)

Finally, Condition 2 in (7) is obtained as follows:

∂F(w(k), λ)

∂λ
= |e(k)| − |e(k − 1)| = 0. (11)

Here,Condition2 is obtained as |e(k)| = |e(k − 1)|under the
optimum conditions. However, this result does not ensure the
negative definiteness of the Lyapunov function, �V (k) < 0.
Therefore, in order to ensure�V (k) = |e(k)|−|e(k − 1)| <
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0 in all cases, we modify the error signal |e(k)| by using
adaptation gain rate κ ∈ [0, 1), as follows:

|e(k)| = κ |e(k − 1)| . (12)

Thus, the asymptotic stability of the proposed algorithm
in the sense of Lyapunov, that is, �V (k) = κ |e(k − 1)| −
|e(k − 1)| < 0 is ensured for κ ∈ [0, 1). Therefore, the error
function |e(k)| for κ ∈ [0, 1) asymptotically converges to
zero when the time index k approaches to infinity. This case
can easily be verified by using (12) as follows:

|e(k)| = lim
k→∞ κk |e(0)| = 0. (13)

Remark The use of the adaptation gain rate parameter κ in
the proposed algorithm controls and improves the transient
response of the adaptive filter. If κ is set to a small value, the
proposed algorithm can achieve a faster convergence rate.

The Lagrange multiplier defined in (9) is rewritten in (14)
by using (12).

λ = (|α(k)| − κ |e(k − 1)|) sgn(α(k))

‖x(k)‖2sgn(e(k)) (14)

Finally, substituting (14) into (8), the proposed weight vector
updates law is obtained as follows:

w(k) = w(k − 1)

+ x(k)

‖x(k)‖2 (α(k) − κ |e(k − 1)| sgn (α(k))) . (15)

The weight vector update law of the proposed algorithm
in (15) can be multiplied by a positive constant step size μ

in order to govern the steady-state and transient behaviors
of the proposed algorithm. In addition, (15) can be modified
in order to avoid singularity by adding a small positive con-
stant ε. Consequently, the weight vector update law of the
generalized FSS-LAF algorithm is given as in (16).

w(k) = w(k − 1)

+ μ
x(k)

ε + ‖x(k)‖2 (α(k) − κ |e(k − 1)| sgn (α(k)))

(16)

3 Stability of the FSS-LAF algorithm

In this section, we will represent the stability of the pro-
posed FSS-LAF algorithm in terms of the convergence in the
mean. The convergence analysis of the proposed algorithm
can be donemathematically tractable if we use independence

assumptions given in [1,13,14]. The desired signal first can
be defined without loss of generality as follows:

d(k) = wo
Tx(k) + n(k) (17)

where n(k) is zero-mean white Gaussian noise with variance
σ 2
n which is uncorrelatedwith the input signal x(k) [1,13,14].
Then, the a priori estimation error α(k) is expressed by

using (17) as follows:

α(k) = wo
Tx(k) + n(k) − wT(k − 1)x(k). (18)

Thus, using (18), (16) can be rewritten for ε = 0 as:

w(k) = w(k − 1) + μ
x(k)

‖x(k)‖2
(
wo

Tx(k) + n(k)

−wT(k − 1)x(k) − κ |e(k − 1)| sgn (α(k))
)

. (19)

After subtracting wo from both sides of (19) [1,13,14], the
weight error vector c(k) = w(k) − wo can be obtained by
using (13), as follows:

c(k) = c(k − 1) − μ
x(k)xT(k)

‖x(k)‖2 c(k − 1) + μ
x(k)n(k)

‖x(k)‖2

− μ
x(k)

‖x(k)‖2
(
κk |e(0)| sgn (α(k))

)
. (20)

The statistical expectation operator is employed to both sides
of (20), and then, the error signal vanishes in (20) (that is,
κ |e(k − 1)| = κk |e(0)| = 0) if the time index k approaches
to infinity. Thus, (20) is easily obtained again under these
assumptions as follows:

E {c(k)} =
(
I − μ

R
tr[R]

)
E {c(k − 1)} . (21)

Using the unitary transformation similar to [1,13,14], we
can define the correlation matrixR asR = QΛQT. Thus, we
have:

E {v(k)} =
(
I − μ

Λ

λmax

)
E {v(k − 1)} (22)

where Λ is the diagonal matrix which has diagonal elements
of R, Q is the unitary matrix of transformation, λmax is the
maximum eigenvalue of R, and v(k) = QTc(k).

If the nth natural mode of (22) is solved by considering
the initial condition, we obtain the following solution:

E {vn(k)} =
(
1 − μ

λn

λmax

)k

E {vn(0)} (23)

where λn is the nth eigenvalue of R.

123



1570 SIViP (2017) 11:1567–1575

If the step size μ in (23) is chosen as 0 < μ < 2, w(k)
converges to wo when the time index k approaches infinity.
In addition to this, assume that the error signal e(k) is equal
to a priori estimation error α(k) when the weight vector of
the adaptive filter is close to the optimal weight vector.

4 Variable step size algorithms

In this section, wewill design a number of widely used gradi-
ent VSS algorithms for the FSS-LAF algorithm. A gradient
variable step sizeμ(k) can be derived based on the following
equation:

μ(k) = μ(k − 1) − ρ∇μ J (k)
∣∣
μ=μ(k−1) (24)

where the parameter ρ is the learning rate.
Using the cost function J (k) = 1

2α
2(k), the gradient

∇μ J (k) is calculated as [10]:

∇μ J (k)
∣∣
μ=μ(k−1) = −α(k)xT(k)

∂w(k − 1)

∂μ(k − 1)
. (25)

Assuming μ(k − 1) ≈ μ(k) for a small step size value [10],
we obtain the following equation:

∂w(k − 1)

∂μ(k − 1)
≈ ∂w(k − 1)

∂μ(k)
= ψ(k) (26)

where ψ(k) represents the sensitivity term [13].
Thus, a general update rule for the step size is obtained by

using the sensitivity term ψ(k), as follows:

μ(k) = μ(k − 1) + ρα(k)xT(k)ψ(k). (27)

In the subsections, the design of VSS algorithms will be pre-
sented by evaluating the sensitivity term ψ(k).

4.1 BVSS-LAF algorithm

In this algorithm, the sensitivity termψ(k) is rigorously eval-
uated based on (16) as follows:

∂w(k − 1)

∂μ(k − 1)
= ∂w(k − 2)

∂μ(k − 1)
+ ∂μ(k − 1)

∂μ(k − 1)[
x(k − 1)

‖x(k − 1)‖2 (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k−1))

]

+μ(k − 1)

[
x(k − 1)

‖x(k − 1)‖2
(

∂ |α(k − 1)|
∂μ(k − 1)

− κ
∂ |e(k − 2)|
∂μ(k − 1)

)
sgn (α(k − 1))

]

+μ(k − 1)

[
∂

(
x(k − 1)/‖x(k − 1)‖2)

∂μ(k − 1)

· (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k − 1))

]
. (28)

The last term in (28) equals to zero because the input x(k−1)
is independent of the step size μ(k − 1). Therefore, only the
terms ∂ |α(k − 1)| /∂μ(k − 1) and ∂ |e(k − 2)| /∂μ(k − 1)
are obtained as follows:

∂ |α(k − 1)|
∂μ(k − 1)

= −sgn(α(k − 1))

·
(
xT(k − 1)

∂w(k − 2)

∂μ(k − 1)

)
(29)

∂ |e(k − 2)|
∂μ(k − 1)

= −sgn(e(k − 2))

·
(
xT(k − 2)

∂w(k − 2)

∂μ(k − 1)

)
. (30)

Using (29) and (30), (28) is rewritten as follows:

∂w(k − 1)

∂μ(k − 1)
=

[
I − μ(k − 1)sgn (α(k − 1))

x(k − 1)

‖x(k − 1)‖2
·
[
sgn (α(k − 1)) xT(k − 1)

− κsgn (e(k − 2)) xT(k − 2)
]]

· ∂w(k − 2)

∂μ(k − 1)
+ x(k − 1)

‖x(k − 1)‖2 (|α(k − 1)|
− κ |e(k − 2)|) sgn (α(k − 1)) . (31)

Thus, the sensitivity term ψ(k) is expressed as follows:

ψ(k) = Λ(k − 1)ψ(k − 1) + x(k − 1)

ε + ‖x(k − 1)‖2
· (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k − 1)) (32)

where Λ(k − 1) is a time-varying adaptive filter that enables
low-pass filtering of instantaneous gradients. Thus, the
BVSS-LAF algorithm exhibits more accurate and robust
behaviors against uncertainties resulted from the noisy
instantaneous gradients [13].

4.2 FVSS-LAF algorithm

In order to simplify the BVSS-LAF algorithm, the time-
varying term Λ(k − 1) is replaced by a constant 0 < a < 1.
Thus, ψ(k) can be written as follows:

ψ(k) = aψ(k − 1) + x(k − 1)

ε + ‖x(k − 1)‖2
· (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k − 1)) . (33)
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Table 1 Summary and complexity of the proposed algorithms

Algorithms Equations # of Mult. # of Add

Step size update μ(k) = μ(k − 1) + ρα(k)xT (k)ψ(k) M+2 M

BVSS-LAF ψ(k) = Λ(k − 1)ψ(k − 1) + x(k−1)
ε+‖x(k−1)‖2 (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k − 1)) 16M+3 10M−1

FVSS-LAF ψ(k) = aψ(k − 1) + x(k−1)
ε+‖x(k−1)‖2 (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k − 1)) 8M+3 6M+1

MVSS-LAF ψ(k) = x(k−1)
ε+‖x(k−1)‖2 (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k − 1)) 7M+3 5M+1

(a) (b)

Fig. 1 Comparison of the proposed FSS-LAF algorithm in terms of MSD (dB) for correlated input at different fixed step sizes, a SNR = 0 dB, b
SNR = 10 dB

As seen from (33), the FVSS-LAF algorithm has a low-pass
filter with a fixed coefficient a and thus provides the filtering
of the noisy instantaneous gradients [13].

4.3 MVSS-LAF algorithm

By setting a = 0 in (33), the calculation of the sensitivity
term can be further simplified as follows:

ψ(k) = x(k − 1)

ε + ‖x(k − 1)‖2
· (|α(k − 1)| − κ |e(k − 2)|) sgn (α(k − 1)) . (34)

As seen from (34), the MVSS-LAF algorithm only uses the
noisy instantaneous gradient estimates [13].

5 Computational complexities

As seen from Table 1, the BVSS-LAF algorithm has a higher
computational complexity than the other VSS algorithms
because of the detailed evaluation of ψ(k). However, since
the MVSS-LAF algorithm does not contain the information
of the past values of ψ(k), its computational complexity is
less than those of theBVSS-LAFandFVSS-LAFalgorithms.

6 Simulation results and discussion

In this section, the performance of the proposed algorithms is
illustrated on identification scenarios. The unknown system
H(z) including ten coefficients is randomly generated, and it
has the same number of coefficients with the adaptive filter.
The unknown system and the adaptive filter are fed by two
Gaussian input signals [15] which are generated by filtering
zero-mean white Gaussian random sequence through a first-
order system (correlated input) G1(z) = 1/(1 − 0.9z−1) or
a third-order system (nonwhite Gaussian input) G2(z) =
0.44/(1 − 1.5z−1 + z−2 − 0.25z−3). The unknown system
output s(k) is corruptedby themeasurement noisen(k)with0
and 10 dB signal-to-noise ratio (SNR) levels. To measure the
performance of the proposed algorithms, the MSD is used
as MSD = E‖wo − w(k)‖2 [16]. All the following simu-
lation results are obtained by ensemble averaging over 50
independent trials. The adaptation gain rate parameter of the
proposed algorithms is chosen as κ = 0.01 in all the simu-
lations to satisfy stability in the sense of Lyapunov. Also, ε
is chosen as 0.001.

Figures 1 and 2 show the effect of the step size on the
MSD error of the proposed FSS-LAF algorithm at 0 and 10
dB SNRs for the correlated and nonwhite input signals. As
seen from Figs. 1 and 2, a small step size slows down the con-
vergence rate but provides a lower steady-state MSD error.
On the other hand, a large step size accelerates the conver-
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(a) (b)

Fig. 2 Comparison of the proposed FSS-LAF algorithm in terms of MSD (dB) for nonwhite Gaussian input at different fixed step sizes, a SNR
= 0 dB, b SNR = 10 dB

Table 2 MSE performance of the proposed FSS-LAF algorithm at dif-
ferent step sizes and SNR levels

μ Correlated input Nonwhite Gaussian input

0 dB 10 dB 0 dB 10 dB

μ = 0.05 1.042 0.104 1.048 0.105

μ = 0.1 1.081 0.108 1.087 0.109

μ = 0.5 1.442 0.144 1.445 0.144

μ = 1 2.297 0.230 2.251 0.223

μ = 2 Unstable Unstable Unstable Unstable

gence but produces a higher steady-state MSD error. When
μ = 2, the proposed algorithm demonstrates an unstable
behavior because the step sizeμmust be chosen less than 2 to
ensure the stability of the proposedFSS-LAFalgorithm.Note
that the FSS-LAF algorithm for μ = 1 is equivalent to the
classical LAF algorithm [2] which does not find the optimal
weight vector coefficients as seen from Figs. 1 and 2. How-
ever, the proposed algorithm with a small step size value can
estimate the optimal weight vector of the unknown system.

Furthermore, Table 2 shows steady-state MSE performance
of the proposed FSS-LAF algorithm for the correlated and
nonwhite Gaussian inputs at different step sizes and SNR
levels. As can be observed from both Figs. 1, 2 and Table 2,
the proposed FSS-LAF algorithm provides a lower steady-
state MSD and MSE errors for μ = 0.05. Therefore, its step
size is chosen to be μ = 0.05 in the following simulations.
For a fair comparison, while the initial values of the step
sizes of the proposed VSS algorithms are initialized a small
value such that asμ(0) = 0.01, other parameters of them for
each simulation are chosen experimentally to achieve both
the best convergence rate and the minimum level of theMSD
(dB) error. In our simulations, we also compare the proposed
algorithms with the recursive least square (RLS) algorithm,
where the forgetting factor λ and the parameter δ for initial-
izing the inverse autocorrelation matrix P(0) are chosen as
0.999 and 0.01, respectively.

Figure 3a shows the convergence performances of the
algorithms in terms of the MSD (dB) for the uncorrelated
input signal when SNR = 0 dB. As seen from Fig. 3a, pro-
posedBVSS-LAFandFVSS-LAFalgorithmsprovide a good

(a) (b)

Fig. 3 a Comparison of the algorithms in terms of MSD (dB) for correlated input when SNR = 0 dB. b Variation of step sizes of the proposed
VSS algorithms for correlated input when SNR = 0 dB
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(a) (b)

Fig. 4 a Comparison of the algorithms in terms of MSD (dB) for correlated input when SNR = 10 dB. b Variation of step sizes of the proposed
VSS algorithms for correlated input when SNR = 10 dB

(a) (b)

Fig. 5 a Comparison of the algorithms in terms of MSD (dB) for nonwhite Gaussian input when SNR = 0 dB. b Variation of step sizes of the
proposed VSS algorithms for nonwhite Gaussian input when SNR = 0 dB

(a) (b)

Fig. 6 a Comparison of the algorithms in terms of MSD (dB) for nonwhite Gaussian input when SNR = 10 dB. b Variation of step sizes of the
proposed VSS algorithms for nonwhite Gaussian input when SNR = 10 dB

trade-off between the convergence rate and the steady-state
MSD error due to the use of a low-pass filter for the noisy
instantaneous gradients when compared to the other two pro-
posed algorithms. As seen from Fig. 3a, the RLS algorithm
exhibits a faster convergence rate than the proposed algo-
rithms but achieves the same steady-state MSD error with

the FVSS-LAF algorithm. Note that the faster convergence
rate of the RLS algorithm comes at the cost of high compu-
tational complexity which is 3(M + 1)2 + 2(M + 1) [14].
The variations of step sizes of the corresponding VSS algo-
rithms for the uncorrelated input signal and SNR = 0 dB are
also shown in Fig. 3b. As seen from Fig. 3b, the step sizes
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μ(k) of the BVSS-LAF and FVSS-LAF algorithms, unlike
the MVSS-LAF algorithm, go up to higher values initially
and then come down very fast to lower values. Thus, the
BVSS-LAF and FVSS-LAF algorithms exhibit a faster ini-
tial convergence behavior and then improve the identification
of the unknown system in order to obtain a lower MSD error
in the steady state. For SNR= 10 dB, results similar to those
in Fig. 3a, b are observed in Fig. 4a, b, respectively.

Figure 5a shows the convergence performances of the
algorithms in terms of MSD (dB) for the nonwhite Gaus-
sian input signal when SNR = 0 dB. As seen from Fig. 5a,
the BVSS-LAF and FVSS-LAF algorithms outperform the
FSS-LAF and MVSS-LAF algorithms in terms of the con-
vergence rate and steady-state MSD error. Also, in Fig. 5a,
although RLS algorithm for nonwhite Gaussian input shows
a faster convergence rate, it produces a higher steady-state
MSD error when compared to the proposed algorithms. In
Fig. 5b, for the nonwhite Gaussian input signal at SNR = 0
dB, the step sizes μ(k) of the BVSS-LAF and FVSS-LAF
algorithms quickly converge to high values and then very fast
descend to small values, unlike the MVSS-LAF algorithm.
Also, in Fig. 6a, b, results similar to those in Fig. 5a, b are
observed for 10 dB SNR. Moreover, Tables 3 and 4 summa-
rize the coefficients of the unknown system obtained by the
algorithms for the correlated and nonwhite Gaussian input
signals at 0 and 10 dB SNR levels. Tables 3 and 4 show that,
in the steady-state, all the algorithms approximately converge
to the optimal weight vector coefficients.

7 Conclusion

In this paper, we have proposed a generalized FSS-LAF
algorithm and its VSS versions. The proposed FSS-LAF
algorithm ensuring asymptotic stability has improved the
performance in the presence of the measurement noise. Fur-
thermore, three VSS algorithms have been adapted to the
FSS-LAF algorithm to further improve the performance. The
performances of the proposed algorithms have been tested on
system identification problems in terms of theMSD (dB) and
the convergence rate. The simulation results have shown that
the derived bounds of step size for the FSS-LAF algorithm
are justified, and especially, the BVSS-LAF and FVSS-LAF
algorithms provide a better trade-off between the steady-state
MSD (dB) error and the convergence rate.
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